Lost Chapters in CHL Black Holes:

Untwisted $\frac{1}{4}$-BPS Dyons in the \mathbb{Z}_{2} Model

Workshop on Black Holes: BPS, BMS and Integrability Lisbon, 11 September 2020

Albrecht Klemm
with Fabian Fischbach and Christoph Nega based on [1]=arXiv:2005.07712

Introduction:

The purpose of this talk is to keep a Geometry-Physics dictionary alive that started with the seminal work of Yau and Zaslow (95):

$$
\Delta(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} .
$$

By work of Göttsche (90), $\Delta(q)^{-1}$ was already known to arise as the generating series of the Euler characteristics of Hilbert schemes of points of $K 3$ surfaces S,

$$
\sum_{n \geq 0} \chi\left(\operatorname{Hilb}^{n}(S)\right) q^{n-1}=\frac{1}{\Delta(q)} .
$$

An argument by Beauville in (97) provided a geometric link between curve counting in primitive classes and the Euler characteristics of $\operatorname{Hilb}^{n}(S)$. The Yau Zaslow conjecture for non primitive classes was finally proven in AK Maulik, Pandharipande and Scheidegger (95)

The next step was to refine this result to the χ_{y} genus of $\operatorname{Hilb}^{n}(S)$ proposed in Katz AK and Vafa (99):

$$
\sum_{n \geq 0} \chi_{y}\left(\operatorname{Hilb}^{n}(S)\right) q^{n-1}=\frac{1}{q \prod_{n=1}^{\infty}\left(1-y q^{n}\right)^{2}\left(1-q^{n}\right)^{20}\left(1-y^{-1} q^{n}\right)^{2}}
$$

and finally to the Hodge of $\operatorname{Hilb}^{n}(S)$ Katz AK and Pandharipande (14)

$$
\begin{aligned}
\sum_{n \geq 0} & \chi_{\text {Hodge }}\left(\operatorname{Hilb}^{n}(S)\right) q^{n-1}= \\
& \frac{1}{q \prod_{n=1}^{\infty}\left(1-u^{-1} y^{-1} q^{n}\right)\left(1-u^{-1} y q^{n}\right)\left(1-q^{n}\right)^{20}\left(1-u y^{-1} q^{n}\right)\left(1-u y q^{n}\right)}
\end{aligned}
$$

An important step in this dictionary was the proof of the matching of the generating series of the Donaldson Thomas invariants on $X=K 3 \times E$ with the
inverse of the Igusa Cusp form χ_{10}

$$
Z^{X}(q, t, p)=\sum_{h=0}^{\infty} \sum_{d=1}^{\infty} \sum_{n \in \mathbb{Z}} \mathrm{DT}_{n,\left(\beta_{h}, d\right)}^{X} q^{d-1} t^{\frac{1}{2}\left\langle\beta_{h}, \beta_{h}\right\rangle}(-p)^{n}
$$

Igusa cusp form conjecture ${ }^{1}$

$$
Z^{X}(q, t, p)=-\frac{1}{\chi_{10}}
$$

was recently proven ${ }^{2}$
The main motivation to keep this dictionary alive is that the mathematician work with techniques that are to large extend independent of the amount of supersymmetry which can eventually provide us a guide to the more interesting $\mathcal{N}=2$ cases.
${ }^{1}$ Oberdieck Pandharipande (2014), Bryan (2015)
${ }^{2}$ Oberdieck Shen (2016), Oberdieck Pixton (2017)

The main aim of this paper is to extend this dictionary to the CHL threefold $\left(K 3 \times T^{2}\right) / \mathbb{Z}_{N}$ as orbifold by (g, δ)

- g : order N automorphism of $K 3$ preserving holomorphic (2,0)-form, non-trivial action on middle cohom. $H^{2}(K 3, \mathbb{Z}) \cong U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}$
- δ : order N translation in elliptic curve T^{2}

We focus on $N=2$ and g induces an exchange of $E_{8}(-1)$'s Invariant piece: $\quad H^{2}(K 3, \mathbb{Z})^{g} \cong U^{\oplus 3} \oplus E_{8}(-2)^{3}$

[^0]- Bryan Oberdieck 2018 conjecture two primitive DT partition functions (PF) for $X=\left(K 3 \times T^{2}\right) / \mathbb{Z}_{2}$ in terms of weight - 6 Siegel modular forms (SMF) for level 2 congruence subgroups of $\mathrm{Sp}_{4}(\mathbb{Z})$.
DT-invariant $\mathrm{DT}_{n,(\gamma, d)}^{X}$ depends on whether curve class $\gamma \in \frac{1}{2} H_{2}(K 3, \mathbb{Z})$ is contained in original homology $H_{2}(K 3, \mathbb{Z})$ or not (case B/A resp.):
A: weight -6 SMF $Z^{A}(Z)=-\frac{1}{\tilde{\Phi}_{2}(Z)} \sim$ Borcherds lift of $K 3$ twining genera. Matches SMF found by David Jatkar Sen as PF of quarter-BPS indices (a.k.a. sixth helicity supertraces) in $\mathcal{N}=4 \mathbb{Z}_{2}$-CHL model.

B: weight -6 SMF Z^{B} with no prior appearance in physics:

$$
\mathrm{Z}^{B}(Z)=\frac{-8 F_{4}(Z)+8 G_{4}(Z)-\frac{7}{30} E_{4}^{(2)}(2 Z)}{\chi_{10}}
$$

Here: $G_{4}(Z), E_{4}^{(2)}(2 Z)$ weight 4 SMF for $\Gamma_{0}^{(2)}(2)$, while $F_{4}(Z)$ weight 4 SMF for the paramodular group $K(2) \subset \operatorname{Sp}_{4}(\mathbb{Q})$ of degree 2. Thus, numerator is a SMF for the intersection $B(2)=K(2) \cap \Gamma_{0}^{(2)}(2)$, the level 2 Iwahori subgroup.

