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Counting noncrossing partitions via Catalan triangles

Riordan arrays

m The Riordan arrays and the Riordan group were introduced in 1991 by
Shapiro, Getu, and Woan as lower triangular matrices generated by two
formal power series.

m The study of Riordan arrays dates back to

the forties with Jabotinsky's work on Bell-type Riordan arrays,

the seventies with Shapiro's Catalan triangle and with Rogers’ introduction
of renewal arrays as matrices with arithmetic properties similar to those of
the Pascal triangle,

the eighties when Barnabei, Brini, and Nicoletti defined a very general
family of recursive matrices whose entries are suitably extracted from a pair
of formal Laurent series.
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Some applications of Riordan arrays

m Applications to combinatorial sums and identities were given by Sprugnoli,
by Merlini, Sprugnoli, and Verri and by Luzén, Merlini, Morén, and
Sprugnoli.

m Riordan arrays were characterized by Rogers, by He and Sprugnoli, and
by Merlini, Rogers, Sprugnoli, and Verri.

m The Riordan subgroups and related concepts were studied by Shapiro, by
Peart and Woan, by He, Hsu, and Shiue, by Cheon, Kim, and Shapiro.

m For applications to enumerative problems see, e.g., Baccherini, Merlini,
and Sprugnoli and Merlini and Verri.
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Riordan arrays — formal definition [Shapiro, Seyoum Getu, Wen-Jin Woan, and Woodson, 1991]

- Consider two formal power series:
d(z) =1+ diz+ cdhz? +---

h(z) = Mz + hpz? + -, where h; # 0.
- Riordan array R = (d(z), h(z)):

R.x = [2"]d(2) h(z)k ,

1 0 0 0 0
i i 0 0 o0

R—| @ ha + hidh hi 0 0
0

d3 h3 + h2d1 + h1 d2 h%dl h

=Y
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Elementary recursive rule

If h(z) = mz+ hoz? + h3z® + - - - then the identity above leads to the following
straightforward recursive rule:

[2"]d(2)h(2)" "
= [2"]d(2)h(2)" th

Rn,k+1

= Z[Z" 1d(2)h(z)"hi
= i[zi]d(z)h(z)kh _
= "Z_l Rixhn_i.
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Riordan group fRio

m Riordan group Rio = set of all Riordan arrays;

m Group axioms:
m Multiplication = matrix multiplication:

(di(2), m(2)) (d2(2), h2(2)) = (ci(2) d2(h(2)), ha(h(2))) -
m |dentity: I =(1,z)
m Inverse:
) _(‘1(2)7’1(2))71 = (1/d(h(2)), h(2)) ,
where h(h(z)) = h(h(z)) = z.
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The A—seq uence [Merlini, Rogers, Sprugnoli, and Verri, 1997]

Associated with any Riordan array R = (d(z), h(z) there is a power series
A(z) € C[[z]]1, called the A-sequence of R:

z

(-1
h(z) = (A(Zz)> or, equivalently, A(z) =

Lagrange array: R = (1,zd(z)), written R = d(z).

The famous Lagrange inversion formula yields for R = d(z)

Rox = [2""d(2)* = %[z”fk]A(z)" forall n>k>0.
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The Pascal array P =1/(1 — 2)

The matrix P stores the well-known Pascal triangle:

n—1
Pn = )

1
1
1 1
1 2 1
P = 1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
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The Aigner array C = ¢(z), where ¢(z) = % [Aigner, 2008]

The matrix C stores the widely known (ordinary) ballot numbers: C, «, where

Ciri1,1 = Cop12 = G, is a Catalan number,

1
1
1 1
2 2 1
C= 5 5 3 1
14 14 9 4 1
42 42 28 14 5 1
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[Shapiro, 1976]

The Shapiro array B = ¢(z)?

