BPS indices, Vafa-Witten invariants and quivers

Boris Pioline

SORBONNE UNIVERSITÉ

Workshop on "Black Holes: BPS, BMS and Integrability" Zoom@IST Lisbon, 10/09/2020
based on arXiv:2004.14466 with Guillaume Beaujard and Jan Manschot and earlier work with Sergei Alexandrov and Ashoke Sen

Introduction

- Almost 25 years after Strominger and Vafa's breakthrough, BPS black holes continue to haunt a number of mathematical physicists. The reason is that they lie at the intersection of deep questions in quantum gravity and in mathematics.

Introduction

- Almost 25 years after Strominger and Vafa's breakthrough, BPS black holes continue to haunt a number of mathematical physicists. The reason is that they lie at the intersection of deep questions in quantum gravity and in mathematics.
- While the net number of BPS microstates with fixed charge γ (known as the BPS index $\Omega(\gamma)$) is known exactly in all string backgrounds with $\mathcal{N} \geq 4$ supersymmetry, this is not so in $\mathcal{N}=2$ string vacua, except for very special charges.

Introduction

- Almost 25 years after Strominger and Vafa's breakthrough, BPS black holes continue to haunt a number of mathematical physicists. The reason is that they lie at the intersection of deep questions in quantum gravity and in mathematics.
- While the net number of BPS microstates with fixed charge γ (known as the BPS index $\Omega(\gamma)$) is known exactly in all string backgrounds with $\mathcal{N} \geq 4$ supersymmetry, this is not so in $\mathcal{N}=2$ string vacua, except for very special charges.
- Part of the reason is that $\Omega(\gamma, t)$ depends on the moduli t in a very intricate way, due to wall-crossing phenomena associated to BPS bound states with arbitrary number of constituents. The moduli space itself receives quantum corrections, unlike in $\mathcal{N} \geq 4$.

Introduction

- In particular, one does not expect (except possibly in very special cases) that $\Omega(\gamma, t)$ are Fourier coefficients of a Siegel modular form, as in $\mathcal{N}=4$ string vacua.

Introduction

- In particular, one does not expect (except possibly in very special cases) that $\Omega(\gamma, t)$ are Fourier coefficients of a Siegel modular form, as in $\mathcal{N}=4$ string vacua.
- Instead, for D4-D2-D0 black holes arising from M5 wrapped on a 4-cycle $P \subset X$, one expects that suitable generating functions of $\Omega(\gamma, t)$ will be (mock) modular under $S L(2, \mathbb{Z})$.

Maldacena Strominger Witten 1998; Gaiotto Strominger Yin 2006; Denef Moore 2007;
Manschot 2009; Alexandrov Banerjee Manschot BP 2016-2019

Introduction

- In particular, one does not expect (except possibly in very special cases) that $\Omega(\gamma, t)$ are Fourier coefficients of a Siegel modular form, as in $\mathcal{N}=4$ string vacua.
- Instead, for D4-D2-D0 black holes arising from M5 wrapped on a 4-cycle $P \subset X$, one expects that suitable generating functions of $\Omega(\gamma, t)$ will be (mock) modular under $S L(2, \mathbb{Z})$.

Maldacena Strominger Witten 1998; Gaiotto Strominger Yin 2006; Denef Moore 2007;
Manschot 2009; Alexandrov Banerjee Manschot BP 2016-2019

- On the math side, $\Omega(\gamma, t)$ are generalized Donaldson-Thomas invariants of the Calabi-Yau three-fold X. Morally, the Euler number of the moduli space of stable coherent sheaves on X with Chern character γ. They are subtle to define and hard to compute. The mathematical origin of (mock) modularity is still mysterious.

Introduction

- In this talk, I will consider D4-D2-D0 bound states in type II string compactified on a local (non-compact) Calabi-Yau manifold K_{S}, the total space of the canonical bundle over a complex Fano surface S. D4-D2-D0 branes supported on S are then described by stable coherent sheaves on S (or derived category thereof).

Douglas 2000; Douglas Fiol Romelsberger 2000

Introduction

- In this talk, I will consider D4-D2-D0 bound states in type II string compactified on a local (non-compact) Calabi-Yau manifold K_{S}, the total space of the canonical bundle over a complex Fano surface S. D4-D2-D0 branes supported on S are then described by stable coherent sheaves on S (or derived category thereof).