- Important clue for physics: Near diagonal divisor ($\left.\begin{array}{c}\tau \\ 0 \\ 0\end{array}\right)$ SMF Z^{B} exhibits quadratic pole

$$
\mathrm{Z}^{B}\left(\left(\tau z \begin{array}{c}
z \\
\sigma
\end{array}\right)\right) \propto \frac{1}{z^{2}} \frac{E_{4}(2 \sigma)}{2 \Delta(\sigma)} \frac{1}{\eta^{8}(\tau) \eta^{8}(2 \tau)}+\mathcal{O}\left(z^{0}\right) .
$$

\rightarrow Admits wall-crossing interpretation:
Decay of $1 / 4$-BPS states of charge (Q, P) (that are counted by the SMF) into two $1 / 2$-BPS states of charge $(Q, 0)$ and $(0, P)$ (counted by resp. modular forms in σ and τ).
$-\eta^{-8}(\tau) \eta^{-8}(2 \tau)$ is the same as for Z^{A}, i.e. for Sen's SMF.

- $E_{4}(2 \sigma) /(2 \Delta(\sigma))$ different
- Suggestion: 1/4-BPS states with same magnetic P, but different electric Q

Compatible with known limitation of Sen's result:
Electric Q of respective dyons belong to twisted orbifold sector in heterotic frame, i.e. $1 / 2$-BPS states of charge $(Q, 0)$ have half-integral winding on S_{CHL}^{1}.

Four-dim. $\mathcal{N}=4$ models and BPS-index

Recall duality: IIA $\left[K 3 \times T^{2}\right] \leftrightarrow \operatorname{Het}\left[T^{6}\right]$.

Moduli space of 4D $\mathcal{N}=4$ theory:

$$
[\mathrm{O}(22,6 ; \mathbb{Z}) \backslash \mathrm{O}(22,6) /(\mathrm{O}(6) \times \mathrm{O}(22))] \times\left[\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R}) / \mathrm{U}(1)\right]
$$

- 1st factor: Heterotic Narain moduli space Quotient by \mathcal{T}-duality group (automorph. $\mathrm{O}\left(\Lambda_{22,6}\right) \cong \mathrm{O}(22,6 ; \mathbb{Z})$ of N . lattice)
- 2nd factor: Heterotic axio-dilation modulus Quotient by \mathcal{S}-duality group $\mathrm{SL}_{2}(\mathbb{Z})$

Narain lattice vs. IIA charges:

$$
\Lambda_{22,6} \cong \Lambda_{20,4} \oplus \Lambda_{2,2} \cong H^{*}(\mathrm{~K} 3, \mathbb{Z}) \oplus\left(\text { momentum-winding on } T^{2}\right)
$$

Heterotic $\mathbb{Z}_{2} \mathrm{CHL}$ model as asymmetric orbifold:

- g acts only on left-moving bosonic string by swapping E_{8} 's
- δ acts by \mathbb{Z}_{2}-shift on $S^{1} \subset T^{6}$

Moduli of CHL orbifold as invariant moduli of parent theory:

$$
G_{4}(\mathbb{Z}) \backslash\left([\mathrm{O}(14,6) /(\mathrm{O}(14) \times \mathrm{O}(6))] \times\left[\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{U}(1)\right]\right)
$$

for some discrete U-duality group in four dimensions $G_{4}(\mathbb{Z}) \supset \mathcal{T} \times \mathcal{S}$ with \mathcal{T} acting (only) on 1st factor and $\mathcal{S}=\Gamma_{1}(2)$ acting on 2nd factor (Möbius transformation on het. axio-dilaton) I.e. we only consider \mathcal{T} - and \mathcal{S}-transformations here.

Charges. Gauge group $U(1)^{r}$ of rank r at generic moduli (smooth $K 3$).

- Electric charges Q quantized in rank r lattice Λ_{e}
- Magnetic charges P quantized in dual lattice $\Lambda_{m} \simeq \Lambda_{e}^{*}$

In non-orbifold case: rank $r=28$ and $\Lambda_{e} \cong \Lambda_{22,6} \cong \Lambda_{m}$ unimodular (self-dual). $\ln \mathbb{Z}_{2}$ orbifoldcase: rank $r=20$ and lattices are

$$
\begin{aligned}
\Lambda_{e} & =E_{8}\left(-\frac{1}{2}\right) \oplus U^{\oplus 5} \oplus U\left(\frac{1}{2}\right) \\
\Lambda_{m} & =E_{8}(-2) \oplus U^{\oplus 5} \oplus U(2)
\end{aligned}
$$

Note $E_{8}(-2) \oplus U^{\oplus 4} \cong H^{*}(K 3, \mathbb{Z})^{g}$ invariant piece in Λ_{m}.
Now $\Lambda_{e, m}$ are 2-modular, i.e. $\Lambda_{m}^{*} \cong \Lambda_{m}\left(\frac{1}{2}\right)$ or $\Lambda_{m}^{*}(2) \cong \Lambda_{m}$, not self-dual (can think: rescale quadratic form by 2 or vectors by $\sqrt{2}$).

Duality action. $\mathcal{T} \times \mathcal{S}$ act on charges (Q, P) in $\Lambda_{e} \oplus \Lambda_{m}$:

$$
\binom{Q}{P} \mapsto\binom{O Q}{O P} \quad\binom{Q}{P} \mapsto\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\binom{Q}{P}
$$

In \mathbb{Z}_{2} case one expects T-duality

$$
\mathrm{O}\left(\Lambda_{e}\right) \supset \mathcal{T} \supset C_{(g, \delta)}:=\left\{h \in \mathrm{O}\left(\Lambda_{22,6}\right) \mid h(\delta)=\delta, h g=g h\right\}
$$

Non-trivial problem: characterize (Q, P) orbits by (complete) set of invariants, e.g.
i) Quadratic \mathcal{T}-invariants: $\quad T(Q, P):=\left(Q^{2}, P^{2}, Q \cdot P\right)$
ii) Discrete "Torsion invariant" ${ }^{4}: I(Q, P):=\operatorname{gcd}(Q \wedge P) \in \mathbb{Z}$

[^1]Proven ${ }^{5}$ for non-orbifold theory where $\Lambda_{e m} \cong \Lambda_{22,6}$:
(T, I) uniquely characterizes charge orbit under $\mathcal{T} \times \mathcal{S}=\mathrm{O}(22,6 ; \mathbb{Z}) \times \mathrm{SL}_{2}(\mathbb{Z})$.
Does not hold for \mathbb{Z}_{2} case. Can define further invariants, e.g.
iii) $\quad R(Q, P):=[Q] \in \Lambda_{e} / \Lambda_{e}^{*} \cong \mathbb{Z}_{2}^{2+8}$

