G_2 -monopoles

Gonçalo Oliveira (joint work with Ákos Nagy and Daniel Fadel)

Universidade Federal Fluminense

September 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Riemannian Holonomy

- (M,g) Riemannian \rightarrow parallel transport of tangent vectors along paths.
- ▶ $p \in M$ and γ_p a loop, the parallel transport $P(\gamma_p) : T_p M \to T_p M$ is ortogonal

 $\operatorname{Hol}_{\rho}(M) \subset O(T_{\rho}M).$

What are the possible $Hol \subset O(n)$?

- 1926: Cartan classified symmetric spaces.
- ▶ 1953: Berger found restrictions on the remaining Hol.
- ▶ If (M, g) is simply connected, irreducible and non-symmetric. Then,

Hol	n=dim(X)	Name
SO(n)	n	Orientable manifold
U(k)	2k	Kähler manifold
SU(k)	2k	Calabi–Yau manifold
Sp(k)·Sp(1)	4k	Quaternion-Kähler manifold
Sp(k)	4k	Hyperkähler manifold
G2	7	G2-manifold
Spin(7)	8	Spin(7) manifold

Except for G_2 and Spin(7) they all appear in infinite families.

Stage

- (M^7, g_{φ}) complete noncompact Riemannian manifold with holonomy G₂.
- ▶ g_{φ} is Ricci-flat: It has only one end (Gromoll splitting theorem) and

$$r \lesssim \operatorname{Vol}(B_r(x_0)) \lesssim r^7$$
, for $r \gg 1$,

(Bishop-Gromov comparison and Yau).

• g_{φ} is determined by a 3-form φ satisfying

$$d\varphi = \mathbf{0} = d * \varphi.$$

- ▶ $N^4 \subset M$ is coassociative if $*\varphi|_N = vol_N$, equivalently calibrated w.r.t. $*\varphi$.
- (Joyce and Donaldson–Segal) Can one count coassociatives? Possibly related to a count of G₂-monopoles (perhaps easier to define)!

"This subsection is rather more speculative."

We have now further evidence towards the program outlined in that subsection.

G₂-monopoles

- G a compact Lie group and $P \rightarrow M$ a principal G-bundle.
- A pair (∇, Φ) with ∇ a connection on P and $\Phi \in \Omega^0(X, \mathfrak{g}_P)$ such that

$$*\nabla \Phi = F_{\nabla} \wedge *\varphi,$$

is called a G_2 -monopole.

Observe that

$$\Delta_{\nabla} \Phi = - * \mathit{d}_{\nabla} * \nabla \Phi = - * \mathit{d}_{\nabla} (\mathit{F}_{\nabla} \wedge * \varphi) = 0,$$

as $d_{\nabla}F_{\nabla} = 0$ (Bianchi) and $d * \varphi = 0$.

Then,

$$\Delta \frac{|\Phi|^2}{2} = \langle \Phi, \Delta_\nabla \Phi \rangle - |\nabla \Phi|^2 = - |\nabla \Phi|^2 \leq 0$$

and if *M* was to be compact and Φ smooth, then $|\Phi| = cst. \implies \nabla \Phi = 0$, and

$$\mathbf{0}=\mathbf{F}_{\nabla}\wedge\ast\varphi,$$

i.e. ∇ would be a G₂-instanton.

Intermediate energy

• The intermediate energy of a pair (∇, Φ) is the quantity

$$\mathcal{E}_{M}(
abla, \Phi) = rac{1}{2} \int_{M} \left|
abla \Phi
ight|^{2} + \left| F_{
abla} \wedge st arphi
ight|^{2}.$$

• Over an open set $U \subset M$ it may be rewritten as

$$\mathcal{E}_U(
abla, \Phi) = \int_{\partial U} \langle \Phi, F_
abla
angle \wedge st arphi + rac{1}{2} \| st
abla \Phi - F_
abla \wedge st arphi \|_{L^2(U)}^2.$$

• The pair (∇, Φ) has *finite mass* if

$$m:=\lim_{\mathrm{dist}(x,x_0)\to\infty}|\Phi(x)|>0,$$

is well defined and constant. In this situation, and if (M, g_{φ}) has maximal volume growth: (1) The integration by parts can be carried out globally; and (2) The first term in \mathcal{E}_M is topological.

 \implies G₂-monopoles minimize \mathcal{E}_M .