Douglas 2000; Douglas Fiol Romelsberger 2000

- For $[D 4]=N[S], \Omega(\gamma, t)$ coincides with the Vafa-Witten invariants of S, computed by topologically twisted $\mathcal{N}=4$ SYM with gauge group $U(N)$. S-duality implies that generating functions should be (mock) modular.

Vafa Witten 1994; Minahan Nemeschansky Vafa Warner 1998;
Gholampour Sheshmani Yau 2017

Introduction

- For Fano surfaces S, the derived category of coherent sheaves is known to be isomorphic to the derived category of representations of a certain quiver (Q, W). The nodes of the quiver correspond to certain rigid sheaves E_{i} on S forming an exceptional collection.

Baer-Bondal-Rickart 1989-90, Herzog Walcher 2003; Aspinwall Melnikov 2004

Introduction

- For Fano surfaces S, the derived category of coherent sheaves is known to be isomorphic to the derived category of representations of a certain quiver (Q, W). The nodes of the quiver correspond to certain rigid sheaves E_{i} on S forming an exceptional collection.

Baer-Bondal-Rickart 1989-90, Herzog Walcher 2003; Aspinwall Melnikov 2004

- The BPS index $\Omega(\gamma, t)$ is equal to the Euler number $\Omega(\vec{N}, \vec{\zeta})$ of the moduli space of semi-stable quiver representations with dimension vector \vec{N} and FI parameters $\vec{\zeta}$ determined from (γ, t).

Introduction

- Unless Q has no loops, the BPS index $\Omega(\vec{N}, \vec{\zeta})$ is in general difficult to compute. However, quivers coming from exceptional collections on Fano surfaces are special: the 'attractor index'

$$
\Omega_{*}(\vec{N})=\Omega\left(\vec{N}, \vec{\zeta}_{*}(\vec{N})\right)
$$

vanishes unless \vec{N} is supported on a single node. Here $\vec{\zeta}_{*}(\vec{N})$ is the 'attractor' or 'self-stability condition'.

Introduction

- Unless Q has no loops, the BPS index $\Omega(\vec{N}, \vec{\zeta})$ is in general difficult to compute. However, quivers coming from exceptional collections on Fano surfaces are special: the 'attractor index'

$$
\Omega_{*}(\vec{N})=\Omega\left(\vec{N}, \vec{\zeta}_{*}(\vec{N})\right)
$$

vanishes unless \vec{N} is supported on a single node. Here $\vec{\zeta}_{*}(\vec{N})$ is the 'attractor' or 'self-stability condition'.

Beaujard Manschot BP 2020

- The BPS index elsewhere can be computed by performing a sequence of wall-crossings, or more directly by using the flow tree formula, which expresses $\Omega(\vec{N}, \vec{\zeta})$ in terms of $\Omega_{*}\left(\vec{N}_{i}\right)$ for all decompositions $\vec{N}=\sum_{i} \vec{N}_{i}$.

Denef Green Raugas 2001; Alexandrov Pioline 2018

Introduction

- This gives an efficient way of computing BPS indices / VW invariants for any Fano surface, not necessarily toric, and possibly for any rational surface.

Introduction

- This gives an efficient way of computing BPS indices / VW invariants for any Fano surface, not necessarily toric, and possibly for any rational surface.
- The (mock) modular properties of generating functions should have a natural explanation from the quiver description.

Introduction

- This gives an efficient way of computing BPS indices / VW invariants for any Fano surface, not necessarily toric, and possibly for any rational surface.
- The (mock) modular properties of generating functions should have a natural explanation from the quiver description.
- In the rest of this talk, I will explain some background about exceptional collections, toric surfaces, quivers, etc, and demonstrate how the method works in simple examples.

Outline

(1) Quivers from exceptional collections
(2) Wall-crossing and attractor indices
(3) Examples
(4) Conclusion
B. Pioline (LPTHE)

Outline

(1) Quivers from exceptional collections

(2) Wall-crossing and attractor indices

(3) Examples

4 Conclusion
B. Pioline (LPTHE)

D-branes and coherent sheaves

- At large volume, D-branes on a Calabi-Yau threefold X are described by coherent sheaves E on X : morally, a vector bundle whose fiber dimension may jump. A D6-brane is supported on all of X, a D4-brane on a divisor, a D2-brane on a curve and a D0-brane on a point.

D-branes and coherent sheaves

- At large volume, D-branes on a Calabi-Yau threefold X are described by coherent sheaves E on X : morally, a vector bundle whose fiber dimension may jump. A D6-brane is supported on all of X, a D4-brane on a divisor, a D2-brane on a curve and a D0-brane on a point.
- The D-brane charge can be read off from the Chern character $\operatorname{ch}(E)=\left[\mathrm{rk}, \mathrm{ch}_{1}, \mathrm{ch}_{2}, \mathrm{ch}_{3}\right] \in H^{\text {even }}(X, \mathbb{Q})$.

