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Introduction:

The purpose of this talk is to keep a Geometry-Physics dictionary alive that
started with the seminal work of Yau and Zaslow (95) :

∆(q) = q

∞∏
n=1

(1− qn)24 .

By work of Göttsche (90), ∆(q)−1 was already known to arise as the generating
series of the Euler characteristics of Hilbert schemes of points of K3 surfaces S,

∑
n≥0

χ
(
Hilbn(S)

)
qn−1 =

1

∆(q)
.

An argument by Beauville in (97) provided a geometric link between curve
counting in primitive classes and the Euler characteristics of Hilbn(S). The Yau
Zaslow conjecture for non primitive classes was finally proven in AK Maulik,
Pandharipande and Scheidegger (95)
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The next step was to refine this result to the χy genus of Hilbn(S) proposed in
Katz AK and Vafa (99):

∑
n≥0

χy
(
Hilbn(S)

)
qn−1 =

1

q
∏∞
n=1(1− yqn)2(1− qn)20(1− y−1qn)2

,

and finally to the Hodge of Hilbn(S) Katz AK and Pandharipande (14)

∑
n≥0

χHodge

(
Hilbn(S)

)
qn−1 =

1

q
∏∞
n=1(1− u−1y−1qn)(1− u−1yqn)(1− qn)20(1− uy−1qn)(1− uyqn)

.

An important step in this dictionary was the proof of the matching of the
generating series of the Donaldson Thomas invariants on X = K3× E with the
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inverse of the Igusa Cusp form χ10

ZX(q, t, p) =

∞∑
h=0

∞∑
d=1

∑
n∈Z

DTXn,(βh,d)q
d−1t

1
2〈βh,βh〉(−p)n

Igusa cusp form conjecture1

ZX(q, t, p) = − 1

χ10

was recently proven2

The main motivation to keep this dictionary alive is that the mathematician work
with techniques that are to large extend independent of the amount of
supersymmetry which can eventually provide us a guide to the more interesting
N = 2 cases.

1Oberdieck Pandharipande (2014), Bryan (2015)
2Oberdieck Shen (2016), Oberdieck Pixton (2017)
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The main aim of this paper is to extend this dictionary to the CHL threefold
(K3× T 2)/ZN as orbifold by (g, δ)

• g: order N automorphism of K3 preserving holomorphic (2, 0)-form,
non-trivial action on middle cohom. H2(K3,Z) ∼= U⊕3 ⊕ E8(−1)⊕2

• δ: order N translation in elliptic curve T 2

We focus on N = 2 and g induces an exchange of E8(−1)’s

Invariant piece: H2(K3,Z)g ∼= U⊕3 ⊕ E8(−2) 3

3with hyperbolic lattice U and diagonal E8(−2) ⊂ E8(−1)⊕2



6

• Bryan Oberdieck 2018 conjecture two primitive DT partition functions (PF) for
X = (K3× T 2)/Z2 in terms of weight -6 Siegel modular forms (SMF) for level
2 congruence subgroups of Sp4(Z).

DT-invariant DTXn,(γ,d) depends on whether curve class γ ∈ 1
2H2(K3,Z) is

contained in original homology H2(K3,Z) or not (case B/A resp.):

A: weight -6 SMF ZA(Z) = − 1

Φ̃2(Z)
∼ Borcherds lift of K3 twining genera.

Matches SMF found by David Jatkar Sen as PF of quarter-BPS indices (a.k.a.
sixth helicity supertraces) in N = 4 Z2-CHL model.

B: weight -6 SMF ZB with no prior appearance in physics:

ZB(Z) =
−8F4(Z) + 8G4(Z)− 7

30E
(2)
4 (2Z)

χ10

Here: G4(Z), E
(2)
4 (2Z) weight 4 SMF for Γ

(2)
0 (2), while F4(Z) weight 4 SMF for the paramodular group

K(2) ⊂ Sp4(Q) of degree 2. Thus, numerator is a SMF for the intersection B(2) = K(2)∩ Γ
(2)
0 (2), the level

2 Iwahori subgroup.
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• Important clue for physics: Near diagonal divisor ( τ 0
0 σ ) SMF ZB exhibits

quadratic pole

ZB (( τ zz σ )) ∝ 1

z2

E4(2σ)

2∆(σ)

1

η8(τ)η8(2τ)
+O(z0) .

