Contents/conteúdo

Topological Quantum Field Theory Seminar   RSS

28/11/2012, 11:30 — 12:30 — Room P4.35, Mathematics Building
, Univ. of Illinois at Chicago

Non-Commutative Worlds and Classical Constraints

This talk shows how discrete measurement leads to commutators and how discrete derivatives are naturally represented by commutators in a non-commutative extension of the calculus in which they originally occurred. We show how the square root of minus one (i) arises naturally as a time-sensitive observable for an elementary oscillator. In this sense the square root of minus one is a clock and/or a clock/observer. This sheds new light on Wick rotation, which replaces t (temporal quantity) by it. In this view, the Wick rotation replaces numerical time with elementary temporal observation. The relationship of this remark with the Heisenberg commutator [P,Q]=i is explained. We discuss iterants - a generalization of the complex numbers as described above. This generalization includes all of matrix algebra in a temporal interpretation. We then give a generalization of the Feynman-Dyson derivation of electromagnetism in the context of non-commutative worlds. This generalization depends upon the definitions of derivatives via commutators and upon the way the non-commutative calculus mimics standard calculus. We examine constraints that link standard and non-commutative calculus and show how asking for these constraints to be satisfied leads to some possibly new physics.

See also

https://www.math.ist.utl.pt/seminars/qci/index.php.en?action=show&id=3243
Note also another seminar session by the same speaker on Friday 30th November

To join the session on Zoom a password is required. If you are not already on the mailing list, please subscribe the announcements to receive password info and updates.

Current organizers: José MourãoRoger Picken, Marko Stošić

Mathseminars

FCT Projects PTDC/MAT-GEO/3319/2014, Quantization and Kähler Geometry, PTDC/MAT-PUR/31089/2017, Higher Structures and Applications.

CAMGSD FCT