Relation with coassociatives (when G = SU(2))

• Maximal volume growth: Let ∂M_{∞} be the link of the cone to which (X, g_{φ}) is asymptotic to, and *L* the cx. line bundle over ∂M_{∞} to which (∇, Φ) reduces at infinity. Then,

$$\mathcal{E}_{M} = 4\pi m \left\langle \alpha \cup [*\varphi|_{\partial M_{\infty}}], [\partial M_{\infty}] \right\rangle + \frac{1}{2} \| \mathcal{F}_{\nabla} \wedge *\varphi - *\nabla \Phi \|_{L^{2}}^{2},$$

with $\alpha = c_1(L) \in H^2(\partial M_{\infty}, \mathbb{Z})$ is called the *monopole class* (or charge).

As m → +∞, we expect G₂-monopoles with monopole class α to concentrated on compact coassociatives {N_i}, with

$$\sum n_l Pd[N_l] = i(\alpha) \in H^3_{cs}(M,\mathbb{Z}),$$

where

$$\dots \to H^2(\partial M_\infty,\mathbb{Z}) \xrightarrow{i} H^3_{cs}(X,\mathbb{Z}) \xrightarrow{j} H^3(X,\mathbb{Z}) \to \dots$$

The putative monopole invariant W_α may be recast from local data around the {N_l}_l, say w(n_l, N_l) = a count of Fueter sections, and

$$W_{\alpha} \sim \sum w(n_l, N_l).$$

(Joyce) A similar story for special Lagrangians in Calabi–Yau 3-folds.

Evidence

▶ \exists two (M, g_{φ}) containing a unique compact coassociative N. Consider

 $\mathcal{M}_{inv} = \{$ finite mass, invariant, irreducible monopoles $\}/\mathcal{G}_{inv}$.

Theorem (-)

For all $(\nabla, \Phi) \in \mathcal{M}_{inv}$, $\Phi^{-1}(0) = N$ is the unique coassociative submanifold, and the mass gives a bijection

$$m: \mathcal{M}_{inv} \to \mathbb{R}^+.$$

Furthermore, if $\{(\nabla_m, \Phi_m)\}_{m \in [\Lambda, +\infty)} \in \mathcal{M}_{inv}$ with masses $m \nearrow +\infty$, then:

- 1. After rescaling, a BPS-monopole on \mathbb{R}^3 bubbles off transversely to N.
- 2. A translated sequence converges to a reducible monopole away from N.

3.
$$m^{-1}e(\nabla_m, \Phi_m) \rightharpoonup 4\pi\delta_N + e_\infty$$
.

- Are these features general phenomena? (joint work with Daniel Fadel)
- Also consider (M, g_{φ}) with no compact coassociative submanifold N.

When do the hypothesis hold? (for G = SU(2))

- Can one replace the hypothesis that (∇, Φ) has finite mass by the more natural hypothesis of finite intermediate energy?
- ▶ Consider polynomial volume growth: $Vol(B_r(x_0)) \sim r^l$, for $l \in [1, 7]$.

Theorem (Daniel Fadel, Ákos Nagy , –)

Suppose l > 7/2, (∇, Φ) has finite intermediate energy, and F_{∇}^{14} is bounded. Then, (∇, Φ) has finite mass.

Theorem (Daniel Fadel, Ákos Nagy, -)

Suppose I = 7, (∇, Φ) has finite intermediate energy, and $|F_{\nabla}^{14}|$ decays. Then,

- 1. $|\nabla \Phi| = O(r^{-6})$ and $|[\Phi, \nabla \Phi]|$, $|[\Phi, F_{\nabla}]|$ decay exponentially.
- 2. $(\nabla, \Phi) \to (\nabla_{\infty}, \Phi_{\infty})$ with ∇_{∞} pseudo HYM and $\nabla_{\infty} \Phi_{\infty} = 0$.

Corollary (Daniel Fadel, Ákos Nagy, -)

When I = 7, there is a Fredholm setup describing the moduli space of finite intermediate energy G_2 -monopoles with fixed monopole class.

(Doable open problem): Compute the index.

Some other open problems

- Monopoles on ALC manifolds (examples).
- Monopoles and coassociative fibrations.
- ▶ The Fueter equation (with the remaining adiabatic limit equation) for (charge $k \ge 1$) transverse monopoles can be cast into a 4-dimensional problem. This probably develops concentration-compactness phenomena associated with: non-compactness of the monopole moduli space \mathcal{M}_k ; and holomorphic spheres in \mathcal{M}_k (none for k = 1, 2 -> good news?) related to work of Doan, Haydys, Taubes, Walpuski and others.
- Extension to compact manifolds with a fixed coassociative N -> Theory is associated with the pair (M, N) and (∇, Φ) required to have Dirac type singularities along N.
- Can one try to do the coassociative count directly using weights from the aforementioned 4 dimensional problem?

(ロ) (同) (三) (三) (三) (○) (○)

Thank You!

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで