Contents/conteúdo

Topological Quantum Field Theory Seminar   RSS

30/03/2000, 14:00 — 15:00 — Room P3.10, Mathematics Building
João Nuno Tavares, Faculdade de Ciências, Universidade do Porto

Sobre o método do referencial móvel de E. Cartan

Bibliografia:

A. Na exposição seguirei muito de perto:

  1. Cartan Elie, La theorie des groupes finis et continus et la geometrie differentielle. Gauthiers-Villars, 1937.
  2. Cartan Elie, La methode du repere mobile, la theorie des groupes continus et les espaces generalises. Hermann, 1935.

B. Outras referências mais actuais e avançadas (que eu não vou abordar):

  1. Griffiths P., On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. Journal 41 (1974), 775-814.
  2. Griffiths P., Harris J., Algebraic geometry and local differential geometry. Ann. Sci. Ecole Norm. Sup. 12 (1979), 355-452.
  3. Akivis M. A., Goldberg V. V., Projective differential geometry of submanifolds. North-Holland, 1993.
  4. Akivis M. A., Goldberg V. V., Conformal differential geometry and its generalizations. John Wiley and Sons, Inc., 1996.

C. Aplicações (que eu não vou abordar):

  1. Razumov A. V., Frenet Frames and Toda Systems, math.DG/9901023
  2. Fels, M., Olver, P. J., Moving coframes I. A practical algorithm. Acta Appl. Math. 51 (1998) 161-213.
  3. Fels, M., Olver, P. J., Moving coframes II. Regularization and theoretical foundations. Acta Appl. Math. 55 (1999) 127-208.

To join the session on Zoom a password is required. If you are not already on the mailing list, please subscribe the announcements to receive password info and updates.

Current organizers: José MourãoRoger Picken, Marko Stošić

Mathseminars

FCT Projects PTDC/MAT-GEO/3319/2014, Quantization and Kähler Geometry, PTDC/MAT-PUR/31089/2017, Higher Structures and Applications.

CAMGSD FCT