D-branes and coherent sheaves

- At large volume, D-branes on a Calabi-Yau threefold X are described by coherent sheaves E on X : morally, a vector bundle whose fiber dimension may jump. A D6-brane is supported on all of X, a D4-brane on a divisor, a D2-brane on a curve and a D0-brane on a point.
- The D-brane charge can be read off from the Chern character $\operatorname{ch}(E)=\left[\mathrm{rk}, \mathrm{ch}_{1}, \mathrm{ch}_{2}, \mathrm{ch}_{3}\right] \in H^{\text {even }}(X, \mathbb{Q})$.
- The spectrum of open strings between D-branes associated to coherent sheaves E, E^{\prime} is determined from the extension groups $\mathrm{Ext}_{X}^{k}\left(E, E^{\prime}\right)$. Ext_{X}^{0} corresponds to tachyons (projected out when $\left.E=E^{\prime}\right)$, Ext ${ }_{X}^{1}$ to nearly massless states, Ext ${ }_{X}^{k \geq 2}$ to massive strings irrelevant at low energy.

D-branes and coherent sheaves

- When $X=K_{S}$, the total space of the canonical bundle K_{S} over a smooth complex surface S, D4-branes supported on S are obtained by lifting coherent sheaves E from S to X.

D-branes and coherent sheaves

- When $X=K_{S}$, the total space of the canonical bundle K_{S} over a smooth complex surface S, D4-branes supported on S are obtained by lifting coherent sheaves E from S to X.
- The Ext groups on X are related to those on S by

$$
\operatorname{Ext}_{X}^{k}\left(i_{*} E, i_{*} E^{\prime}\right)=\operatorname{Ext}_{S}^{k}\left(E, E^{\prime}\right) \oplus \operatorname{Ext}_{S}^{3-k}\left(E, E^{\prime}\right)
$$

Thus, light open strings originate both from Ext ${ }_{S}^{1}$ and Ext_{S}^{2}, while Ext $_{S}^{0}$ and Ext ${ }_{S}^{3}$ lead to tachyons.

D-branes and coherent sheaves

- The dimension of Ext groups can be inferred from the Euler form

$$
\chi\left(E, E^{\prime}\right):=\sum_{k \geq 0}(-1)^{k} \operatorname{dim} E x t_{S}^{k}\left(E, E^{\prime}\right)
$$

By the Riemann-Roch formula, it depends only on the Chern characters $\gamma(E)=\left[\operatorname{rk}(E), c_{1}(E), \mathrm{ch}_{2}(E)\right]$,
$\chi\left(E, E^{\prime}\right)=\operatorname{rk}(E) \operatorname{rk}\left(E^{\prime}\right)+\operatorname{rk}(E) \mathrm{ch}_{2}\left(E^{\prime}\right)+\operatorname{rk}\left(E^{\prime}\right) \operatorname{ch}_{2}(E)$ $-c_{1}(E) \cdot c_{1}\left(E^{\prime}\right)+\frac{1}{2}\left[\mathrm{rk}(E) \operatorname{deg}\left(E^{\prime}\right)-\mathrm{rk}\left(E^{\prime}\right) \operatorname{deg}(E)\right]$
where $\operatorname{deg}(E)=c_{1}(E) \cdot c_{1}(S)$.

D-branes and coherent sheaves

- Stable D-branes correspond to Gieseker-stable sheaves on S. The sheaf E is stable if all proper subsheaves E^{\prime} have

$$
\left\{\begin{array}{l}
\nu_{J}\left(E^{\prime}\right)<\nu_{J}(E) \\
\nu_{J}\left(E^{\prime}\right)=\nu_{J}(E) \quad \text { and } \quad \frac{\operatorname{ch}_{2}\left(E^{\prime}\right)}{\mathrm{rk}\left(E^{\prime}\right)}<\frac{\operatorname{ch}_{2}(E)}{\mathrm{rk}(E)}
\end{array}\right.
$$

where $\nu_{J}(E)=\frac{c_{1}(E) \cdot J}{\mathrm{rk}(E)}$ is the slope and J the Kähler form.