[^2]BPS-indices. Will be interested in dyonic states of charge (Q, P) that are

$$
1 / 2 \text {-BPS }(\text { need } Q \| P) \quad \text { or } \quad 1 / 4 \text {-BPS }(\text { need } Q \nVdash P)
$$

They contribute to the nth helicity supertrace (BPS-index)

$$
\Omega_{n}(Q, P ; \cdot)=\frac{1}{n!} \operatorname{Tr}_{(Q, P)}\left[(-1)^{F}(2 h)^{n}\right]
$$

with F fermion parity and h spacetime helicity ${ }^{6}$ for $n \geq 4$ and $n \geq 6$ respectively.
The dot denotes potential moduli dependence: for $n=4$ none but for $n \geq 6 \Omega_{6}$ is only piecewise continuous, i.e. have wall-crossing.

BPS-index expected to be duality invariant, i.e., a function of charge orbits. Can consider $\mathcal{Q} \subset \Lambda_{e} \oplus \Lambda_{m}$ consisting of complete orbits, characterized by invariants (T, I, R) - once (I, R) are fixed, the index becomes a function of the quadratic invariants T (and moduli chamber) only:

[^3]For instance \mathcal{Q} set of unit-torsion dyons $(I=1)$ in $\operatorname{Het}\left[T^{6}\right]$ (R trivial), write

$$
\Omega_{6}(Q, P ; \cdot)=f_{\mathcal{Q}}\left(Q^{2}, P^{2}, Q \cdot P ; \cdot\right)
$$

Form partition function

$$
\mathrm{Z}_{\mathcal{Q}}(\tau, z, \sigma)=\sum_{Q^{2}, P^{2}, Q \cdot P}(-1)^{Q \cdot P+1} f_{\mathcal{Q}}\left(Q^{2}, P^{2}, Q \cdot P ; \cdot\right) e^{2 \pi i\left(\sigma \frac{Q^{2}}{2}+\tau \frac{P^{2}}{2}+z Q \cdot P\right)}
$$

Also write as $\mathrm{Z}_{\mathcal{Q}}(\tau, z, \sigma)=: \frac{1}{\Phi_{\mathcal{Q}}(\tau, z, \sigma)}$. In the example above have DVV-result ${ }^{7}$

$$
\mathrm{Z}_{\mathcal{Q}}(\tau, z, \sigma)=\frac{1}{\chi_{10}}, \quad \chi_{10}: \text { weight } 10 \text { lgusa cusp form of } \mathrm{Sp}_{4}(\mathbb{Z})
$$

[^4]BPS-index now obtained as Fourier coefficient via contour integral:

$$
f_{\mathcal{Q}}\left(Q^{2}, P^{2}, Q \cdot P ; \cdot\right)=\frac{(-1)^{Q \cdot P+1}}{\left(\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3}\right)^{-1}} \oint_{\mathcal{C}} \frac{e^{-2 \pi i\left(\sigma \frac{Q^{2}}{2}+\tau \frac{P^{2}}{2}+z Q \cdot P\right)}}{\Phi_{\mathcal{Q}}(\tau, \sigma, z)} \mathrm{d} \tau \wedge \mathrm{~d} \sigma \wedge \mathrm{~d} z
$$

Contour $\mathcal{C} \simeq T^{3}$: deformations pick up residues from quadratic zeroes of $\Phi_{\mathcal{Q}}$ (e.g. $z=0$). Choose moduli dependence ${ }^{8}$ in $\Im(\mathcal{C})$ s.t. poles are picked up precisely when decay to two $1 / 2$-BPS states possible, e.g. at $z=0$

$$
(Q, P) \longrightarrow(Q, 0)+(0, P)
$$

or generic decay parametrized in the form (with $a_{0} d_{0}-b_{0} c_{0}=1$)
$(Q, P) \rightarrow\left(a_{0} d_{0} Q-a_{0} b_{0} P, c_{0} d_{0} Q-c_{0} b_{0} P\right)+\left(-b_{0} c_{0} Q+a_{0} b_{0} P,-c_{0} d_{0} Q+a_{0} d_{0} P\right)$

[^5]Such a decay demands 2 nd order pole in $\Phi_{\mathcal{Q}}^{-1}$ at

$$
z^{\prime}:=c_{0} d_{0} \tau+a_{0} b_{0} \sigma+\left(a_{0} d_{0}+b_{0} c_{0}\right) z=0
$$

and the change in the index matches the (primitive $/ I=1$) wall-crossing formula ${ }^{9}$

$$
(-1)^{Q^{\prime} \cdot P^{\prime}+1} \quad Q^{\prime} \cdot P^{\prime} \quad d_{h}\left(a_{0} Q^{\prime}, c_{0} Q^{\prime}\right) d_{h}\left(b_{0} P^{\prime}, d_{0} P^{\prime}\right)
$$

with half-BPS indices $d_{h} \sim \Omega_{4}$ of decay products $\left(a_{0} Q^{\prime}, c_{0} Q^{\prime}\right)$, ($b_{0} P^{\prime}, d_{0} P^{\prime}$).
Think of the d_{h} as Fourier coeff. of genus- 1 modular forms $\phi_{e}\left(\sigma^{\prime} ; a_{0}, c_{0}\right)-1$ and $\phi_{m}\left(\tau^{\prime} ; b_{0}, d_{0}\right)^{-1}$ that appear near quadratic divisor $z^{\prime}=0$:

$$
\begin{array}{ll}
\Phi_{\mathcal{Q}}^{-1}(\tau, \sigma, z) \propto\left(\phi_{e}\left(\sigma^{\prime} ; a_{0}, c_{0}\right)^{-1} \phi_{m}\left(\tau^{\prime} ; b_{0}, d_{0}\right)^{-1} z^{\prime-2}+\mathcal{O}\left(z^{\prime 0}\right)\right) \\
\sigma^{\prime}:=c_{0}^{2} \tau+a_{0}^{2} \sigma+2 a_{0} c_{0} z & \tau^{\prime}:=d_{0}^{2} \tau+b_{0}^{2} \sigma+2 b_{0} d_{0} z
\end{array}
$$

[^6]Their $\mathrm{SL}_{2}(\mathbb{Z})$ symmetries (might) lift to symmetries of $\Phi_{\mathcal{Q}}(\tau, z, \sigma)$, e.g. for $\phi_{m}\left(\tau^{\prime} ; b_{0}, d_{0}\right)$ can expect

$$
\left(\begin{array}{cccc}
d_{0} & b_{0} & 0 & 0 \\
c_{0} & a_{0} & 0 & 0 \\
0 & 0 & a_{0} & -c_{0} \\
0 & 0 & -b_{0} & d_{0}
\end{array}\right)^{-1}\left(\begin{array}{cccc}
\alpha_{1} & 0 & \beta_{1} & 0 \\
0 & 1 & 0 & 0 \\
\gamma_{1} & 0 & \delta_{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
d_{0} & b_{0} & 0 & 0 \\
c_{0} & a_{0} & 0 & 0 \\
0 & 0 & a_{0} & -c_{0} \\
0 & 0 & -b_{0} & d_{0}
\end{array}\right)
$$

These act on $Z=\left(\begin{array}{c}\tau \\ z \\ \underset{\sigma}{z}\end{array}\right)$ as $Z \mapsto(A Z+B)(C Z+D)^{-1}$ when written in usual block form. Can argue: $\phi_{e / m}$ weight $k+2 \bmod$. form $\Rightarrow \Phi_{\mathcal{Q}}$ weight k SMF.

Constraints from \mathcal{S}-duality: For $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathcal{S} \subset \mathrm{SL}_{2}(\mathbb{Z})$ index should satisfy $\Omega_{6}(Q, P ; \cdot)=\Omega_{6}\left(a Q+b P, c Q+d P ; \cdot{ }^{\prime}\right)$. Implies $\Phi_{\mathcal{Q}}(Z)=\Phi_{\mathcal{Q}}\left(Z^{\prime}\right)$ where Z^{\prime} is obtained by acting with the 4×4-matrix on the right of (\star) (with a, b, c, d taking role of $\left.a_{0}, b_{0}, c_{0}, d_{0}\right)$.

Constraint from charge quantization: Shift symmetry $\Phi_{\mathcal{Q}}(Z)=\Phi_{\mathcal{Q}}(Z+B)$ for B subject to the values $T=\left(Q^{2}, P^{2}, Q \cdot P\right)$ takes on \mathcal{Q}. Consider as 4×4 matrix $\left(\begin{array}{lll}1 & 1 & B \\ 0_{2} & 12\end{array}\right)$ acting on Z.

Conclusion so far: Assemble quarter-BPS indices for charge orbits $\mathcal{Q} \subset \Lambda_{e m}$ into partition function $\Phi_{\mathcal{Q}}(Z)^{-1}$. Extraction as Fourier coeff. via contour integral.

- Quantization laws of $T=\left(Q^{2}, P^{2}, Q \cdot P\right)$: Shift symmetries $\left(\begin{array}{cc}1_{2} & B \\ 0_{2} & 1_{2}\end{array}\right) \in \operatorname{Sp}_{4}(\mathbb{Z})$
- S-duality invariance: $\mathrm{SL}_{2}(\mathbb{Z}) \supset \mathcal{S} \hookrightarrow \mathrm{Sp}_{4}(\mathbb{Z})$
- Wall-crossing:
- Quadratic divisors for allowed decays $\left(\begin{array}{cc}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)$.
- Embedded modular symmetries $\subset \mathrm{SL}_{2}(\mathbb{Z}) \times \mathrm{SL}_{2}(\mathbb{Z}) \hookrightarrow \mathrm{Sp}_{4}(\mathbb{Z})$ of half-BPS counting functions for decay products.
$\Rightarrow \Phi_{\mathcal{Q}}$ must be weight k SMF for group that embedds the above symmetries and has the right divisors. Strategy to explain new DT formula Z^{B} :

Identify the charges $\mathcal{Q} \subset \Lambda_{e m}$ whose $1 / 4$-BPS PF $\mathrm{Z}_{\mathcal{Q}}$ gives rise to former. Check the above constraints. For this need to understand $1 / 2$-BPS counting functions. Also crucial for a physics derivation of $\mathrm{Z}_{\mathcal{Q}}$ via chiral genus-two partition function.

Dabholkar-Harvey $1 / 2$-BPS states in the \mathbb{Z}_{2} model

Purely electric $(Q, 0)$ half-BPS states can be realized as DH states in the perturbative heterotic string. Keep right-movers in ground state, allow arbitrary left-movers (bosonic). Charge Q from momentum-winding in Narain lattice (\mathbb{Z}_{2} invariant part).

Half-BPS indices Ω_{4} via heterotic one-loop (orbifold) partition function with extra fugacities for left- and right- helicities. Take appropriate derivatives; then set chem. pot. to zero. Result of Dabholkar Denef Moore Pioline 2005:

$$
\begin{aligned}
B_{4}(q, \bar{q})=\frac{3}{2 \tau_{2}} & \frac{1}{2}\left[\frac{\theta_{E_{8}(1)}^{2}(\tau)}{\eta^{24}(\tau)} \mathcal{Z}_{6,6}\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\frac{\theta_{E_{8}(1)}(2 \tau)}{\eta^{8}(\tau) \eta^{8}(2 \tau)} \mathcal{Z}_{6,6}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right. \\
& \left.+\frac{\theta_{E_{8}(1)}\left(\frac{\tau}{2}\right)}{\eta^{8}(\tau) \eta^{8}\left(\frac{\tau}{2}\right)} \mathcal{Z}_{6,6}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{-2 \pi i / 3} \frac{\theta_{E_{8}(1)}\left(\frac{\tau+1}{2}\right)}{\eta^{8}(\tau) \eta^{8}\left(\frac{\tau+1}{2}\right)} \mathcal{Z}_{6,6}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
\end{aligned}
$$

with Narain lattice (shifted in twisted sector $h=1) \Lambda_{6,6}^{[h]}=\left(\Lambda_{6,6}+\frac{h}{2} \delta\right)$ and

$$
\mathcal{Z}_{6,6}\left[\begin{array}{l}
h \\
g
\end{array}\right]=\sum_{Q \in \Lambda_{6,6}^{[h]}}(-1)^{g \delta \cdot Q} e^{i \pi Q_{L} \tau Q_{L}-i \pi Q_{R} \bar{\tau} Q_{R}}
$$

How to read off the index: In unorbifolded model would only have term

$$
B_{4}^{\mathrm{unorb}}(q, \bar{q})=\frac{1}{\tau_{2}} \times \mathcal{Z}_{6,6}\left[\begin{array}{l}
0 \\
0
\end{array}\right](q, \bar{q}) \theta_{E_{8}(1)}^{2}(\tau) \times \frac{3}{2} \frac{1}{\eta^{24}(\tau)}
$$

For DH state with charge $(Q, 0)$ and $Q \in \Lambda_{6,6} \oplus E_{8}^{\oplus 2}$ read off

$$
d_{h}(Q, 0) \equiv \Omega_{4}(Q, 0)=\frac{3}{2} p_{24}(N), \quad N-1=\frac{Q^{2}}{2}
$$

Apply to \mathbb{Z}_{2} : In \mathbb{Z}_{2} model consider $P_{1} \pm P_{2}=2 P_{ \pm} \pm \mathcal{P}$ for root lattice vectors $P_{1}, P_{2}, P_{+}, P_{-} \in E_{8}$ and $\mathcal{P} \in E_{8} /\left(2 E_{8}\right) \cong E_{8}(2)^{*} / E_{8}(2) \cong \mathbb{Z}_{2}^{8}$. Only $P_{1}+P_{2}$ physical electric charge, want to seperate this as above.

Rewrite theta function for $E_{8}^{\oplus 2}$ as

$$
\theta_{E_{8}(1)}^{2}=\theta_{E_{8}(2), 1}^{2}+120 \theta_{E_{8}(2), 248}^{2}+135 \theta_{E_{8}(2), 3875}^{2} .
$$

with $E_{8}(2)$ theta functions with characteristics \mathcal{P} (dep. only on orbit $[\mathcal{P}]$ under Weyl group)

$$
\theta_{E_{8}(2), \mathcal{P}}(\tau):=\sum_{\Delta \in E_{8}(1)} \exp \left[2 \pi i \tau\left(\Delta-\frac{1}{2} \mathcal{P}\right)^{2}\right]
$$

From the untwisted sector $B_{4}^{\text {untw }}$ of $B_{4}=B_{4}^{\text {untw }}+B_{4}^{\text {tw }}$ get

$$
\begin{aligned}
B_{4}^{\text {untw }}(q, \bar{q})= & \frac{3}{2 \tau_{2}} \times \sum_{\epsilon \in\{+1,-1\}} \frac{\mathcal{Z}_{6,6}\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\epsilon \mathcal{Z}_{6,6}\left[\begin{array}{l}
0 \\
1
\end{array}\right]}{2}\left[\theta_{E_{8}(2)} \times \frac{1}{2}\left(\frac{\theta_{E_{8}(2)}}{\eta^{24}}+\epsilon \frac{1}{\eta^{8}(\tau) \eta^{8}(2 \tau)}\right)\right. \\
& \left.+120 \theta_{E_{8}(2), 248} \times\left(\frac{\theta_{E_{8}(2), 248}}{2 \eta^{24}}\right)+135 \theta_{E_{8}(2), 3875} \times\left(\frac{\theta_{E_{8}(2), 3875}}{2 \eta^{24}}\right)\right] .
\end{aligned}
$$

Here (...) takes the role $1 / \Delta$ plays in unorbifolded case, specific to the charge
subsector of untwisted charges $\Lambda_{e}^{U}=U \oplus U^{\oplus 5} \oplus E_{8}\left(-\frac{1}{2}\right)^{10}$.
The sign $\epsilon= \pm 1$ corresponds to momentum along S_{CHL}^{1} being even (+) or odd (-) - this parity is conserved under \mathcal{T}.

Consider untwisted sector $Q \in U \oplus U^{\oplus 5} \oplus E_{8}(-2)$, i.e. with $\mathcal{P}=0$, where the CHL momentum takes arbitrary values. Summing over $\epsilon= \pm 1$ gives a partition function for half-BPS states for with such $(Q, 0)$:

$$
\frac{1}{\tau_{2}} \times \mathcal{Z}_{6,6}\left[\begin{array}{l}
0 \\
0
\end{array}\right](q, \bar{q}) \theta_{E_{8}(2), 1} \times \frac{3}{2} \frac{\theta_{E_{8}(2), 1}}{2 \eta^{24}(\tau)} \quad \longrightarrow \quad \phi_{e}^{-1}(\sigma)=\frac{E_{4}(2 \sigma)}{2 \Delta(\sigma)}
$$

This is the precisely the modular form on the diagonal divisor $z=0$ as seen in the DT partition function Z^{B}.

[^7]
1/4-BPS partition function from heterotic genus-two amplitude

Dabholkar Gaiotto (2007) suggested to look at the chiral (bosonic) genus-two partition function of the heterotic \mathbb{Z}_{2} orbifold in order to identify the quarter-BPS partition function discovered by Sen et al. Their motivation was that a $1 / 4$-BPS dyon can be represented as a string web on a torus, which in M-theory becomes a genus-two Riemann surface. In fact (Dabholkar, Gaiotto, Nampuri (2007)) the genus of this surface satifies $g=I+1=2$ and the derivation only captures $I=1$ dyons.

We follow this ansatz to identify $1 / 4$-BPS PFs for charges with untwisted sector electric charge Q, complementary to Dabholkar Gaiotto (2007). This should especially yield the DT partition function Z^{B} proposed by Bryan Oberdieck 2018.

