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The KPZ equation

The KPZ equation (KaArRDAR-PARISI-ZHANG '86) is a stochastic PDE given by
1 1
OrH(T, X) = §8§H(T, X) + o (0xH(T, X))? +&(T, X)

where £(T, X) is "space-time white noise".

Physical interpretation:
relaxation + nonlinear slope-dependent growth + random forcing

Allows to model various types of interface growth:
bacterial growth, coffee stains, forest fires, burning paper ..
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The KPZ equation

Applications: universal model for interface growth

Burning paper Coffee Stains

Tumour growth
(?) Bacterial growth

(pictures from QUuASTEL, INTRODUCTION TO KPZ)
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The KPZ equation

Cole-Hopf solutions

Solutions can be defined through Cole-Hopf transformation
H(Ta X) — logZ(T7 X)a

which relates KPZ to the stochastic heat equation (BerTINI-GiacOMIN '97)
1 2
0r2(T,X) = 0% Z(T, X) + Z(T, X)&(T, X)
for which the solution theory is classical.

More general notion of solution, without passing via the stochastic heat
equation, established by Hairer 1.
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KPZ solution with narrow wedge initial data

Narrow wedge initial data

One of the physically relevant solutions is the one with narrow wedge
initial data, which means formally that

H(0, X) =log Z(0, X) with Z(0,X) = dx—¢.

'H(T, X) typically behaves roughly like a parabola ‘;{—; becoming

narrow as 1 — 0.

Invariance

2
The probability distribution of H(T', X) — ‘;(—T is independent of X, so it

suffices to study the probability distribution of H(T',0).
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KPZ solution with narrow wedge initial data

Scaling

For asymptotics, it is convenient to scale H(T,0) in the following way:

Tail estimates

Important to control the tails of the probability distribution of T

P (TT < a:) for x — —00.
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Characterization in terms of Airy point process

Exact solution

An exact expression for the Laplace transform of the solution to the
stochastic heat equation was established by AMIrR-CorwIN-QuasTEL "10

written as a multiplicative statistic in the Airy point process
or
written as the Fredholm determinant of an Airy integral operator.

Similar but not completely rigorous results around the same time by
SAsAMOTO-SPOHN, DoTseNkO and CaLaBrese-LE DoussaL-Rosso.

These results rely on similar expressions obtained by Tracy-WipoM ‘08 in
asymmetric exclusion processes, which can be seen as discrete
approximations of KPZ.
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Airy point process

Airy point process

The Airy point process is a determinantal point process on the real line
with correlation kernel given by

K (u,v) = Ai(w)AT(v) = AT (w)Ai(v) — /O+OO Ai(u + r)Ai(v + r)dr.

uUu—vv

It has almost surely a largest point and an infinite number of points
G1>G>....

Models largest eigenvalues of random matrices near soft edges (GUE,
Wigner matrices ..).
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Airy point process

Fredholm determinant

Multiplicative statistics of determinantal point processes are Fredholm
determinants:

ﬂAi H ]-_O-CJ — det (].—O'KAi)

=1 B

where

det(1 — o K/) = Z / det [a(xi)KAi(:I:z-, a:j)]szldwl .. .dxy,
k=1
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Characterization in terms of Airy point process

KPZ and the Airy point process

BorobIN-GORIN 16 proved, reformulating the results of AMIR-CORwIN-
QuasTeL "10, that

_ T3y +s) ]

- 1
R(s,T) : =K {e = [Ka;

Thinned Airy point process

R(s,T) is the probability that the thinned Airy process,

obtained by removing each particle Cj independently with probability

1

is emptuy.
eT1/3(Cj‘|‘3) ’ p g

1+
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Characterization as a Fredholm determinant

Fredholm determinant

We have

= det(1 — f"(Tl/g(a3 T 3))KA1)7

_eT1/3(TT+8) j|

R(s,T) = Expz [e

with

B 1
 14e T’

o(r)

and the study of the tails of the probability distribution of Y7 reduces
to the asymptotic analysis of a Fredholm determinant.
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Characterization as a Fredholm determinant