1
1
2 1
5 4 1
14 14 6 1
48 27 8 1

42
132 165 110 44 10 1
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Since B = c(z)? then B may be seen as the array obtained from C by
extracting coefficients according to the rule B, x = Cpik,2k:

1
1
1 1
2 2 1
C= 5 5 3 1
14 14 9 4 1
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(c(rz)?, z c(rz)") [Yang, 2013]

For all a, b € IN, one may consider more general Catalan triangles C*°
obtained from C by extracting all columns of index a + kb, for suitable k € IN.

The entry Cr‘;’,f of C*? is given by

ct—c __atbk  (2An—k)+atbk—1
nk = n—kdatblatble = T T T Tk n—k .

C?" is the Riordan array considered by Yang when r = 1:

" = (c(2)*,z¢(2)").
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Note that clearly an array
R = (d(z)",zd(2)")

can be defined from any generating function d(z) € C[[z]]o and from any
integers a, b € IN.

For d(z) = 1/(1 — z) we obtain the matrix

() ()

n—k+a+bk—1>

with

b
P>} = Pp_iiatbk,atbk =
n,k > n—k
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Consider the formal power series which depends on the parameters g and t in
IN:

1—tz++/(1—tz)2—4 - =0
(g, t:7) = z ( Z) qzzl(zl qz) .

2qz zZ\“1+1tz

In particular,

1—(c—rz—+/1=2(c+r)+(c—r)2z?
2rz

c(r,c—r;z)=

is the generating function d.,(z) of He's (c, r)-Catalan triangles.
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Generalized Catalan triangles

Accordingly,

m ¢(1,0; z) = ¢(z) is the generating function of the Catalan numbers;
m ¢(1,1;z) is the large Schroder function;

m ¢(2,—1; z) is the small Schréder function.

For all a, b € IN define the generalized Catalan triangles:

C>"(q,t) = (c(q,t:2)*,zc(q, t; z)b).
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Some properties

Recursive rule:

0,b
nk+1 q7 t)_z Cn 11(q7 t)

Note that if we set C(q, t) := C® (g, t) then the array C**(q, t) arises from
C(q, t) by extracting all columns of index a + bk, for a suitable k € IN:

C (qv t) - n k+a+bk, a+bk(q, ) .
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Some particular cases

_ (2k+1l (20 : e g .
= (Hk+1 (Hk)) is Radoux’s triangle of numbers;

) €+7(1,0)

(vi) €**(1,0) = C** for all a,b € IN;
) €7°(0,1)
)

(vii) €**(0,1) = P** for all a,b € IN;
(viii) €%1(0,t) = P(t) = ((7=})t"¥) is is the well-known generalized Pascal
triangle:
1

1

t 1

ti 21:2 1

— t 3t 3t 1
PO = 4 a3 62 a1

S st 108 1002 st 1
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For all n, k,a, b,q,t € IN we have

k

a+ bk 1
Ca’b = —
n(a: ) n—k+a+ bk 4

g

(n — k 4; a+ bk) (2(n — k)n+7a:7bllf —i— 1) g q"_k_i,

bk = — k bk —k—1 i ki
:n—i:—a-s—bk I_:O(n +‘a+ )(Z_k_i)(q+t) an ’

~ ©

1

Given a,b € N, C,‘;'”f(q, t) is a homogeneous polynomial in g, t with positive
integer coefficients.



Counting noncrossing partitions via Catalan triangles

Generalized Catalan numbers C2?(n, i, k)

For all a,b,n, k € IN and 0 < i < n— k, define

aby . a—+ bk n—k+a+bk\(2(n—k)+a+bk—i—1
’ k = .
¢ (m, i, k) nk+a+bk< : n—k—i

For specific values of the parameters the definition specializes to the Catalan
numbers C, = -1 (*"):

= CH%(n,0,0) = C,,
m C%(n,0,1) = Co1.

We have the following compact form:

n—k
Crcla,t) =) C™(n i, k)t'q" ",
i=0



Counting noncrossing partitions via Catalan triangles

Interpolation properties

Setting i = 0 or i = n — k in the formula for C**(n, i, k) gives

C**(n,0,k) = C,i’,f and C*®(n,n—k, k)= P;,’f~
Therefore, we easily obtain
C,i’f(q, t) = Cr‘?:fq"*k 4 p‘::ftnfk‘

When a=0and b=1:

n—k

Cn,k(q7 t) = C,,’kqn_k 4+ Pn,kt
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Generalized Narayana numbers N?2(n, i, k)

For all a,b,n, k € IN and 0 < i < n— k, define
. + bk n—k+a+bk\[n—k—-1
N*b(n,i k)= — 2 P2% .
(n. i, k) n—k+a+bk< i )( i—1 >

This specializes to the well-known Narayana numbers N(n, i) = %(7) (ifl):
m NO(n,i,0) = N(n, i),
m N%Y(n,i, 1) = N(n—1,i).



Counting noncrossing partitions via Catalan triangles

Generalized Narayana identity

We have

n—k

Crilla.t) =D N"*(n.i k)(t+q)q" """,
i=0
and a generalized Narayana identity.

n—k .
C*P(n,i k) =>" ({) N**(n,j, k).

j=i
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Particular cases

mFora=land b=i=k=0:

Co=>_N(n,j).
j=0
mFori=a=0and b=1:
< (n\(n-—k-1
()0
n—k

Cre =Y _N°(nj,k).

Jj=0

an:

’

k
n

m For i =0:
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m Fori=a=0and b=2:

n—k
2k Z n+k n—k-—1
Bnyk_"+kj—0<j )(j_l )

mFori=a=0,b=2,and k=1:

n—1
2 n+1 n—2

G =
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Noncrossing partitions [Kreweras, 1972]

Let n € IN. Recall that a partition 7 of {1,2,..., n} is said to be noncrossing if
and only if there are not a, b,c,d € {1, ...,n} and B;, Bj € T such that
1<a<b<c<d<n {ac}eB{bd}ecBand BNB =a.

We use of a more compact notation to represent partitions. For instance,

T=14/23

will be preferred to

T={{1,4},{2,3}}.
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Some definitions

NC(n) = set of all the noncrossing partitions of the totally ordered set
{1,2,...,n}.

= NC(0) = {0},
m NC =J,5, NC(n).

Define sz, bk: NC — IN:

sz(t) = n if and only if 7 € NC(n),

bk(r) = b if and only if 7 = {By, Bs, ..., B}

By convention, sz(@) = 0 and bk(@) = 0.
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The set NC can be equipped with the following noncommutative associative
operation ®: NC x NC — NC:

T Q@0 =7mUp(o)

where ¢ is the unique order preserving bijection associated with 7:

en:{1,2,...,52(0)} = {1+ sz(n),sz(m) + 2,...,sz(m) + sz(o)}
such that ¢(0) is such that ¢, (i) = i + sz(m).

For instance, if # =125/34 and o0 = 14/23 then sz(w) = 5. Therefore,
©(c) =69/78 and

125/34®14/23 =125/34/69/78.
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The maps sz and bk satisfy the following:
sZ(r®T® - Qo) =sz(r)+sz(r) +---+sz(o) forall m,7,...,0 €NC

bk(r® T ® - ® c) = bk(w) + bk(7) + - - - + bk(c) forall =, 7,...,0 € NC.
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Irreducible partitions [Lehner, 2002]

Irreducible partitions: partitions which cannot be factorized into sub-partitions,
or partitions of {1,...,n} for which 1 and n are in the same block.

Alternatively, a nonempty noncrossing partition 7 € NC is said to be irreducible
if and only if there are not nonempty partitions 7,0 € NC such that T =1 ® 0.
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Proposition

For all nonempty noncrossing partition T € NC there exist uniquely determined
irreducible partitions 11,72, ... ,...,7q4 € NC satisfying

T=T1®n® - & Tq.

