Mathematical Relativity Seminar   RSS

Past sessions

13/02/2019, 11:00 — 12:00 — Seminar room (2.8.3), Physics Building
Juan Antonio Valiente Kroon, Queen Mary, University of London

Construction of anti de Sitter-like spacetimes using the metric conformal field equations

In this talk I with describe how to make use of the metric version of the conformal Einstein field equations to construct anti-de Sitter-like spacetimes by means of a suitably posed initial-boundary value problem. The evolution system associated to this initial-boundary value problem consists of a set of conformal wave equations for a number of conformal fields and the conformal metric. This formulation makes use of generalised wave coordinates and allows the free specification of the Ricci scalar of the conformal metric via a conformal gauge source function. I will consider Dirichlet boundary conditions for the evolution equations at the conformal boundary and show that these boundary conditions can, in turn, be constructed from the 3-dimensional Lorentzian metric of the conformal boundary and a linear combination of the incoming and outgoing radiation as measured by certain components of the Weyl tensor. To show that a solution to the conformal evolution equations implies a solution to the Einstein field equations we also provide a discussion of the propagation of the constraints for this initial-boundary value problem. The existence of local solutions to the initial-boundary value problem in a neighbourhood of the corner where the initial hypersurface and the conformal boundary intersect is subject to compatibility conditions between the initial and boundary data. The construction described is amenable to numerical implementation and should allow the systematic exploration of boundary conditions. I will also discuss extensions of this analysis to the case of the Einstein equations coupled with various tracefree matter models. This is work in collaboration with Diego Carranza.

This seminar is joint with CENTRA, and will take place on the Physics Department (seminar room, 2nd floor).

07/02/2019, 14:30 — 15:30 — Room P3.10, Mathematics Building
Noa Zilberman, Technion

Quantum effects near the inner horizon of a black hole

The analytically extended Kerr and Reissner-Nordström metrics, describing respectively spinning or spherical charged black holes (BHs), reveal a traversable passage through an inner horizon (IH) to another external universe. Consider a traveler intending to access this other universe. What will she encounter along the way? Is her mission doomed to fail? Does this other external universe actually exist?

Answering these questions requires one to understand the manner in which quantum fields influence the internal geometry of BHs. In particular, this would include the computation of the renormalized stress-energy tensor (RSET) on BH backgrounds - primarily near the IH. Although a theoretical framework for such a computation does exist, this has been a serious challenge for decades (partially due to its inevitable numerical implementation). However, the recently developed pragmatic mode-sum regularization method has made the RSET computation more accessible.

In this talk, we will first consider the computation of the simpler quantity $\langle\phi^2\rangle_{ren}$, for a minimally-coupled massless scalar field inside a (4d) Reissner-Nordström BH. We shall then proceed with the long sought-after RSET, focusing on the computation of the semi-classical fluxes near the IH. Our novel results for the latter will be presented, with a closer look at the extremal limit. Finally - we will discuss possible implications to the fate of our traveler.

This seminar is joint with CENTRA.

30/01/2019, 11:00 — 12:00 — Room P3.10, Mathematics Building
Anne Franzen, Instituto Superior Técnico

Flat FLRW and Kasner Big Bang singularities analyzed on the level of scalar waves

We consider the wave equation, $\square_g\psi=0$, in fixed flat Friedmann-Lemaitre-Robertson-Walker and Kasner spacetimes with topology $\mathbb{R}_+\times\mathbb{T}^3$. We obtain generic blow up results for solutions to the wave equation towards the Big Bang singularity in both backgrounds. In particular, we characterize open sets of initial data prescribed at a spacelike hypersurface close to the singularity, which give rise to solutions that blow up in an open set of the Big Bang hypersurface $\{t=0\}$. The initial data sets are characterized by the condition that the Neumann data should dominate, in an appropriate $L^2$-sense, up to two spatial derivatives of the Dirichlet data. For these initial configurations, the $L^2(\mathbb{T}^3)$ norms of the solutions blow up towards the Big Bang hypersurfaces of FLRW and Kasner with inverse polynomial and logarithmic rates respectively. Our method is based on deriving suitably weighted energy estimates in physical space. No symmetries of solutions are assumed.

10/12/2018, 14:00 — 15:30 — Room P3.10, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

IIntroduction to the Theory of Shock Waves (V)

I plan to cover the following topics: Euler equations; Burger's equation; p-system; symmetric hyperbolic PDE's; shock formation; Lax method of solving Riemann problems; Glimm's method for solving Cauchy problems; Entropy solutions; artificial viscosity.