Start: sum over orbifold blocks (at Narain moduli locus admitting factoriz'n):

$$
\mathcal{Z}(\Omega)=\frac{1}{2^{2}} \sum_{\substack{h_{1}, h_{2} \in\{0,1\} \\
g_{1}, g_{2} \in\{0,1\}}} \mathcal{Z}\left[\begin{array}{ll}
h_{1} & h_{2} \\
g_{1} & g_{2}
\end{array}\right]=\frac{1}{2^{2}} \sum_{\substack{h_{1}, h_{2} \in\{0,1\} \\
g_{1}, g_{2} \in\{0,1\}}} \mathcal{Z}_{8}\left[\begin{array}{ll}
h_{1} & h_{2} \\
g_{1} & g_{2}
\end{array}\right] \mathcal{Z}_{6,6}\left[\begin{array}{ll}
h_{1} & h_{2} \\
g_{1} & g_{2}
\end{array}\right]
$$

The $\mathcal{Z}_{6,6}\left[\begin{array}{ll}h_{1} & h_{2} \\ g_{1} & g_{2}\end{array}\right]$ are Siegel-Narain theta functions for T^{6} :

$$
\begin{aligned}
\Lambda_{6,6}^{\left[h_{1}, h_{2}\right]} & =\left(\Lambda_{6,6}+\frac{h_{1}}{2} \delta\right) \oplus\left(\Lambda_{6,6}+\frac{h_{2}}{2} \delta\right) \\
\mathcal{Z}_{6,6}\left[\begin{array}{ll}
h_{1} & h_{2} \\
g_{1} & g_{2}
\end{array}\right] & =\sum_{\left(Q_{1}, Q_{2}\right) \in \Lambda_{6,6}^{\left[h_{1}, h_{2}\right]}}(-1)^{\delta \cdot\left(g_{1} Q_{1}+g_{2} Q_{2}\right)} e^{i \pi Q_{L}^{r} \Omega_{r s} Q_{L}^{s}-i \pi Q_{R}^{r} \bar{\Omega}_{r s} Q_{R}^{s}}
\end{aligned}
$$

Identify the period matrix Ω with chem. potentials conjugate to quadratic charge invariants:

$$
\Omega \stackrel{!}{=} Z \quad\left(=\left(\begin{array}{cc}
\tau & z \\
z & \sigma
\end{array}\right)\right) \quad \leftrightarrow \quad\left(\begin{array}{cc}
P^{2} / 2 & Q \cdot P \\
Q \cdot P & Q^{2} / 2
\end{array}\right)
$$

As in the genus-one (half-BPS) case, need to identify contributions in \mathcal{Z} that arise from appropriate charges in the lattice sums.

First look at "toroidal" charge components as in $\mathcal{Z}_{6,6}$. Will identify dyon charge $\left.(Q, P)\right|_{\text {toroid. }} \leftrightarrow\left(Q_{2}, Q_{1}\right)$ therein.

- Recall $\Lambda_{m}=U(2) \oplus U^{5} \oplus E_{8}(2)$. If Q_{1} should be magnetic, need to look at blocks with $h_{1}=0$ (no shifted U-lattice). Also: summing $g_{1}=0,1$ projects to charges Q_{1} with $(-1)^{g \cdot Q_{1}}=1$, i.e. along a sublattice $U(2) \subset U$.
- Similarly: Want untwisted electric charges Q_{2} in $\mathcal{Z}_{6,6}$, i.e. look at $h_{2}=0$.

Next will look at E_{8} charge component. Use observation: Without a \mathbb{Z}_{2}-shift along S_{CHL}^{1} (just the \mathbb{Z}_{2} action on the E_{8} 's) one would obtain an equivalent theory, hence:

$$
\mathcal{Z}_{8}\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\frac{\left[\Theta_{E_{8}}^{(2)}(\Omega)\right]^{2}}{\chi_{10}}=\sum_{\substack{h_{1}, h_{2} \in\{0,1\} \\
g_{1}, g_{2} \in\{0,1\}}}^{\prime} \mathcal{Z}_{8}\left[\begin{array}{ll}
h_{1} & h_{2} \\
g_{1} & g_{2}
\end{array}\right] .
$$

Hence the full orbifold sum becomes

$$
\mathcal{Z}(\Omega)=\frac{1}{2^{2}} \sum_{\substack{h_{1}, h_{2} \in\{0,1\} \\
g_{1}, g_{2} \in\{0,1\}}}^{\prime} \mathcal{Z}_{8}\left[\begin{array}{ll}
h_{1} & h_{2} \\
g_{1} & g_{2}
\end{array}\right]\left(\mathcal{Z}_{6,6}\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]+\mathcal{Z}_{6,6}\left[\begin{array}{ll}
h_{1} & h_{2} \\
g_{1} & g_{2}
\end{array}\right]\right)
$$

and from the above $\mathcal{Z}_{6,6}$ consideration focus on

$$
\frac{1}{2^{2}} \sum_{g_{1}, g_{2} \in\{0,1\}}^{\prime} \mathcal{Z}_{8}\left[\begin{array}{cc}
0 & 0 \\
g_{1} & g_{2}
\end{array}\right]\left(\mathcal{Z}_{6,6}\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]+\mathcal{Z}_{6,6}\left[\begin{array}{cc}
0 & 0 \\
g_{1} & g_{2}
\end{array}\right]\right)
$$

Dabholkar Gaiotto (2007) used results of Dijkgraaf Verlinde ${ }^{2}$ (1988) to compute the block ${ }^{11}$

$$
\mathcal{Z}_{8}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left(\left(\begin{array}{cc}
\tau & z \\
z & \sigma
\end{array}\right)\right)=\frac{\Theta_{E_{8}}^{(2)}(2 \tau, 2 z, 2 \sigma)}{\Phi_{6,0}}+\frac{\Theta_{E_{8}}^{(2)}\left(2 \tau, z, \frac{\sigma}{2}\right)}{16 \Phi_{6,3}}+\frac{\Theta_{E_{8}}^{(2)}\left(2 \tau, z, \frac{\sigma+1}{2}\right)}{16 \Phi_{6,4}}
$$

[^8]where $\Phi_{6,0}$ is a weight $6 \Gamma_{0}^{(2)}(2)$ SMF and $\Phi_{6, i}$ are modular images of it under the index 3 subgroup of group $\Gamma_{0}^{(2)}(2)$ that keeps the characteristic $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \bmod$ 2. Can write them as

$$
\Phi_{6,0}=\frac{Y_{0}}{\chi_{10}}, \quad \Phi_{6,3}=\frac{Y_{3}}{\chi_{10}}, \quad \Phi_{6,4}=\frac{Y_{4}}{\chi_{10}}
$$

Recall from DH analysis that in the untwisted sector the charge components along the electric $E_{8}\left(\frac{1}{2}\right) \subset \Lambda_{e}$ came in three classes $P_{+}=2 \Sigma+\mathcal{P}$, where $\mathcal{P} \in E_{8} /\left(2 E_{8}\right)$ falls into one of three orbits $\mathcal{O}_{1}, \mathcal{O}_{248}, \mathcal{O}_{3875}$ under $\operatorname{Weyl}\left(E_{8}\right)$. Define for these \mathcal{O}_{x}

$$
\Theta_{x}:=\sum_{\mathcal{P} \in \mathcal{O}_{x}} \sum_{\substack{\left(Q_{1}, Q_{2}\right) \in \\ E_{8}(2) \oplus\left[E_{8}(2)+\mathcal{P}\right]}} e^{i \pi Q^{r} \Omega_{r s} Q^{s}}
$$

Re-express the E_{8} Siegel theta functions in numerator of $\mathcal{Z}_{8}\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$:

$$
\begin{gathered}
\Theta_{E_{8}}^{(2)}(2 \tau, 2 z, 2 \sigma)=\sum_{\substack{\left(Q_{1}, Q_{2}\right) \in \\
E_{8}(2) \oplus E_{8}(2)}} e^{i \pi Q^{r} \Omega_{r s} Q^{s}}=\Theta_{1} \\
\Theta_{E_{8}}^{(2)}\left(2 \tau, 2 z, \frac{\sigma}{2}\right)=2^{-4} \sum_{\substack{\left(Q_{1}, Q_{2}\right) \in \\
E_{8}(2) \oplus E_{8}\left(\frac{1}{2}\right)}} e^{i \pi Q^{r} \Omega_{r s} Q^{s}}=\Theta_{1}+\Theta_{248}+\Theta_{3875} \\
\Theta_{E_{8}}^{(2)}\left(2 \tau, 2 z, \frac{\sigma+1}{2}\right)=2^{-4} \sum_{\substack{\left(Q_{1}, Q_{2}\right) \in \\
E_{8}(2) \oplus E_{8}\left(\frac{1}{2}\right)}}(-1)^{Q_{2}^{2}} e^{i \pi Q^{r} \Omega_{r s} Q^{s}}=\Theta_{1}-\Theta_{248}+\Theta_{3875}
\end{gathered}
$$

We are eventually interested in electric charges $Q=Q_{2}$ with components in $E_{8}(2) \subset E_{8}\left(\frac{1}{2}\right)$, i.e. $\mathcal{O}_{1} \leftrightarrow \Theta_{1}$.

$$
\begin{aligned}
& \frac{1}{2^{2}}\left(\mathcal{Z}_{6,6}\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]+\mathcal{Z}_{6,6}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right) \mathcal{Z}_{8}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \quad \leftarrow \text { Correct terms to look at. } \\
& =\frac{1}{2} \sum_{\substack{Q_{1} \in U(2) \oplus U^{\oplus 5} \\
Q_{2} \in U^{\oplus 6}}} e_{Q_{1}, Q_{2}}(\Omega) \mathcal{Z}_{8}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right](\Omega) \\
& \leftarrow\left(e_{Q_{1}, Q_{2}}(\Omega):=\exp [\ldots]\right) \\
& =\sum_{\substack{Q_{1} \in U(2) \oplus U^{\oplus 5} \\
Q_{2} \in U}} e_{Q_{1}, Q_{2}}(\Omega)\left(\Theta_{1} \frac{Y_{0}+\frac{1}{16} Y_{3}+\frac{1}{16} Y_{4}}{2 \chi_{10}}+\Theta_{248} \frac{\frac{1}{16} Y_{3}+\frac{1}{16} Y_{4}}{2 \chi_{10}}+\Theta_{3875} \frac{\frac{1}{16} Y_{3}-\frac{1}{16} Y_{4}}{2 \chi_{10}}\right) \\
& =\sum_{x \in\{1,248,3875\}}\left[\left(\sum_{\substack{ \\
Q_{1} \in U(2) \oplus U^{\oplus 5} \oplus E_{8}(2) \\
Q_{2} \in U^{\oplus \oplus} \oplus\left[E_{8}(2)+\mathcal{O}_{x}\right]}} e_{Q_{1}, Q_{2}}(\Omega)\right) \times \mathrm{Z}_{(x)}^{\text {untw. }}\right]
\end{aligned}
$$

For the trivial shift orbit $\mathcal{O}_{1}=\{0\}$:
\checkmark : Summation $P \leftrightarrow Q_{1}$ over $U(2) \oplus U^{\oplus 5} \oplus E_{8}(2)=\Lambda_{m}$
\checkmark : Summation $Q \leftrightarrow Q_{2}$ over $U \quad \oplus U^{\oplus 5} \oplus E_{8}(2) \subset \Lambda_{e}$

$$
\Rightarrow \quad Z_{(1)}^{\text {untw. }}=\frac{Y_{0}+\frac{1}{16} Y_{3}+\frac{1}{16} Y_{4}}{2 \chi_{10}}
$$

should be the partition function of quarter-BPS dyons with indicated charge (Q, P).

Matching DT: $Z_{(1)}^{\text {untw. }}$ expected to match to new DT result:

$$
\mathrm{Z}^{B}(Z)=\frac{-8 F_{4}(Z)+8 G_{4}(Z)-\frac{7}{30} E_{4}^{(2)}(2 Z)}{\chi_{10}}
$$

Rewrite numerators as polyonomials in terms of genus-two theta constants, use relation $\theta_{0100}^{2} \theta_{0110}^{2}=\theta_{0000}^{2} \theta_{0010}^{2}-\theta_{0001}^{2} \theta_{0011}^{2} . \Rightarrow$ perfect match! \checkmark

Note: As a byproduct, have obtained two more $1 / 4-B P S$ partition functions for unit-torsion dyons with untwisted sector electric charge Q (shifts by $\mathcal{O}_{248,3875}$).

