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Introduction:

The purpose of this talk is to keep a Geometry—PhyS|cs dictionary alive that
started with the seminal work of

Alg)=q ] —qgm*
n=1
By work of , A(q)™! was already known to arise as the generating

series of the Euler characteristics of Hilbert schemes of points of K3 surfaces S,

TN o S
Zx(HHb (S))q = A

n>0

An argument by provided a geometric link between curve
counting in primitive classes and the Euler characteristics of Hilb™(.S). The Yau
Zaslow conjecture for non primitive classes was finally proven in



The next step was to refine this result to the x, genus of Hilb™(.S) proposed in

T n—1 __ 1
Z Xy(H'Ib (S))q - a1, (1 — yg™)2(1 — ¢M)20(1 — y~—1g7)2

and finally to the Hodge of Hilb™(S)

Z XHodge(H”bn(S))qn_l —
n>0 |

gl — (1 —uty=1g")(1 —utyg®)(1 — ¢)?°(1 — uy=1q")(1 — uyq™)

An important step in this dictionary was the proof of the matching of the
generating series of the Donaldson Thomas invariants on X = K3 x E with the



inverse of the lgusa Cusp form 19

q7 t,p) Y Y Y DT (Bh,d)qd 1t%<5h75h><_p)n

h=0d=1n€&cZ

lgusa cusp form conjecture’

Z*(q,t,p) = ——
X10

was recently proven?

The main motivation to keep this dictionary alive is that the mathematician work
with techniques that are to large extend independent of the amount of
supersymmetry which can eventually provide us a guide to the more interesting
N = 2 cases.
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The main aim of this paper is to extend this dictionary to the CHL threefold
(K3 x T?)/Zy as orbifold by (g, 9)

e g: order N automorphism of K3 preserving holomorphic (2,0)-form,
non-trivial action on middle cohom. H?(K3,7Z) 2 U%® @ Eg(—1)%?

e J: order N translation in elliptic curve T2

We focus on N = 2 and g induces an exchange of Fg(—1)'s

Invariant piece: H?*(K3,7Z)9 2 U% & Fg(—2) °

3with hyperbolic lattice U and diagonal Eg(—2) C Eg(—l)@Q



o conjecture two primitive DT partition functions (PF) for

X = (K3 x T?)/Zs in terms of weight -6 Siegel modular forms (SMF) for level
2 congruence subgroups of Sp,(Z).

DT-invariant DTf’(%d) depends on whether curve class v € %HQ(KS,Z) IS
contained in original homology H5(K3,Z) or not (case B/A resp.):

A: weight -6 SMF Z4(Z2) = —= 1Z) ~ Borcherds lift of K3 twining genera.
2
Matches SMF found by as PF of quarter-BPS indices (a.k.a.
sixth helicity supertraces) in N/ = 4 Zo-CHL model.

B: weight -6 SMF Z? with no prior appearance in physics:

75(7) —8Fy(Z) 4+ 8G4(Z) — LB (22)
X10

Here: G4(Z), ES?)(22) weight 4 SMF for T\%)(2), while Fy(Z) weight 4 SMF for the paramodular group
K (2) C Spy(Q) of degree 2. Thus, numerator is a SMF for the intersection B(2) = K(2) N F(()2)(2), the level

2 Iwahori subgroup.



e Important clue for physics: Near diagonal divisor (7 2) SMF ZZ exhibits
quadratic pole

1 Ex(20) 1
z? 2A(0) n*(T)n®(27)

2°((23)) o +0(2") .

— Admits wall-crossing interpretation:

Decay of 1/4-BPS states of charge (@, P) (that are counted by the SMF) into
two 1/2-BPS states of charge (Q,0) and (0, P) (counted by resp. modular
forms in o and 7).

— n~8(7)n~8(27) is the same as for Z4, i.e. for Sen's SMF.
— F4(20)/(2A(0)) different
— Suggestion: 1/4-BPS states with same magnetic P, but different electric )

Compatible with known limitation of Sen's result:

Electric () of respective dyons belong to twisted orbifold sector in heterotic
frame, i.e. 1/2-BPS states of charge (Q,0) have half-integral winding on S¢,,, .



Four-dim. N = 4 models and BPS-index
Recall duality: HA[K3 x T?] <> Het[T"].

Moduli space of 4D N = 4 theory:

0(22,6;Z)\0(22,6)/(0(6) x O(22))] x [SL2(Z)\SL2(R)/U(1)]

e 1st factor: Heterotic Narain moduli space
Quotient by 7-duality group (automorph. O(A22 ) = O(22,6;7Z) of N. lattice)

e 2nd factor: Heterotic axio-dilation modulus
Quotient by S-duality group SLo(7Z)

Narain lattice vs. IIA charges:

Ao = ApasP Ao = HY(K3,Z)® (momentum-winding on T2)



Heterotic Zo CHL model as asymmetric orbifold:
e g acts only on left-moving bosonic string by swapping Ejg's
e § acts by Zs-shift on St C T

Moduli of CHL orbifold as invariant moduli of parent theory:

AT\ ([0(14,6>/<o<14> < O(6))] [SL2<R>/U<1>J)

for some discrete U-duality group in four dimensions G4(Z) D T x S
with 7 acting (only) on 1st factor
and § = I'1(2) acting on 2nd factor (Mobius transformation on het. axio-dilaton)

|.e. we only consider 7- and S-transformations here.



Charges. Gauge group U(1)" of rank r at generic moduli (smooth K3).

e Electric charges () quantized in rank r lattice A,

e Magnetic charges P quantized in dual lattice A, ~ A}

In non-orbifold case: rank r =28 and A, = Ags ¢ = A, unimodular (self-dual).
In Z- orbifoldcase: rank r = 20 and lattices are

A= Es(-1) 0US U (Y

Ap=Es(=2) U U (2)
Note Eg(—2) ® U®* = H*(K3,7Z)9 invariant piece in A,,.

Now A, are 2-modular, i.e. A%, = A,,(3) or A% (2) = Ay, not self-dual
(can think: rescale quadratic form by 2 or vectors by 1/2).



Duality action. 7 x & act on charges (Q, P) in A, ® A,

()=o) ()9 )

In Zo case one expects T-duality

O(A) D T D Cos) = {h € O(Asa) | h(6) = 6, hg = gh}

Non-trivial problem: characterize (@, P) orbits by (complete) set of invariants, e.g.
i) Quadratic T -invariants: T(Q,P):=(Q*, P?,Q-P)

ii) Discrete “Torsion invariant”*: I(Q, P) :=gcd(Q A P) € Z
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Proven® for non-orbifold theory where A.,,, = A2g 6
(T, I) uniquely characterizes charge orbit under 7 x & = O(22,6;Z) x SLo(Z).

Does not hold for Zy case. Can define further invariants, e.g.

i) R(Q,P):=[Q] € Ae/A; =75

12



13

BPS-indices. Will be interested in dyonic states of charge (@, P) that are
1/2-BPS (need @ || P) or 1/4-BPS (need Q k P)

They contribute to the nth helicity supertrace (BPS-index)

2,(Q, P;-) = %TT(Q,P) [(=1)"(2h)"]

with F' fermion parity and h spacetime helicity® for n > 4 and n > 6 respectively.

The dot denotes potential moduli dependence: for n = 4 none but for n > 6 g is
only piecewise continuous, i.e. have wall-crossing.

BPS-index expected to be duality invariant, i.e., a function of charge orbits. Can
consider Q C A, @ A,,, consisting of complete orbits, characterized by invariants
(T, I, R) — once (I, R) are fixed, the index becomes a function of the quadratic
invariants T (and moduli chamber) only:

Third component of angular momentum in rest frame of massive state.



For instance Q set of unit-torsion dyons (I = 1) in Het[T®] (R trivial), write

Q6(Q7P7) — fQ(QzapzaQ P7>
Form partition function

Q°

ZQ(T7Z,O') _ Z (_1)Q.P+1fQ(Q2,P2,Q . P; ) 27rz<a 5 —l—T —|—zQ P)

Q27P27Q°P

1
CIDQ(T z,0)"

Also write as Zg(T,2,0) = In the example above have DVV-result’

1
Lo(T,2,0) = —, X10 : weight 10 Igusa cusp form of Sp,(Z)
X10
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15
BPS-index now obtained as Fourier coefficient via contour integral:

2 2
—271 (0%4—7‘%4—7; Q-P)
€

folQ% P2 Q- Py = CUTTT f drAdond
) ) ) = T o <
° (CI1QQCI3)_1 C (I)Q(Tv g, Z)

Contour C ~ T: deformations pick up residues from quadratic zeroes of o (e.g.
z = 0). Choose moduli dependence® in &(C) s.t. poles are picked up precisely
when decay to two 1/2-BPS states possible, e.g. at 2 =0

(@, P) — (Q,0) +(0,P)
or generic decay parametrized in the form (with agdy — bocg = 1)

(Q, P) = (apdoQ — aobo P, codpQ — coboP) + (—bocoQ + apbo P, —codoQ + aodoP)

8




Such a decay demands 2nd order pole in @él at
2" = codo T + agbg o + (agdy + bocg) z = 0
and the change in the index matches the (primitive/I = 1) wall-crossing formula®
(—1)Q P+ Q' P dp(aoQ’, co®Q') dn(boP', doP")

with half-BPS indices dj, ~ €4 of decay products (ag@’, coQ’), (boP’, doP’).

Think of the d}, as Fourier coeff. of genus-1 modular forms ¢.(c”; ag, co)—1 and
G (7’5 b, do) ~1 that appear near quadratic divisor 2’ = 0:

o' (7,0,2) o ((pe(0s a0, c0) ! du(7sb0,do) " 2 TE 4+ O("))

alzzch—l—aga—l—ZaOcoz T/Z:dgT-I-b(Q)O'—I—QdeoZ
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Their SLy(Z) symmetries (might) lift to symmetries of ®o(7,2,0), e.g. for
Om (75 bo, dg) can expect

—1

do bo 0 0 85] 0 51 0 Clo bo 0 0
co ag O 0 0O 1 0 O co ag O 0
0 0 agp —Cp Y1 0 51 0 0 0 agp —Cp (*)
0 0 —=by do 0O 0 0 1 0 0 —=by do

These acton Z = (2 %) as Z — (AZ + B)(CZ + D)~ ! when written in usual
block form. Can argue: ¢/, weight £+ 2 mod. form = &g weight £ SMF.

Constraints from S-duality: For (¢ %) € S C SLy(Z) index should satisfy
Q(Q, P;-) = Qs(aQ) + bP,cQ + dP;-"). Implies ®o(Z) = ®o(Z') where Z' is
obtained by acting with the 4x4-matrix on the right of (x) (with a, b, ¢, d taking
role of ap, b(), Co, do)

Constraint from charge quantization: Shift symmetry ®5(7) = ®o(Z + B)

for B subject to the values T' = (Q?%, P%,Q - P) takes on Q. Consider as 4x4

matrix ((1)3 g) acting on Z.



Conclusion so far: Assemble quarter-BPS indices for charge orbits O C Ay,
into partition function ®o(Z)~!. Extraction as Fourier coeff. via contour integral.

e Quantization laws of T' = (Q?, P?,Q - P): Shift symmetries (> {’) € Sp4(Z)
e S-duality invariance: SLy(Z) D S — Spy(Z)

e Wall-crossing:

— Quadratic divisors for allowed decays ‘C”O) Zg .

— Embedded modular symmetries C SLo(Z) x SLy(Z) < Spy(Z) of half-BPS
counting functions for decay products.

= ®o must be weight £ SMF for group that embedds the above symmetries and
has the right divisors. Strategy to explain new DT formula Z5:

|dentify the charges Q C A.,, whose 1/4-BPS PF Zg gives rise to former. Check
the above constraints. For this need to understand 1/2-BPS counting functions.
Also crucial for a physics derivation of Zg via chiral genus-two partition function.
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Dabholkar-Harvey 1/2-BPS states in the Zs model

Purely electric (@, 0) half-BPS states can be realized as DH states in the
perturbative heterotic string. Keep right-movers in ground state, allow arbitrary
left-movers (bosonic). Charge Q from momentum-winding in Narain lattice (Z

invariant part).

Half-BPS indices €24 via heterotic one-loop (orbifold) partition function with extra
fugacities for left- and right- helicities. Take appropriate derivatives; then set
chem. pot. to zero. Result of ;

3 1[0% (1)( T) Org(1)(27)
B i Zs.6[0 - 0
10D =5, 3| ity 2ol Sy ool
0 - 0 T+
4 Es(l)(Q) Z6,6[(1)]‘|‘ —27i /3 E8(1)( 3 Z 26,6[“



with Narain lattice (shifted in twisted sector h = 1) AG}% = (Ag,6 + 26) and

26,6[2“] — Z (_1)95'Q etTQRLTRL—ITQRTAR

h
QEA%%

How to read off the index: In unorbifolded model would only have term

1 3 1

unorb -\ — 2
By (¢,q) = 7_2 X Z6,6[0](q;q) 9E8(1)(T) X 577?(7) :

For DH state with charge (Q,0) and Q € Ag ¢ © EL? read off

3 2
B(Q.0) = %(Q.0) = Spu(N).  N-1=%
Apply to Zs: In Zs model consider P, = P, = 2P &+ P for root lattice vectors
Pl,PQ,P_|_,P_ c Eg and P € E8/<2E8) = E8(2>*/E8<2) = Zg Oﬂ'y P1 + P2
physical electric charge, want to seperate this as above.



Rewrite theta function for E$? as
05a(1) = 02y + 120 0% 9y 948 + 135 0%, (2) 3875 -

with FEg(2) theta functions with characteristics P (dep. only on orbit [P] under

Weyl group)
. 1\?
Ok (2),p(T) = Z exp [2#@7‘ (A — 57D>
A€FEg(1)

From the untwisted sector By™"W of By = By™V 4 BV get

3 Zeolo] + €Z6,6[7] 1 <9E (2) 1
Buntvv q, q —_ >< ) ’ 9 >< . 8 + €
g ( ) 27 EE{%;_H 5 Eg(2) 9 n24 n8(7T)n3(27)

Opg(2),248 OEg(2),3875
+ 120 Opg(2),248 X <W> + 135 Opg(2),3875 X < o2 ) -

Here (...) takes the role 1/A plays in unorbifolded case, specific to the charge
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subsector of untwisted charges AY = U ¢ U%° @ Eg(—1) 1°.

The sign € = +1 corresponds to momentum along S¢,,, being even (+) or odd (-)
— this parity is conserved under T .

Consider untwisted sector Q € U @& U®° @ Eg(—2), i.e. with P = 0, where the
CHL momentum takes arbitrary values. Summing over ¢ = +1 gives a partition
function for half-BPS states for with such (@, 0):

1 3 9E8(2),1

—_ 0 7 a ’ _1 ~
= Zaslbl@ D) Onen X 33 iy %0 = 3503

This is the precisely the modular form on the diagonal divisor z = 0 as seen in the
DT partition function Z5.

O(recall h = 0: Narain lattice not shifted by &/2)
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1/4-BPS partition function from heterotic genus-two amplitude

suggested to look at the chiral (bosonic) genus-two
partition function of the heterotic Zs orbifold in order to identify the quarter-BPS
partition function discovered by Sen et al. Their motivation was that a 1/4-BPS
dyon can be represented as a string web on a torus, which in M-theory becomes a
genus-two Riemann surface. In fact ( ) the
genus of this surface satifies g = I + 1 = 2 and the derivation only captures I =1
dyons.

We follow this ansatz to identify 1/4-BPS PFs for charges with untwisted sector
electric charge (), complementary to . This should
especially yield the DT partition function Z? proposed by

Start: sum over orbifold blocks (at Narain moduli locus admitting factoriz'n):
1 1
) =5 Y ZaBl=5 > Zslii] Zsli ]

h1,ho€{0,1} h1,ho€{0,1}
917926{(),1} 91)926{071}



The Zg6| "1 "2] are Siegel-Narain theta functions for T°:

h h
A[6},L615’h2] = (A6,6 T 715) b <A6,6 + ?25)

26,6 [ hi hg ] — Z (_1)5-(91Q1+92Q2) emQEQTSQSL—iWQ%QmQSR

g1 g2
(Q1.Q2)eng "2

|dentify the period matrix €2 with chem. potentials conjugate to quadratic charge
Invariants:

! 2 .
0tz (=(z3) o (T2or)

As in the genus-one (half-BPS) case, need to identify contributions in Z that arise
from appropriate charges in the lattice sums.

First look at “toroidal” charge components as in Z¢ ¢. Will identify dyon charge
(Qap)‘toroid. < (QQ; Ql) therein.
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e Recall A,, = U(2) ® U @ Eg(2). If Q1 should be magnetic, need to look at
blocks with h; = 0 (no shifted U-lattice). Also: summing g; = 0,1 projects to
charges Q1 with (—1)9 91 =1, i.e. along a sublattice U(2) C U.

e Similarly: Want untwisted electric charges (2 in Zg ¢, i.e. look at hy = 0.

Next will look at Eg charge component. Use observation: Without a Zs-shift
along S¢y, (just the Zs action on the Eg's) one would obtain an equivalent
theory, hence:

o)
Zg[88] = = Z Zg| o bz ]
Xlo hl h2€{0 1}

91,92€{0,1}
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Hence the full orbifold sum becomes

/

1
2 =5 >, Zs[ii] (Zeeld8]+ Zes[hl 3])
h1,ho€{0,1}
917926{071}

and from the above Zs ¢ consideration focus on

/

1
o Z Zs[ g gr] (Z6,6100] + 266l 1 a2])
91,92€{0,1}

used results of to compute
the block!!

02 (27,22,20) 02 (2r,2,9) 0P (27,2, %)

UTheir roles of (7, 0) are swapped w.r.t. the ones here, formally Zg [8 (1)] here.

Zs[¥ 0] ((258))
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where ®¢ ( is a weight 6 F(()Q)(Q) SMF and ®¢ ; are modular images of it under the

index 3 subgroup of group F(()2)(2) that keeps the characteristic [{ §] mod 2. Can
write them as

Yo Y3 Yy
Ogogp=—, Pg3=—, Pgya=—
X10 X10 X10

Recall from DH analysis that in the untwisted sector the charge components along
the electric Eg(3) C A came in three classes Py = 2% + P, where P € Eg/(2Es)
falls into one of three orbits 07, 0245, O3875 under Weyl(Eg). Define for these O,

0, = Z Z oI Qs Q°

PeOy (Q1,Q2)€
Eg(2)®[Eg(2)+P]



Re-express the Eg Siegel theta functions in numerator of Zg[{ 3 ]:

@%(27, 2z,20) = S O = 6,
(Ql’Q2)€
Eg(2)®Eg(2)
g — ir Q" QrsQ°
@g;(%', 22z, 5) =27 Z '@ s = O + Ogyg + Osg7s
(Q1,Q2)€
Eg(2)®Eg(3)

o-+1 _ 2 irQTQrsOF
)y =27" Z (—1)P2 @ 99 — @ — Ooug + Ossrs
(Q1,Q2)€
Eg(2)®Eg(3)

@g;(ZT, 2z,

We are eventually interested in electric charges () = ()2 with components in
E5(2) C Es(3), i.e. O1 <> Oy.
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1
5(26,6[88] + Z66[V0]) Zs[90]

1
=5 2
Q1eU(2)aUDd
QocU D0

eQ1.Q5(82) Zs[ 1 91(£2)

< Correct terms to look at.

Q1eU(2)aU®?

= 2 2.

re{1,248,3875} Q1eU(2)aUP @ Eg(2)
| \Q2eU%%a[B5(2)+05)]

For the trivial shift orbit O; = {0}

6@1,622(9)

Yo + Y3 + 1Y,
Z €Q1,Q2(Q) <@1 0 163 16 4_|_@
2 x10

)

X Z(x)

/

1—16Y3 + 1—16Y4

248

untw.

