Contents/conteúdo

Topological Quantum Field Theory Seminar   RSS

06/01/2012, 16:00 — 17:00 — Room P3.10, Mathematics Building
Nuno Freitas, Universitat de Barcelona

From Fermat's Last Theorem to some generalized Fermat equations

The proof of Fermat's Last Theorem was initiated by Frey, Hellegouarch, Serre, further developed by Ribet and ended with Wiles' proof of the Shimura-Tanyama conjecture for semi-stable elliptic curves. Their strategy, now called the modular approach, makes a remarkable use of elliptic curves, Galois representations and modular forms to show that a p+b p=c p has no solutions, such that (a,b,c)=1 if p3. Over the last 17 years, the modular approach has been continually extended and allowed people to solve many other Diophantine equations that previously seemed intractable. In this talk we will use the equation x p+2 αy p=z p as the motivation to introduce informally the original strategy (α=0) and illustrate one of its first refinements (for α=1). Then we will discuss some further generalizations that recently led to the solution of equations of the form x 5+y 5=dz p.

To join the session on Zoom a password is required. If you are not already on the mailing list, please subscribe the announcements to receive password info and updates.

Current organizers: José MourãoRoger Picken, Marko Stošić

Mathseminars

FCT Projects PTDC/MAT-GEO/3319/2014, Quantization and Kähler Geometry, PTDC/MAT-PUR/31089/2017, Higher Structures and Applications.

CAMGSD FCT