Modular and polar constraints

Have also checked for $Z_{(1)}^{\text {untw. }}$ constraints from $\Gamma_{1}(2) \mathcal{S}$-duality, translation symmetries and wall-crossing. All checks passed! \checkmark

In fact, this analysis gives very stringent constraints:

- The weight of $Z_{(1)}^{\mathrm{untw} .}$ must be $-k=-6$
- $Z_{(1)}^{\text {untw. }}$ should exhibit quadratic poles at all images of $z=0$ under the group generated by integer translations and embedded $\mathcal{S}=\Gamma_{1}(2) \hookrightarrow \operatorname{Sp}_{4}(\mathbb{Z})$ symmetries.
- The coefficient of such a pole must be given by known half-BPS counting modular forms (inspect decay products at each pole)
- The (expected) Siegel symmetries of $Z_{(1)}^{\text {untw. }}$ satisfy a common congruence relation

$$
\left(\begin{array}{cccc}
2 \mathbb{Z}+1 & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
2 \mathbb{Z} & 2 \mathbb{Z}+1 & \mathbb{Z} & \mathbb{Z} \\
2 \mathbb{Z} & 2 \mathbb{Z} & 2 \mathbb{Z}+1 & 2 \mathbb{Z} \\
2 \mathbb{Z} & 2 \mathbb{Z} & \mathbb{Z} & 2 \mathbb{Z}+1
\end{array}\right) \cap \operatorname{Sp}_{4}(\mathbb{Z})=\left(\begin{array}{cccc}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
2 \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
2 \mathbb{Z} & 2 \mathbb{Z} & \mathbb{Z} & 2 \mathbb{Z} \\
2 \mathbb{Z} & 2 \mathbb{Z} & \mathbb{Z} & \mathbb{Z}
\end{array}\right) \cap \operatorname{Sp}_{4}(\mathbb{Z})
$$

The RHS is precisely the Iwahori subgroup $B(2)$!

Remarkable: Even we did not yet have a closed formula for $\mathrm{Z}_{(1)}^{\text {untw. }}$, the (simplest) ansatz $M_{4}(Z) / \chi_{10}$ with M_{4} a weight 4 SMF for $B(2)$ would lead to the correct result, as the (even weight SMF) ring generators are known [lbukiyama (1999)] and we only need to fix a finite number of coefficients.

Constraints from black hole entropy

Following DVV 1996, Cardoso de Wit Kappeli Mohaupt 2004, Sen 2005 for large $\left(Q^{2}, P^{2}, Q \cdot P\right)$ the log of the microscopic $1 / 4$-BPS index should match the macroscopic entropy of an extremal black hole carrying the charge (Q, P) as computed in the supergravity approximation.

Bekenstein-Hawking area term + leading correction in inverse powers of charges:

$$
S_{B H}=\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}}+64 \pi^{2} \phi\left(\frac{Q \cdot P}{P^{2}}, \frac{\sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}}}{P^{2}}\right)+\cdots .
$$

Correction worked out from the entropy function including Gauss-Bonnet term in effective sugra action (Gregori Kiritsis Kounnas Obers Petropoulos Pioline 1997, Sen 2005)

$$
\int \mathrm{d}^{4} x \sqrt{-\operatorname{det} g} \phi(a, S)\left(R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}\right)
$$

where $\tau=a+i S$ axio-dilaton. Function ϕ for $\mathbb{Z}_{2} \mathrm{CHL}$ model:

$$
\begin{aligned}
\phi(a, S) & =-\frac{1}{64 \pi^{2}}[8 \log S+\log g(a+i S)+\log g(-a+i S)]+\text { const. } \\
g(\tau) & :=\eta^{8}(\tau) \eta^{8}(2 \tau)
\end{aligned}
$$

Following the analysis of previously known 1/4-BPS PF in CHL models, estimate asymptotic growth of Fourier coeff. by saddle-point approximation in (τ, σ) after picking up the dominant pole in the z-plane. This is the divisor $z^{\prime}:=\tau \sigma-z^{2}+z=0$, where $Z_{(1)}^{\text {untw. }}$ behaves as

$$
\mathrm{Z}_{(1)}^{\mathrm{untw}} \propto \frac{1}{\left(2 z^{\prime}-\tau^{\prime}-\sigma^{\prime}\right)^{6}}\left(\frac{1}{z^{\prime 2}} \frac{1}{g\left(\tau^{\prime}\right)} \frac{1}{g\left(\sigma^{\prime}\right)}+\mathcal{O}\left(z^{\prime 4}\right)\right)
$$

Same coefficients as for known (twisted sector) partition function! From here on rely on results given in literature.
\Rightarrow Leading and subleading terms in entropy $S_{B H}$ also reproduced microscopically from untwisted sector partition functionZ $Z_{(1)}^{\text {untw. }!~} \checkmark$

Conclusions, outlook and questions

\checkmark Physical interpretation of DT invariants on CHL threefold $\left(K 3 \times T^{2}\right) / \mathbb{Z}_{2}$ as quarter-BPS index.
Re-derived conjectural DT formula of [Bryan Oberdieck (2018)] using $\mathcal{N}=4$ string duality from a heterotic genus two partition function.
\checkmark Checked physical constraints from charge quantization, S-duality and wallcrossing. Physical explanation for the congruence subgroup $B(2)$.
\checkmark Checked constraints on asymptotic growth of index by comparing to macroscopic BH entropy.
? Generalize to orbifolds by other symplectomorphism groups G on $K 3$?
? ...

[^0]: ${ }^{3}$ with hyperbolic lattice U and diagonal $E_{8}(-2) \subset E_{8}(-1)^{\oplus 2}$

[^1]: ${ }^{4}$ Dabholkar, Gaiotto, Nampuri 2007

[^2]: ${ }^{5}$ Banerjee Sen 2007-2008

[^3]: ${ }^{6}$ Third component of angular momentum in rest frame of massive state.

[^4]: ${ }^{7}$ Dijkgraaf Verlinde Verlinde 1996

[^5]: ${ }^{8}$ Cheng Verlinde, Sen 2007

[^6]: ${ }^{9}$ Denef Moore,

[^7]: ${ }^{10}$ (recall $h=0$: Narain lattice not shifted by $\delta / 2$)

[^8]: ${ }^{11}$ Their roles of (τ, σ) are swapped w.r.t. the ones here, formally $\mathcal{Z}_{8}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ here.