2 X10

v': Summation P < Q1 over U(2) ® U®°> @ Eg(2) = A,
v': Summation Q <> Qa over U & U @ Eg(2) C A,

— (€Qq,0,(R2) := expl...])

()3875

1 1
16Y3 — Y4

2 X10

)
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Yo+ Y3+ Y4

2 X10
should be the partition function of quarter-BPS dyons with indicated charge

(@, P) .

Matching DT: Z‘(‘ng' expected to match to new DT result:

untw. __

75(z) — ~8Fa(2) +8Ga(Z) - TEP (22)
X10

Rewrite numerators as polyonomials in terms of genus-two theta constants, use
- 2 92 _p2  p2 2 p2

Note: As a byproduct, have obtained two more 1/4-BPS partition functions for
unit-torsion dyons with untwisted sector electric charge @) (shifts by Oa4g 3875).
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Modular and polar constraints

Have also checked for Z{}* constraints from I';(2) S-duality, translation

symmetries and wall-crossing. All checks passed! v

In fact, this analysis gives very stringent constraints:

e The weight of Z‘(‘i‘;"v' must be —k = —6

o Z‘(Ji‘gw- should exhibit quadratic poles at all images of z = 0 under the
group generated by integer translations and embedded & = I'1(2) — Sp,(Z)
symmetries.

e The coefficient of such a pole must be given by known half-BPS counting
modular forms (inspect decay products at each pole)
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e The (expected) Siegel symmetries of ZU"™: satisfy a common congruence relation
P g€l Sy (1) y g

2711 7 7 7 7 7 7 7
27, 27 +1 Z 7 |z z z z
27, 07, o7.+1 27 |Pll) =157 97 7 97 |SPa(Z)
27 27 7 9741 07, 27, 7 7

The RHS is precisely the Iwahori subgroup B(2)!

Remarkable: Even we did not yet have a closed formula for ZE’;‘;W', the (simplest)
ansatz M4(Z)/x10 with My a weight 4 SMF for B(2) would lead to the correct
result, as the (even weight SMF) ring generators are known

and we only need to fix a finite number of coefficients.



Constraints from black hole entropy

Following for large
(Q%, P%,Q - P) the log of the microscopic 1/4-BPS index should match the
macroscopic entropy of an extremal black hole carrying the charge (Q, P) as
computed in the supergravity approximation.

Bekenstein-Hawking area term + leading correction in inverse powers of charges:

Q P ¢@2P2—<Q-P>2>
P2’ P2 4+ .-

SBH—W\/QQPZ—(Q-P)Q—FGZlWZ(b(

Correction worked out from the entropy function including Gauss-Bonnet term in
effective sugra action

/d4 r \/—detg ¢(a,S) (RWPGRWP" — 4R, R" + RQ)
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where 7 = a + @S axio-dilaton. Function ¢ for Zy; CHL model:

o(a,S) = Y [8log S 4+ log g(a + iS) + log g(—a + iS)] + const.
iy

g(T) :==n (T)n°(27)

Following the analysis of previously known 1/4-BPS PF in CHL models, estimate
asymptotic growth of Fourier coeff. by saddle-point approximation in (7,0) after
picking up the dominant pole in the z-plane. This is the divisor

2 =710 — 22+ 2z =0, where Z""™- behaves as
(1)
1 1 1 1
Zuntw. O 14
(1) X (22/ — 0/)6 (2/29(7/)9(0’) + (Z ))

Same coefficients as for known (twisted sector) partition function! From here on
rely on results given in literature.

= Leading and subleading terms in entropy Sgg also reproduced microscopically

untw.

from untwisted sector partition functionZ(l) | v



Conclusions, outlook and questions

V' Physical interpretation of DT invariants on CHL threefold (K3 x T?)/Zy as

quarter-BPS index.
Re-derived conjectural DT formula of using N' = 4
string duality from a heterotic genus two partition function.

v' Checked physical constraints from charge quantization, S-duality and wall-
crossing. Physical explanation for the congruence subgroup B(2).

v' Checked constraints on asymptotic growth of index by comparing to macroscopic
BH entropy.

? Generalize to orbifolds by other symplectomorphism groups G on K37
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