Bibliography

  • Joel Smoller, Shock waves and Reaction Diffusion Equations
  • Constantine Dafermos, Hyperbolic Conservation Laws in Continuum Physics
  • Alexandre Chorin and Jerrold Marsden, A Mathematical Introduction to Fluid Mechanics
  • Lecture notes of Blake Temple (on his webpage)

See also

Shock Waves_Lecture5.pdf

Planned duration: 6 x 1.5 hours.

Bibliography:

Joel Smoller, “Shock waves and Reaction Diffusion Equations”

Constantine Dafermos, “Hyperbolic Conservation Laws in Continuum Physics”

Alexandre Chorin and Jerrold Marsden, “A Mathematical Introduction to Fluid Mechanics”

Lecture notes of Blake Temple (on his webpage)

07/12/2018, 14:00 — 15:30 — Room P4.35, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

Introduction to the Theory of Shock Waves (IV)

I plan to cover the following topics: Euler equations; Burger's equation; p-system; symmetric hyperbolic PDE's; shock formation; Lax method of solving Riemann problems; Glimm's method for solving Cauchy problems; Entropy solutions; artificial viscosity.

See also

Notes for this talk

Planned duration: 6 x 1.5 hours.

Bibliography:

Joel Smoller, “Shock waves and Reaction Diffusion Equations”

Constantine Dafermos, “Hyperbolic Conservation Laws in Continuum Physics”

Alexandre Chorin and Jerrold Marsden, “A Mathematical Introduction to Fluid Mechanics”

Lecture notes of Blake Temple (on his webpage)

30/11/2018, 14:00 — 15:30 — Room P3.10, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

Introduction to the Theory of Shock Waves (III)

I plan to cover the following topics: Euler equations; Burger's equation; p-system; symmetric hyperbolic PDE's; shock formation; Lax method of solving Riemann problems; Glimm's method for solving Cauchy problems; Entropy solutions; artificial viscosity.

See also

Notes for this talk

Planned duration: 6 x 1.5 hours.

Bibliography:

Joel Smoller, “Shock waves and Reaction Diffusion Equations”

Constantine Dafermos, “Hyperbolic Conservation Laws in Continuum Physics”

Alexandre Chorin and Jerrold Marsden, “A Mathematical Introduction to Fluid Mechanics”

Lecture notes of Blake Temple (on his webpage)

16/11/2018, 14:00 — 15:30 — Room P3.10, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

Introduction to the Theory of Shock Waves (II)

I plan to cover the following topics: Euler equations; Burger's equation; p-system; symmetric hyperbolic PDE's; shock formation; Lax method of solving Riemann problems; Glimm's method for solving Cauchy problems; Entropy solutions; artificial viscosity.

See also

Notes for this talk

Planned duration: 6 x 1.5 hours.

Bibliography:

Joel Smoller, “Shock waves and Reaction Diffusion Equations”

Constantine Dafermos, “Hyperbolic Conservation Laws in Continuum Physics”

Alexandre Chorin and Jerrold Marsden, “A Mathematical Introduction to Fluid Mechanics”

Lecture notes of Blake Temple (on his webpage)

12/11/2018, 10:30 — 12:00 — Room P3.10, Mathematics Building
, Laboratoire Jacques-Louis Lions de l'Université Pierre et Marie Curie

The nonlinear stability of Schwarzschild

I'll discuss a joint work with Sergiu Klainerman on the stability of Schwarzschild as a solution to the Einstein vacuum equations with initial data subject to a certain symmetry class.

09/11/2018, 15:00 — 16:30 — Room P3.10, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

Introduction to the Theory of Shock Waves (I)

I plan to cover the following topics: Euler equations; Burger's equation; p-system; symmetric hyperbolic PDE's; shock formation; Lax method of solving Riemann problems; Glimm's method for solving Cauchy problems; Entropy solutions; artificial viscosity.

See also

Notes for this talk

Planned duration: 6 x 1.5 hours.