→ Admits wall-crossing interpretation:

Decay of 1/4-BPS states of charge (Q,P ) (that are counted by the SMF) into
two 1/2-BPS states of charge (Q, 0) and (0, P ) (counted by resp. modular
forms in σ and τ).

– η−8(τ)η−8(2τ) is the same as for ZA, i.e. for Sen’s SMF.
– E4(2σ)/(2∆(σ)) different
– Suggestion: 1/4-BPS states with same magnetic P , but different electric Q

Compatible with known limitation of Sen’s result:

Electric Q of respective dyons belong to twisted orbifold sector in heterotic
frame, i.e. 1/2-BPS states of charge (Q, 0) have half-integral winding on S1

CHL.



8

Four-dim. N = 4 models and BPS-index

Recall duality: IIA[K3× T 2] ↔ Het[T 6].

Moduli space of 4D N = 4 theory:

[O(22, 6;Z)\O(22, 6)/(O(6)×O(22))] × [SL2(Z)\SL2(R)/U(1)]

• 1st factor: Heterotic Narain moduli space
Quotient by T -duality group (automorph. O(Λ22,6) ∼= O(22, 6;Z) of N. lattice)

• 2nd factor: Heterotic axio-dilation modulus
Quotient by S-duality group SL2(Z)

Narain lattice vs. IIA charges:

Λ22,6
∼= Λ20,4 ⊕ Λ2,2

∼= H∗(K3,Z)⊕ (momentum-winding on T 2)
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Heterotic Z2 CHL model as asymmetric orbifold:

• g acts only on left-moving bosonic string by swapping E8’s

• δ acts by Z2-shift on S1 ⊂ T 6

Moduli of CHL orbifold as invariant moduli of parent theory:

G4(Z)\
(

[O(14, 6)/(O(14)×O(6))] × [SL2(R)/U(1)]

)
for some discrete U-duality group in four dimensions G4(Z) ⊃ T × S

with T acting (only) on 1st factor

and S = Γ1(2) acting on 2nd factor (Möbius transformation on het. axio-dilaton)

I.e. we only consider T - and S-transformations here.
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Charges. Gauge group U(1)r of rank r at generic moduli (smooth K3).

• Electric charges Q quantized in rank r lattice Λe

• Magnetic charges P quantized in dual lattice Λm ' Λ∗e

In non-orbifold case: rank r = 28 and Λe ∼= Λ22,6
∼= Λm unimodular (self-dual).

In Z2 orbifoldcase: rank r = 20 and lattices are

Λe = E8

(
−1

2

)
⊕ U⊕5 ⊕ U

(
1
2

)
Λm = E8 (−2) ⊕ U⊕5 ⊕ U (2)

Note E8(−2)⊕ U⊕4 ∼= H∗(K3,Z)g invariant piece in Λm.

Now Λe,m are 2-modular, i.e. Λ∗m
∼= Λm(1

2) or Λ∗m(2) ∼= Λm, not self-dual

(can think: rescale quadratic form by 2 or vectors by
√

2).
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Duality action. T × S act on charges (Q,P ) in Λe ⊕ Λm:

(
Q
P

)
7→
(
OQ
OP

) (
Q
P

)
7→
(
a b
c d

)(
Q
P

)

In Z2 case one expects T-duality

O(Λe) ⊃ T ⊃ C(g,δ) := {h ∈ O(Λ22,6) |h(δ) = δ, hg = gh}

Non-trivial problem: characterize (Q,P ) orbits by (complete) set of invariants, e.g.

i) Quadratic T -invariants: T (Q,P ) := (Q2 , P 2 , Q · P )

ii) Discrete “Torsion invariant”4: I(Q,P ) := gcd(Q ∧ P ) ∈ Z
4Dabholkar, Gaiotto, Nampuri 2007
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Proven5 for non-orbifold theory where Λem ∼= Λ22,6:
(T, I) uniquely characterizes charge orbit under T × S = O(22, 6;Z)× SL2(Z).

Does not hold for Z2 case. Can define further invariants, e.g.

iii) R(Q,P ) := [Q] ∈ Λe/Λ
∗
e
∼= Z2+8

2

5Banerjee Sen 2007-2008



13

BPS-indices. Will be interested in dyonic states of charge (Q,P ) that are

1/2-BPS (need Q ‖ P ) or 1/4-BPS (need Q ∦ P )

They contribute to the nth helicity supertrace (BPS-index)

Ωn(Q,P ; ·) =
1

n!
Tr(Q,P )

[
(−1)F (2h)n

]
with F fermion parity and h spacetime helicity6 for n ≥ 4 and n ≥ 6 respectively.

The dot denotes potential moduli dependence: for n = 4 none but for n ≥ 6 Ω6 is
only piecewise continuous, i.e. have wall-crossing.

BPS-index expected to be duality invariant, i.e., a function of charge orbits. Can
consider Q ⊂ Λe ⊕ Λm consisting of complete orbits, characterized by invariants
(T, I,R) — once (I,R) are fixed, the index becomes a function of the quadratic
invariants T (and moduli chamber) only:

6Third component of angular momentum in rest frame of massive state.
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For instance Q set of unit-torsion dyons (I = 1) in Het[T 6] (R trivial), write

Ω6(Q,P ; ·) = fQ(Q2, P 2, Q · P ; ·)

Form partition function

ZQ(τ, z, σ) =
∑

Q2,P 2,Q·P

(−1)Q·P+1fQ(Q2, P 2, Q · P ; · ) e
2πi

(
σQ

2

2 +τ P
2

2 +z Q·P
)

Also write as ZQ(τ, z, σ) =: 1
ΦQ(τ,z,σ). In the example above have DVV-result7

ZQ(τ, z, σ) =
1

χ10
, χ10 : weight 10 Igusa cusp form of Sp4(Z)

7Dijkgraaf Verlinde Verlinde 1996
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BPS-index now obtained as Fourier coefficient via contour integral:

fQ(Q2, P 2, Q · P ; · ) =
(−1)Q·P+1

(q1q2q3)−1

∮
C

e
−2πi

(
σQ

2

2 +τ P
2

2 +z Q·P
)

ΦQ(τ, σ, z)
dτ∧dσ∧dz

Contour C ' T 3: deformations pick up residues from quadratic zeroes of ΦQ (e.g.
z = 0). Choose moduli dependence8 in =(C) s.t. poles are picked up precisely
when decay to two 1/2-BPS states possible, e.g. at z = 0

(Q,P ) −→ (Q, 0) + (0, P )

or generic decay parametrized in the form (with a0d0 − b0c0 = 1)

(Q,P )→ (a0d0Q− a0b0P, c0d0Q− c0b0P ) + (−b0c0Q+ a0b0P,−c0d0Q+ a0d0P )

8Cheng Verlinde, Sen 2007
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Such a decay demands 2nd order pole in Φ−1
Q at

z′ := c0d0 τ + a0b0 σ + (a0d0 + b0c0) z = 0

and the change in the index matches the (primitive/I = 1) wall-crossing formula9

(−1)Q
′·P ′+1 Q′ · P ′ dh(a0Q

′, c0Q
′) dh(b0P

′, d0P
′)

with half-BPS indices dh ∼ Ω4 of decay products (a0Q
′, c0Q

′), (b0P
′, d0P

′).

Think of the dh as Fourier coeff. of genus-1 modular forms φe(σ
′; a0, c0)−1 and

φm(τ ′; b0, d0)−1 that appear near quadratic divisor z′ = 0:

Φ
−1
Q (τ, σ, z) ∝

(
φe(σ

′
; a0, c0)

−1
φm(τ

′
; b0, d0)

−1
z
′−2

+O(z
′0

)
)

σ
′
:= c

2
0 τ + a

2
0 σ + 2a0c0 z τ

′
:= d

2
0 τ + b

2
0 σ + 2b0d0 z

9Denef Moore, ...
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Their SL2(Z) symmetries (might) lift to symmetries of ΦQ(τ, z, σ), e.g. for
φm(τ ′; b0, d0) can expect

d0 b0 0 0
c0 a0 0 0
0 0 a0 −c0
0 0 −b0 d0


−1

α1 0 β1 0
0 1 0 0
γ1 0 δ1 0
0 0 0 1



d0 b0 0 0
c0 a0 0 0
0 0 a0 −c0
0 0 −b0 d0

 (?)

These act on Z = ( τ zz σ ) as Z 7→ (AZ +B)(CZ +D)−1 when written in usual
block form. Can argue: φe/m weight k + 2 mod. form ⇒ ΦQ weight k SMF.

Constraints from S-duality: For ( a bc d ) ∈ S ⊂ SL2(Z) index should satisfy
Ω6(Q,P ; ·) = Ω6(aQ+ bP, cQ+ dP ; ·′). Implies ΦQ(Z) = ΦQ(Z ′) where Z ′ is
obtained by acting with the 4x4-matrix on the right of (?) (with a, b, c, d taking
role of a0, b0, c0, d0).

Constraint from charge quantization: Shift symmetry ΦQ(Z) = ΦQ(Z +B)
for B subject to the values T = (Q2, P 2, Q · P ) takes on Q. Consider as 4x4
matrix

(
12 B
02 12

)
acting on Z.



18

Conclusion so far: Assemble quarter-BPS indices for charge orbits Q ⊂ Λem
into partition function ΦQ(Z)−1. Extraction as Fourier coeff. via contour integral.

• Quantization laws of T = (Q2, P 2, Q · P ): Shift symmetries
(

12 B
02 12

)
∈ Sp4(Z)

• S-duality invariance: SL2(Z) ⊃ S ↪→ Sp4(Z)

• Wall-crossing:

– Quadratic divisors for allowed decays
(
a0 b0
c0 d0

)
.

– Embedded modular symmetries ⊂ SL2(Z) × SL2(Z) ↪→ Sp4(Z) of half-BPS
counting functions for decay products.

⇒ ΦQ must be weight k SMF for group that embedds the above symmetries and
has the right divisors. Strategy to explain new DT formula ZB:

Identify the charges Q ⊂ Λem whose 1/4-BPS PF ZQ gives rise to former. Check
the above constraints. For this need to understand 1/2-BPS counting functions.
Also crucial for a physics derivation of ZQ via chiral genus-two partition function.
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Dabholkar-Harvey 1/2-BPS states in the Z2 model

Purely electric (Q, 0) half-BPS states can be realized as DH states in the
perturbative heterotic string. Keep right-movers in ground state, allow arbitrary
left-movers (bosonic). Charge Q from momentum-winding in Narain lattice (Z2

invariant part).

Half-BPS indices Ω4 via heterotic one-loop (orbifold) partition function with extra
fugacities for left- and right- helicities. Take appropriate derivatives; then set
chem. pot. to zero. Result of Dabholkar Denef Moore Pioline 2005:

B4(q, q̄) =
3

2τ2

1

2

[
θ2
E8(1)(τ)

η24(τ)
Z6,6[ 0

0 ] +
θE8(1)(2τ)

η8(τ)η8(2τ)
Z6,6[ 0

1 ]

+
θE8(1)(

τ
2)

η8(τ)η8(τ2)
Z6,6[ 1

0 ] + e−2πi/3 θE8(1)(
τ+1

2 )

η8(τ)η8(τ+1
2 )
Z6,6[ 1

1 ]

]
.
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with Narain lattice (shifted in twisted sector h = 1) Λ
[h]
6,6 =

(
Λ6,6 + h

2δ
)

and

Z6,6[ hg ] =
∑

Q∈Λ
[h]
6,6

(−1)g δ·Q eiπQLτQL−iπQRτ̄QR

How to read off the index: In unorbifolded model would only have term

Bunorb
4 (q, q̄) =

1

τ2
×Z6,6[ 0

0 ](q, q̄) θ2
E8(1)(τ)× 3

2

1

η24(τ)
.

For DH state with charge (Q, 0) and Q ∈ Λ6,6 ⊕ E⊕2
8 read off

dh(Q, 0) ≡ Ω4(Q, 0) =
3

2
p24(N) , N − 1 =

Q2

2

Apply to Z2: In Z2 model consider P1 ± P2 = 2P± ± P for root lattice vectors
P1, P2, P+, P− ∈ E8 and P ∈ E8/(2E8) ∼= E8(2)∗/E8(2) ∼= Z8

2. Only P1 + P2

physical electric charge, want to seperate this as above.
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Rewrite theta function for E⊕2
8 as

θ2
E8(1) = θ2

E8(2),1 + 120 θ2
E8(2),248 + 135 θ2

E8(2),3875 .

with E8(2) theta functions with characteristics P (dep. only on orbit [P] under
Weyl group)

θE8(2),P(τ) :=
∑

∆∈E8(1)

exp

[
2πiτ

(
∆− 1

2
P
)2
]

From the untwisted sector Buntw
4 of B4 = Buntw

4 +Btw
4 get

B
untw
4 (q, q̄) =

3

2τ2

×
∑

ε∈{+1,−1}

Z6,6[ 0
0 ] + εZ6,6[ 0

1 ]

2

[
θE8(2) ×

1

2

(
θE8(2)

η24
+ ε

1

η8(τ)η8(2τ)

)

+ 120 θE8(2),248 ×
(
θE8(2),248

2η24

)
+ 135 θE8(2),3875 ×

(
θE8(2),3875

2η24

)]
.

Here (...) takes the role 1/∆ plays in unorbifolded case, specific to the charge
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subsector of untwisted charges ΛUe = U ⊕ U⊕5 ⊕ E8(−1
2) 10.

The sign ε = ±1 corresponds to momentum along S1
CHL being even (+) or odd (-)

— this parity is conserved under T .

Consider untwisted sector Q ∈ U ⊕ U⊕5 ⊕ E8(−2), i.e. with P = 0, where the
CHL momentum takes arbitrary values. Summing over ε = ±1 gives a partition
function for half-BPS states for with such (Q, 0):

1

τ2
× Z6,6[ 0

0 ](q, q̄) θE8(2),1 ×
3

2

θE8(2),1

2 η24(τ)
−→ φ−1

e (σ) =
E4(2σ)

2∆(σ)

This is the precisely the modular form on the diagonal divisor z = 0 as seen in the
DT partition function ZB.

10(recall h = 0: Narain lattice not shifted by δ/2)
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1/4-BPS partition function from heterotic genus-two amplitude

Dabholkar Gaiotto (2007) suggested to look at the chiral (bosonic) genus-two
partition function of the heterotic Z2 orbifold in order to identify the quarter-BPS
partition function discovered by Sen et al. Their motivation was that a 1/4-BPS
dyon can be represented as a string web on a torus, which in M-theory becomes a
genus-two Riemann surface. In fact (Dabholkar, Gaiotto, Nampuri (2007)) the
genus of this surface satifies g = I + 1 = 2 and the derivation only captures I = 1
dyons.

We follow this ansatz to identify 1/4-BPS PFs for charges with untwisted sector
electric charge Q, complementary to Dabholkar Gaiotto (2007). This should
especially yield the DT partition function ZB proposed by Bryan Oberdieck 2018.

Start: sum over orbifold blocks (at Narain moduli locus admitting factoriz’n):

Z(Ω) =
1

22

∑
h1,h2∈{0,1}
g1,g2∈{0,1}

Z
[
h1 h2
g1 g2

]
=

1

22

∑
h1,h2∈{0,1}
g1,g2∈{0,1}

Z8

[
h1 h2
g1 g2

]
Z6,6

[
h1 h2
g1 g2

]
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The Z6,6

[
h1 h2
g1 g2

]
are Siegel-Narain theta functions for T 6:

Λ
[h1,h2]
6,6 =

(
Λ6,6 +

h1

2
δ

)
⊕
(

Λ6,6 +
h2

2
δ

)
Z6,6

[
h1 h2
g1 g2

]
=

∑
(Q1,Q2)∈Λ

[h1,h2]
6,6

(−1)δ·(g1Q1+g2Q2) eiπQ
r
LΩrsQ

s
L−iπQ

r
RΩ̄rsQ

s
R

Identify the period matrix Ω with chem. potentials conjugate to quadratic charge
invariants:

Ω
!
= Z (= ( τ zz σ )) ↔

(
P 2/2 Q·P
Q·P Q2/2

)
As in the genus-one (half-BPS) case, need to identify contributions in Z that arise
from appropriate charges in the lattice sums.

First look at “toroidal” charge components as in Z6,6. Will identify dyon charge
(Q,P )|toroid. ↔ (Q2, Q1) therein.



25

• Recall Λm = U(2) ⊕ U5 ⊕ E8(2). If Q1 should be magnetic, need to look at
blocks with h1 = 0 (no shifted U -lattice). Also: summing g1 = 0, 1 projects to
charges Q1 with (−1)g·Q1 = 1, i.e. along a sublattice U(2) ⊂ U .

• Similarly: Want untwisted electric charges Q2 in Z6,6, i.e. look at h2 = 0.