D-branes and coherent sheaves

- Stable D-branes correspond to Gieseker-stable sheaves on S. The sheaf E is stable if all proper subsheaves E^{\prime} have

$$
\left\{\begin{array}{l}
\nu_{J}\left(E^{\prime}\right)<\nu_{J}(E) \\
\nu_{J}\left(E^{\prime}\right)=\nu_{J}(E) \quad \text { and } \quad \frac{\mathrm{ch}_{2}\left(E^{\prime}\right)}{\mathrm{rk}\left(E^{\prime}\right)}<\frac{\mathrm{ch}_{2}(E)}{\mathrm{rk}(E)}
\end{array}\right.
$$

where $\nu_{J}(E)=\frac{c_{1}(E) \cdot J}{\mathrm{rk}(E)}$ is the slope and J the Kähler form.

- The moduli space of stable sheaves of Chern vector γ has dimension

$$
d_{\mathbb{C}}\left(\mathcal{M}_{\gamma, J}^{S}\right)=1-\chi(E, E)
$$

and is invariant under tensoring with a line bundle \mathcal{L},

$$
c_{1} \rightarrow c_{1}+N c_{1}(\mathcal{L}), \quad \mathrm{ch}_{2} \rightarrow \mathrm{ch}_{2}-N c_{1}(\mathcal{L}) \cdot c_{1}+\frac{1}{2} N c_{1}(\mathcal{L})^{2}
$$

D-branes and coherent sheaves

- An exceptional sheaf is one such that

$$
\operatorname{Ext}_{S}^{0}(E, E) \simeq \mathbb{C}, \quad \operatorname{Ext}_{S}^{k}(E, E)=0 \quad \forall k>0
$$

Since $\chi(E, E)=1$ it is necessarily rigid.

D-branes and coherent sheaves

- An exceptional sheaf is one such that

$$
\operatorname{Ext}_{S}^{0}(E, E) \simeq \mathbb{C}, \quad \operatorname{Ext}_{S}^{k}(E, E)=0 \quad \forall k>0
$$

Since $\chi(E, E)=1$ it is necessarily rigid.

- An exceptional collection is an ordered set $\mathcal{C}=\left(E_{1}, \ldots, E_{r}\right)$ of exceptional sheaves such that

$$
\operatorname{Ext}_{S}^{k}\left(E_{i}, E_{j}\right)=0 \quad \forall k \geq 0,1 \leq j<i \leq r
$$

The matrix $S_{i j}=\chi\left(E_{j}, E_{i}\right)$ is then upper triangular with 1 's on the diagonal.

D-branes and coherent sheaves

- An exceptional sheaf is one such that

$$
\operatorname{Ext}_{S}^{0}(E, E) \simeq \mathbb{C}, \quad \operatorname{Ext}_{S}^{k}(E, E)=0 \quad \forall k>0
$$

Since $\chi(E, E)=1$ it is necessarily rigid.

- An exceptional collection is an ordered set $\mathcal{C}=\left(E_{1}, \ldots, E_{r}\right)$ of exceptional sheaves such that

$$
\operatorname{Ext}_{S}^{k}\left(E_{i}, E_{j}\right)=0 \quad \forall k \geq 0,1 \leq j<i \leq r
$$

The matrix $S_{i j}=\chi\left(E_{j}, E_{i}\right)$ is then upper triangular with 1 's on the diagonal.

- A full exceptional collection collection is one such that the Chern characters $\left\{\right.$ ch $\left.E_{i}, i=1 \ldots r\right\}$ span the lattice $K(S)$. For a simply connected surface $S, r=\chi(S)$.

D-branes and coherent sheaves

- Full exceptional collections satisfying the no tachyon condition

$$
\operatorname{Ext}_{S}^{0}\left(E_{i}, E_{j}\right)=\operatorname{Ext}_{S}^{3}\left(E_{i}, E_{j}\right)=0 \quad \forall i \neq j
$$

can be constructed from a strongly cyclic exceptional collection $\mathcal{C}^{\vee}=\left(E_{V}^{1}, \ldots, E_{\vee}^{r}\right)$, such that $\chi\left(E_{i}, E_{V}^{J}\right)=\delta_{j}^{i}$.

Aspinwall Melnikov 2004; Herzog Karp 2006

D-branes and coherent sheaves

- Full exceptional collections satisfying the no tachyon condition

$$
\operatorname{Ext}_{S}^{0}\left(E_{i}, E_{j}\right)=\operatorname{Ext}_{S}^{3}\left(E_{i}, E_{j}\right)=0 \quad \forall i \neq j
$$

can be constructed from a strongly cyclic exceptional collection $\mathcal{C}^{\vee}=\left(E_{V}^{1}, \ldots, E_{\vee}^{r}\right)$, such that $\chi\left(E_{i}, E_{V}^{J}\right)=\delta_{j}^{i}$.