Bibliography:

Joel Smoller, “Shock waves and Reaction Diffusion Equations”

Constantine Dafermos, “Hyperbolic Conservation Laws in Continuum Physics”

Alexandre Chorin and Jerrold Marsden, “A Mathematical Introduction to Fluid Mechanics”

Lecture notes of Blake Temple (on his webpage)

19/10/2018, 15:00 — 16:00 — Room P3.10, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

Optimal metric regularity in General Relativity follows from the RT-equations by elliptic regularity theory

I am going to present Blake Temple's and my recent breakthrough regarding optimal metric regularity: We recently derived a set of nonlinear elliptic equations, with differential forms as unknowns, (the "Regularity Transformation equations" or "RT-equations"), and proved existence of solutions. The RT-equations determine whether optimal metric regularity can be achieved in General Relativity. Our existence result applies to connections in and Riemann curvature in $W^{m,p}$, $m\geq1$, $p>n$, and thus yields that such connections can always be smoothed to optimal regularity (one derivative above their curvature) by coordinate transformation. Extending this existence theory to the case of GR shock waves, when the connection is in $L^{\infty}$, is subject of our ongoing research. Our current existence result demonstrates that the method of determining optimal metric regularity by the RT-equations works.

28/09/2018, 15:00 — 16:00 — Room P3.10, Mathematics Building
Maxime Van de Moortel, University of Cambridge

Stability and instability in spherical symmetry of Reissner-Nordström black holes for the Einstein-Maxwell-Klein-Gordon model

Penrose’s Strong Cosmic Censorship Conjecture is one of the central problems of Mathematical General Relativity. Its proof for the Einstein-Maxwell-Uncharged-Scalar-Field (EMSF) model in spherical symmetry relies on the formation of a Cauchy horizon that is $C^0$ regular but $C^2$ singular for generic Cauchy data. EMSF model however only admits two-ended black holes, unlike its charged analogue that allows for one-ended black holes, relevant to the study of charged gravitational collapse in spherical symmetry. In this talk, I will present my work about spherically symmetric charged and massive scalar fields on black holes. This includes a study of the black hole interior, that relates the behaviour of fields on the event horizon to the formation of a $C^0$ regular and $C^2$ singular Cauchy horizon. I will also mention my more recent work on the black hole exterior stability, for weakly charged massless scalar fields.

19/09/2018, 13:30 — 14:30 — Room P3.10, Mathematics Building
Volker Schlue, Sorbonne Université

On some stability and instability problems for hard stars in spherical symmetry

I will review Christodoulou's two phase model of relativistic fluids in the context of gravitational collapse, and describe the properties of static solutions to the hard phase with vacuum boundary (stars). We expect small stars to be (orbitally) stable, but limiting configurations with large central density to be unstable, and I will explain some of the underlying heuristics, and related results for these scenarios.

06/09/2018, 15:00 — 16:00 — Room P3.10, Mathematics Building
Arick Shao, Queen Mary University of London

Correspondence and Rigidity Results on Asymptotically Anti-de Sitter Spacetimes (II)

In theoretical physics, it is often conjectured that a correspondence exists between the gravitational dynamics of asymptotically Anti-de Sitter (aAdS) spacetimes and a conformal field theory of their boundaries. In the context of classical relativity, one can attempt to rigorously formulate such a correspondence statement as a unique continuation problem for PDEs: Is an aAdS solution of the Einstein equations uniquely determined by its data on its conformal boundary?

In these talks, we report on recent progress in this direction, and we highlight the connections between correspondence conjectures in physics, unique continuation theory for wave equations, and the geometry of aAdS spacetimes. We discuss recent unique continuation theorems for waves on aAdS spacetimes that form the key step toward correspondence results, as well as novel geometric obstructions to these results. As an application, we provide an answer to the following symmetry extension question: when can a symmetry on the conformal boundary be extended into the interior?

This is joint work with Gustav Holzegel (Imperial College London).

05/09/2018, 15:00 — 16:00 — Room P3.10, Mathematics Building
Arick Shao, Queen Mary University of London

Correspondence and Rigidity Results on Asymptotically Anti-de Sitter Spacetimes (I)

In theoretical physics, it is often conjectured that a correspondence exists between the gravitational dynamics of asymptotically Anti-de Sitter (aAdS) spacetimes and a conformal field theory of their boundaries. In the context of classical relativity, one can attempt to rigorously formulate such a correspondence statement as a unique continuation problem for PDEs: Is an aAdS solution of the Einstein equations uniquely determined by its data on its conformal boundary?

In these talks, we report on recent progress in this direction, and we highlight the connections between correspondence conjectures in physics, unique continuation theory for wave equations, and the geometry of aAdS spacetimes. We discuss recent unique continuation theorems for waves on aAdS spacetimes that form the key step toward correspondence results, as well as novel geometric obstructions to these results. As an application, we provide an answer to the following symmetry extension question: when can a symmetry on the conformal boundary be extended into the interior?

This is joint work with Gustav Holzegel (Imperial College London).