Alternative Fredholm determinant representation

R(S, T) — det(l — KCZ‘A#i)I;(

—8,+00) 7

where K:,‘f‘i Is the finite temperature Airy kernel

K2 (u,v) = / 2 o(TY3r)Ai(u + r)Ai(v + r)dr, o(r) = 1

—O0

1+e ™

Large 7T’ limit

+00
lim K2 (u,v) = / Ai(u + r)Ai(v + r)dr,
0

T— o0

and R(s,T) converges to the Tracy-Widom distribution
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Fredholm determinants

Asymptotic analysis

Asymptotic analysis of Fredholm determinants

det(l — K) =1+ ; X /Rk det (K(CIZZ, wj))i,jzlw,kdwl . o din

v/ Easy if the norm of the operator K is small

v/ Hard otherwise: Riemann-Hilbert method
developed by Its-1zerGIN-KOREPIN-SLAVNOV '90 if the
kernel K is of integrable form

.1 fi()h u
K(z,y) = 21 i?) (y)» > fi(@)hj(z) =0.

T — Y ‘=

Tom Claeys From KPZ tails to initial data for KdV




Fredholm determinants

Fredholm representation of R(s,T)

R(s,T) = det(1 — o(TY3(u + s)) K4 (u,v)),

Integrable form with kK = 2:

[ —io(TY?(z + 5))Af' (z) Y. —iAi(z)
flz) = ( o(TV3(z + 5))Ai(x) ) h(z) := ( : )

Logarithmic derivatives of R(s,T) can be expressed in terms of a 2 x 2
matrix Riemann-Hllbert problem.
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Riemann-Hilbert problem

(@) ¥ : C\(iRUR) — C**? is analytic

(b) Jump relations

1 0 .
TO=8-0 (g 1) SR
3 0 1—a(TY3(¢ +s))

(c) Asymptotic behavior as { — oo

_ 1 %03 1 1 —1 —%C?’/zazs
‘I'(O‘(”O<<)>C ﬁ(—z’ 1)e |
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Deformed Airy kernel determinants and the KdV equation

General deformed Airy kernel determinants
Set s = 2t /3 and T = t~2, and define
Qo (x,t) = det (1 — 0 (t_z/gu + m/t) KA (u, v)) :

w here

v o:R —[0,1] is locally L?, non-decreasing and it is
piecewise C®;~v =lim, , o (r) € |0,1],

vV forany x € R,t > 0, the kernel is integrable,

v there exist c1,c9,c3 > 0 such that

7 (Y) — YX(0,400) ()] < 167, |0’ (y)] < >

Tom Claeys From KPZ tails to initial data for KdV



Deformed Airy kernel determinants and the KdV equation

Theorem (CarFasso-C-Ruzza '20)

The function u, (z,t) := 0; log @, (z,t) + o solves the KdV equation

1
Oruy, + 2u,0, U, + gﬁgug =0, and

1 T
Ug (:c,t) = — / ¢g (T;wat) do (T) T o5
t Jr 2t
where ¢, solves the Schrodinger equation with potential 2u,,

8w2¢0 (Z; Ly t) — (Z — 2U, (CIZ, t)) Do (Z; Ly t) y

and has asymptotic behavior
b0 (2;2,t) ~ tV/8AL (t232 — zt71/3) as 2 — oo with |argz| < m — 4.
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Integro-differential Painleveée Il equation

Consequence

82 1og O, (. 1) = —% /R 8% (v, t) do (1),

where ¢, satisfies the integro-differential Painlevé Il equation

826, (2 2,1) — ( 2 [ (r;x,t>da<r)) b (252,1)

(cf. AMIR-CorwIN-QuaAsTEL "10)
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Deformed Airy kernel determinants and the KdV equation

KPZ, KdV and KP

The connection with KdV is not surprising, given recent results of
QuasTEL-REMENIK "19, and Le DoussaL '20 who established a more general
relation between KPZ and the KP hierarchy, and old but not so well-
known results by Porre-SaTTINGER '88 relating Fredholm determinants

with the KP hierarchuy.