By writing T =11 ® » ® - - - @ T4 we always mean 71,72, ...,...,Tq irreducible
partitions.
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Define the following maps dg,sg: NC — IN:

dg(r)=d ifandonlyif T=m@n®- - Q74
sg(r) = [{i|1<i<dg(r), 7= x}|, where dg(0))=sg(0))=0.

We have

dg(r®7®---®0) =dg(n)+dg(r)+---+dg(e), forall =,7,...,0 € NC,
sg(rT®---®0) =sg(n) +sg(r)+---+sg(o) forall m,7,...,0 €NC

m sg(7) < dg(7) < bk(7) < sz(r) for all 7 € NC.
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A generating function for the enumeration of noncrossing partitions

Foralln>b>d>s>0:

NC(n, b,d,s) = {r € NC|sz(r) = n,bk(7) = b,dg(7) = d,sg(7) = s},

nc(n, b,d,s) = [NC(n, b, d, s)|.

Consider the generating function:

fuc(z, t, x,w) = Z 25T k()  de(7) | se(m) Z nc(n, b, d, s)z"t"x w”".
reNC n>b>d>s>0
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We give an explicit form for fnc(z, t, x, w).

Theorem
We have

1

f 7t’ ) = )
Ne(z, £, w) 1—xz(c(l,t —1;2) + wt — 1)

1—tz44/(1—tz)2—4qz

where c(q, t; z) = 5er
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Enumerative properties of the polynomials Cj”f(q, t) of degree n — k

Let

Set 7 C « if and only if any block of 7 is also a block of 7, with 7,7 € NC*.

For all a,b,n, k € IN, let
NC>’(n, k) = {7 |7 € NC,sz(7) — dg(7) = n — k,dg(r) = a + bk}.
Then,

C::f(q, t) _ Z Z qSZ(T)—dg(T)—bk(T)—bk(ﬂ)tbk(T)—bk(ﬂ').

TENCREK) (A rm)
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On the enumerative properties of the generalized Catalan and Narayana
numbers

For all a,b,n, k € IN and 0 < i < n — k the following holds:
C*®(n,i,k) = [{(m,7) |7 € NC**(n, k), ™ C 7, x(7) = x(r), bk(r)—bk(r) = i}|.

and
N>P(n,i, k) = |{r| T € NC**(n, k), bk(r) — sg(r) = i}|.
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Particular cases

We now take a closer look at the special cases considered earlier on.

mCasea=1land b=i=k=0:
Co = INCY(n+1,1)| = [{7 | 7 € NC,s2(7) = n+1,dg(r) = 1}| = [NC"(n+1)|,

N(n,j) = [{r|7 € NC"(n+1),bk(r) = j}|.

The number of irreducible noncrossing partitions of size n + 1 yields the
sum over the number of irreducible noncrossing partitions of size n+4 1
with j blocks for j =1,...,n+ 1, with n > 0.
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m Casea=i=0and b=1:
Cok= |NC0’1(n, k)| = !{7‘ |7 € NC,sz(7) = n,dg(7) = k}|

The ballot numbers count the number of noncrossing partitions of size n
and degree k.

m Case i =0:

Cre = INC™*(n, K)].

For r = 1 the entries Yang's array count the number of noncrossing
partitions of size n+ a+ (b — 1)k and degree a + bk.



Counting noncrossing partitions via Catalan triangles

mCasei=a=0and b=2:
B, = INC”*(n, k)| = [{7 | 7 € NC,s2(7) = n + k,dg(7) = 2k}|.

The entries B, of the Shapiro array count the number of noncrossing
partitions of size n + k and degree 2k.

mCasei=a=0,b=2and k=1:
C, = \NCo‘z(ml)\ = |{r|7 € NC,sz(r) = n+ 1,dg(r) = 2|.

The Catalan numbers C, also count the number of noncrossing partitions
of size n+ 1 and degree 2.
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