##
05/10/2022, 17:00 — 18:00 — Online

Kohei Hayashi, *University of Tokyo, Japan*

```
```###
Derivation of the KPZ equation from microscopic systems in a high temperature regime

The Kardar-Parisi-Zhang (KPZ) equation is a stochastic partial differential equation with universality, and it has been derived from several microscopic models through scaling limits. When the temperature of a system tends to infinity, we can often extract a heat diffusion part with some residual perturbation by a Taylor expansion argument, which decomposition is crucial for the derivation. We will show through some particular models that we can thereby obtain the KPZ equation as a limit in a robust way.