Scattering and inverse scattering theory is understood (among others)

for KAV solutions decaying at —o0, but not for the solutions under
consideration.

Can we understand the small t behavior of the KdV solutions u,(x, t)?
This encodes information about the large 71" and tail asymptotics for
the KPZ solution T7.
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Initial data for KdV

Theorem (CarFasso-C-Ruzza '20)

1. For any g > 0, there exist M,c > 0 such that

_e
Uy (z,t) = th + 0 (e t1/3)m < —Mt/3,0 < t < ty.

2. There exists € > 0 such that for any M > 0,

Uy (x,t) = ;Bt — 232 (—xt_1/3) O (1), |z| < MtY3,0 <t <e,

where y, is the Ablowitz-Segur solution of Painleve Il.
3.1f vy =1, there exist €, M > 0 such that for any K > 0,

Uy (z,t) = v, () (l—l—(’) (w_ltl/S)) Mt <z <K,0<t<eg,

where v, (x) is a function of x > 0, independent of ¢.
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Initial data for KdV
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Figure 1: Phase diagram showing the different types of small ¢ asymptotic behavior for u, (x,t).
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Initial data for KdV

Painlevée equations

Ablowitz-Segur solution of Painleve |l equation characterized by

vy (s) = 5y,(s) + 2y,(5)°, yy(s) ~ /TAi(s), 5 = +00.

v, satisfies an integro-differential Painlevé V equation, and has
asymptotics

1 1

Vo (x) = 202 | 5 /R (X(0,400) (1) — 0 (7)) dr + O (z%), as z — 0.

Scattering theory was also understood for KdV solutions behaving like
x/(2t) via the Cylindrical KdV equation (ITs-SukHanov), but the solutions
we consider behave only like this for negative x, not for positive .
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Tails of deformed Airy kernel determinants

Theorem ( CarFasso-C-Ruzza '20)

o
1. For z < —MtY/3,log Q, (z,t) = O (e t/3 ) .

2. For |z| < Mt'/3 and for 0 < t < e,
lOg QO' (aj)t) — lOg FTW (—;I;t_l/g) + O (tl/?))

3.1y =1, for Mt'/> <z < K and for 0 < t < e,

2133

12t
+ (@9 (010 - g ) e+ 06 ),

log 2
24

log Qs (z,t) = élog(fvt_l/ ) log ¢'(—1)

8¢
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Tails of the KPZ solution

Consequences

Precise estimates for KPZ tail probabilities

Psz(TT < 8) as s — 0o, T — o0

(via standard probability estimates using Laplace transform).

Large gap asymptotics in models for finite temperature free fermions
(or MNS matrix models).
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Tails of the KPZ solution

Compare with other results

CorwiIN-GHosAL '18 established upper and lower bounds for

log Pxpz (Y7 < —s) for large s, T using rigidity of the points in the Airy
point process, and estimates on the spectrum of the stochastic Airy
operator.

Tsal "18, Le DoussaL '20 obtained the large deviation rate function in the

scaling limit where sT %3 — y € (0, 00).

LiIN AND Tsal '20 obtained the large deviation rate function in the scaling
limit where 1" — 0.

BoTHNER '20 developed an operator-valued Riemann-Hilbert approach
for finite temperature kernels K:,‘f*i.
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Riemann-Hilbert approach

Ouvutlook

Riemann-Hilbert approach is powerful to obtain precise asymptotics in

various regimes.

To do: asymptotics for = large, understanding integro-differential
Painlevé equations, deformations of other determinants (Bessel, sine).
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Thank you for your attention!
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