Next will look at E8 charge component. Use observation: Without a Z2-shift
along S1

CHL (just the Z2 action on the E8’s) one would obtain an equivalent
theory, hence:

Z8[ 0 0
0 0 ] =

[
Θ

(2)
E8

(Ω)
]2

χ10
=

′∑
h1,h2∈{0,1}
g1,g2∈{0,1}

Z8

[
h1 h2
g1 g2

]
.
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Hence the full orbifold sum becomes

Z(Ω) =
1

22

′∑
h1,h2∈{0,1}
g1,g2∈{0,1}

Z8

[
h1 h2
g1 g2

] (
Z6,6[ 0 0

0 0 ] + Z6,6

[
h1 h2
g1 g2

])

and from the above Z6,6 consideration focus on

1

22

′∑
g1,g2∈{0,1}

Z8[ 0 0
g1 g2 ] (Z6,6[ 0 0

0 0 ] + Z6,6[ 0 0
g1 g2 ])

Dabholkar Gaiotto (2007) used results of Dijkgraaf Verlinde2 (1988) to compute
the block11

Z8[ 0 0
1 0 ] (( τ zz σ )) =

Θ
(2)
E8

(2τ, 2z, 2σ)

Φ6,0
+

Θ
(2)
E8

(2τ, z, σ2)

16 Φ6,3
+

Θ
(2)
E8

(2τ, z, σ+1
2 )

16 Φ6,4
11Their roles of (τ, σ) are swapped w.r.t. the ones here, formally Z8

[
0 0
0 1

]
here.
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where Φ6,0 is a weight 6 Γ
(2)
0 (2) SMF and Φ6,i are modular images of it under the

index 3 subgroup of group Γ
(2)
0 (2) that keeps the characteristic [ 0 0

1 0 ] mod 2. Can
write them as

Φ6,0 =
Y0

χ10
, Φ6,3 =

Y3

χ10
, Φ6,4 =

Y4

χ10

Recall from DH analysis that in the untwisted sector the charge components along
the electric E8(1

2) ⊂ Λe came in three classes P+ = 2Σ +P, where P ∈ E8/(2E8)
falls into one of three orbits O1,O248,O3875 under Weyl(E8). Define for these Ox

Θx :=
∑
P∈Ox

∑
(Q1,Q2)∈

E8(2)⊕[E8(2)+P]

eiπ Q
rΩrsQ

s
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Re-express the E8 Siegel theta functions in numerator of Z8[ 0 0
1 0 ]:

Θ
(2)
E8

(2τ, 2z, 2σ) =
∑

(Q1,Q2)∈
E8(2)⊕E8(2)

e
iπ QrΩrsQ

s
= Θ1

Θ
(2)
E8

(2τ, 2z,
σ

2
) = 2

−4
∑

(Q1,Q2)∈
E8(2)⊕E8(

1
2)

e
iπ QrΩrsQ

s
= Θ1 + Θ248 + Θ3875

Θ
(2)
E8

(2τ, 2z,
σ + 1

2
) = 2

−4
∑

(Q1,Q2)∈
E8(2)⊕E8(

1
2)

(−1)
Q2

2e
iπ QrΩrsQ

s
= Θ1 −Θ248 + Θ3875

We are eventually interested in electric charges Q = Q2 with components in
E8(2) ⊂ E8(1

2), i.e. O1 ↔ Θ1.
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1

22
(Z6,6[ 0 0

0 0 ] + Z6,6[ 0 0
1 0 ]) Z8[ 0 0

1 0 ] ← Correct terms to look at.

=
1

2

∑
Q1∈U(2)⊕U⊕5

Q2∈U
⊕6

eQ1,Q2
(Ω)Z8[ 0 0

1 0 ](Ω) ← (eQ1,Q2
(Ω) := exp[...])

=
∑

Q1∈U(2)⊕U⊕5

Q2∈U
⊕6

eQ1,Q2
(Ω)

(
Θ1

Y0 + 1
16Y3 + 1

16Y4

2χ10

+ Θ248

1
16Y3 + 1

16Y4

2χ10

+ Θ3875

1
16Y3 − 1

16Y4

2χ10

)

=
∑

x∈{1,248,3875}




∑
Q1∈U(2)⊕U⊕5⊕E8(2)

Q2∈U
⊕6⊕[E8(2)+Ox]

eQ1,Q2
(Ω)

 × Z
untw.
(x)


For the trivial shift orbit O1 = {0}:

X: Summation P ↔ Q1 over U(2)⊕ U⊕5 ⊕ E8(2) = Λm

X: Summation Q↔ Q2 over U ⊕ U⊕5 ⊕ E8(2) ⊂ Λe
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⇒ Zuntw.
(1) =

Y0 + 1
16Y3 + 1

16Y4

2χ10

should be the partition function of quarter-BPS dyons with indicated charge
(Q,P ) .