18/07/2018, 15:00 — 16:00 — Room P3.10, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

The quantised Dirac field and the fermionic signature operator (III)

In this mini course I am going to introduce the Dirac equation (describing fermions) in Minkowski spacetime and explain how to extend the equation to curved spacetimes (Lecture 1). In Lecture 2, I will introduce the canonical quantisation of the Dirac field in Minkowski spacetime and describe the problem of time-dependent external fields in the canonical quantisation formalism. In Lecture 3, I will present a proposal of myself and Felix Finster addressing the problem of time-dependent external fields and spacetimes, based on the fermionic signature operator.

13/07/2018, 15:00 — 16:00 — Room P3.10, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

The quantised Dirac field and the fermionic signature operator (II)

In this mini course I am going to introduce the Dirac equation (describing fermions) in Minkowski spacetime and explain how to extend the equation to curved spacetimes (Lecture 1). In Lecture 2, I will introduce the canonical quantisation of the Dirac field in Minkowski spacetime and describe the problem of time-dependent external fields in the canonical quantisation formalism. In Lecture 3, I will present a proposal of myself and Felix Finster addressing the problem of time-dependent external fields and spacetimes, based on the fermionic signature operator.

See also

Paper by Felix Finster

11/07/2018, 15:00 — 16:00 — Room P3.10, Mathematics Building
Moritz Reintjes, Instituto Superior Técnico

The quantised Dirac field and the fermionic signature operator (I)

In this mini course I am going to introduce the Dirac equation (describing fermions) in Minkowski spacetime and explain how to extend the equation to curved spacetimes (Lecture 1). In Lecture 2, I will introduce the canonical quantisation of the Dirac field in Minkowski spacetime and describe the problem of time-dependent external fields in the canonical quantisation formalism. In Lecture 3, I will present a proposal of myself and Felix Finster addressing the problem of time-dependent external fields and spacetimes, based on the fermionic signature operator.

See also

Notes for this talk

06/07/2018, 11:00 — 12:00 — Room P3.10, Mathematics Building
Jesus Oliver, California State University, East Bay

Boundedness of energy for the Wake Klein-Gordon model

We consider the global-in-time existence theory for the Wave-Klein-Gordon model for the Einstein-Klein-Gordon equations introduced by LeFloch and Ma. By using the hyperboloidal foliation method, we prove that a hierarchy of weighted energies of the solutions remain (essentially) bounded for all times.

28/06/2018, 14:30 — 15:30 — Seminar room (2.8.3), Physics Building
Edgar Gasperin, CENTRA, Instituto Superior Técnico

Perturbations of the asymptotic region of the Schwarzschild-de Sitter spacetime

Although the study of the Cauchy problem in General Relativity started in the decade of 1950 with the work of Foures-Bruhat, addressing the problem of global non-linear stability of solutions to the Einstein field equations is in general a hard problem. The first non-linear global non-linear stability result in General Relativity was obtained for the de Sitter spacetime by H. Friedrich in the decade of 1980. In this talk the main tool used in the above result is introduced: a conformal (regular) representation of the Einstein field equations — the so-called conformal Einstein field equations (CEFE). Then, the conformal structure of the Schwarzschild-de Sitter spacetime is analysed using the extended conformal Einstein field equations (XCEFE). To this end, initial data for an asymptotic initial value problem for the Schwarzschild-de Sitter spacetime are obtained. This initial data allow to understand the singular behaviour of the conformal structure at the asymptotic points where the horizons of the Schwarzschild-de Sitter spacetime meet the conformal boundary. Using the insights gained from the analysis of the Schwarzschild-de Sitter spacetime in a conformal Gaussian gauge, we consider nonlinear perturbations close to the Schwarzschild-de Sitter spacetime in the asymptotic region. Finally, we'll show that small enough perturbations of asymptotic initial data for the Schwarzschild-de Sitter spacetime give rise to a solution to the Einstein field equations which exists to the future and has an asymptotic structure similar to that of the Schwarzschild-de Sitter spacetime.

This seminar is joint with CENTRA, and will take place on the Physics Department (seminar room, 2nd floor).

18/05/2018, 11:00 — 12:00 — Room P3.10, Mathematics Building
Rodrigo Vicente, Instituto Superior Tecnico

Test fields cannot destroy extremal black holes

We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr-Newman or Kerr-Newman-anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.

This seminar is joint with CENTRA.

Older session pages: Previous 2 Oldest


Current organizers: José Natário, João Lopes Costa

CAMGSD FCT