Matching DT: Zuntw.
(1) expected to match to new DT result:

ZB(Z) =
−8F4(Z) + 8G4(Z)− 7

30E
(2)
4 (2Z)

χ10

Rewrite numerators as polyonomials in terms of genus-two theta constants, use
relation θ2

0100θ
2
0110 = θ2

0000θ
2
0010 − θ2

0001θ
2
0011. ⇒ perfect match! X

Note: As a byproduct, have obtained two more 1/4-BPS partition functions for
unit-torsion dyons with untwisted sector electric charge Q (shifts by O248,3875).
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Modular and polar constraints

Have also checked for Zuntw.
(1) constraints from Γ1(2) S-duality, translation

symmetries and wall-crossing. All checks passed! X

In fact, this analysis gives very stringent constraints:

• The weight of Zuntw.
(1) must be −k = −6

• Zuntw.
(1) should exhibit quadratic poles at all images of z = 0 under the

group generated by integer translations and embedded S = Γ1(2) ↪→ Sp4(Z)
symmetries.

• The coefficient of such a pole must be given by known half-BPS counting
modular forms (inspect decay products at each pole)
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• The (expected) Siegel symmetries of Zuntw.
(1) satisfy a common congruence relation


2Z + 1 Z Z Z

2Z 2Z + 1 Z Z
2Z 2Z 2Z + 1 2Z
2Z 2Z Z 2Z + 1

∩Sp4(Z) =


Z Z Z Z
2Z Z Z Z
2Z 2Z Z 2Z
2Z 2Z Z Z

∩Sp4(Z)

The RHS is precisely the Iwahori subgroup B(2)!

Remarkable: Even we did not yet have a closed formula for Zuntw.
(1) , the (simplest)

ansatz M4(Z)/χ10 with M4 a weight 4 SMF for B(2) would lead to the correct
result, as the (even weight SMF) ring generators are known [Ibukiyama (1999)]
and we only need to fix a finite number of coefficients.
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Constraints from black hole entropy

Following DVV 1996, Cardoso de Wit Kappeli Mohaupt 2004, Sen 2005 for large
(Q2, P 2, Q · P ) the log of the microscopic 1/4-BPS index should match the
macroscopic entropy of an extremal black hole carrying the charge (Q,P ) as
computed in the supergravity approximation.

Bekenstein-Hawking area term + leading correction in inverse powers of charges:

SBH = π
√
Q2P 2 − (Q · P )2 + 64π2 φ

(
Q · P
P 2

,

√
Q2P 2 − (Q · P )2

P 2

)
+ · · · .

Correction worked out from the entropy function including Gauss-Bonnet term in
effective sugra action (Gregori Kiritsis Kounnas Obers Petropoulos Pioline 1997, Sen 2005)

∫
d4 x

√
−det g φ(a, S)

(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
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where τ = a+ iS axio-dilaton. Function φ for Z2 CHL model:

φ(a, S) = −
1

64π2
[8 log S + log g(a+ iS) + log g(−a+ iS)] + const.

g(τ) := η
8
(τ)η

8
(2τ)

Following the analysis of previously known 1/4-BPS PF in CHL models, estimate
asymptotic growth of Fourier coeff. by saddle-point approximation in (τ, σ) after
picking up the dominant pole in the z-plane. This is the divisor
z′ := τσ − z2 + z = 0, where Zuntw.

(1) behaves as

Zuntw.
(1) ∝

1

(2z′ − τ ′ − σ′)6

(
1

z′2
1

g(τ ′)

1

g(σ′)
+O(z′4)

)
Same coefficients as for known (twisted sector) partition function! From here on
rely on results given in literature.

⇒ Leading and subleading terms in entropy SBH also reproduced microscopically
from untwisted sector partition functionZuntw.

(1) ! X
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Conclusions, outlook and questions

X Physical interpretation of DT invariants on CHL threefold (K3 × T 2)/Z2 as
quarter-BPS index.
Re-derived conjectural DT formula of [Bryan Oberdieck (2018)] using N = 4
string duality from a heterotic genus two partition function.

X Checked physical constraints from charge quantization, S-duality and wall-
crossing. Physical explanation for the congruence subgroup B(2).

X Checked constraints on asymptotic growth of index by comparing to macroscopic
BH entropy.

? Generalize to orbifolds by other symplectomorphism groups G on K3?

? ...