Aspinwall Melnikov 2004; Herzog Karp 2006

- The dual E_{\checkmark}^{i} can be bone fide coherent sheaves, while E_{i} necessarily live in the derived category of coherent sheaves.

D-branes and coherent sheaves

- Full exceptional collections satisfying the no tachyon condition

$$
\operatorname{Ext}_{S}^{0}\left(E_{i}, E_{j}\right)=\operatorname{Ext}_{S}^{3}\left(E_{i}, E_{j}\right)=0 \quad \forall i \neq j
$$

can be constructed from a strongly cyclic exceptional collection $\mathcal{C}^{\vee}=\left(E_{V}^{1}, \ldots, E_{\vee}^{r}\right)$, such that $\chi\left(E_{i}, E_{V}^{J}\right)=\delta_{j}^{i}$.

Aspinwall Melnikov 2004; Herzog Karp 2006

- The dual E_{\checkmark}^{i} can be bone fide coherent sheaves, while E_{i} necessarily live in the derived category of coherent sheaves.
- Note that E_{i}, E_{\vee}^{i} are denoted E_{i}^{\vee}, E^{i} in our paper!

Exceptional collections and quivers

- To any such collection one associates a quiver Q with nodes $i \in Q_{0}$ corresponding to E_{i}. Arrows come from $\operatorname{Ext}_{S}^{1}\left(E_{j}, E_{i}\right)$ (morphisms $\Phi_{i j \alpha}$) and $\operatorname{Ext}_{S}^{2}\left(E_{j}, E_{i}\right)$ (constraints $C_{i j \alpha}$)
$\operatorname{Ext}_{S}^{2}\left(E_{i}, E_{j}\right)$

Exceptional collections and quivers

- To any such collection one associates a quiver Q with nodes $i \in Q_{0}$ corresponding to E_{i}. Arrows come from $\operatorname{Ext}_{S}^{1}\left(E_{j}, E_{i}\right)$ (morphisms $\Phi_{i j \alpha}$) and $\operatorname{Ext}_{S}^{2}\left(E_{j}, E_{i}\right)$ (constraints $C_{i j \alpha}$)

$$
\operatorname{Ext}_{S}^{2}\left(E_{i}, E_{j}\right)
$$

- The constraints can be implemented by introducing morphisms $\Phi_{i j \alpha}$ for $\operatorname{Ext}_{S}^{2}\left(E_{j}, E_{i}\right)$ such that $C_{i j \alpha}=\partial W / \partial \Phi_{j i \alpha}=0$, where W is a gauge-invariant superpotential.

Coherent sheaves and quiver representations

- The net number of arrows is then

$$
\kappa_{i j}=S_{j i}-S_{i j}=\left\langle E_{i}, E_{j}\right\rangle
$$

where

$$
\begin{aligned}
\left\langle E, E^{\prime}\right\rangle & =\chi\left(E, E^{\prime}\right)-\chi\left(E^{\prime}, E\right) \\
& =\operatorname{rk}(E) \operatorname{deg}\left(E^{\prime}\right)-\operatorname{rk}\left(E^{\prime}\right) \operatorname{deg}(E)
\end{aligned}
$$

is the antisymmetrized Euler form.

Coherent sheaves and quiver representations

- The net number of arrows is then

$$
\kappa_{i j}=S_{j i}-S_{i j}=\left\langle E_{i}, E_{j}\right\rangle
$$

where

$$
\begin{aligned}
\left\langle E, E^{\prime}\right\rangle & =\chi\left(E, E^{\prime}\right)-\chi\left(E^{\prime}, E\right) \\
& =\operatorname{rk}(E) \operatorname{deg}\left(E^{\prime}\right)-\operatorname{rk}\left(E^{\prime}\right) \operatorname{deg}(E)
\end{aligned}
$$

is the antisymmetrized Euler form.

- Different exceptional collections lead to different quivers, typically related by Seiberg duality.

Coherent sheaves and quiver representations

- By the Baer-Bondal-Rickard theorem, given a (full,cyclic, strong) exceptional collection on S, the derived category of coherent sheaves $\mathcal{D}(S)$ is isomorphic to the derived category of quiver representations $\mathcal{D}(Q)$:

$$
\mathcal{D}(S) \simeq \mathcal{D}(Q)
$$

Coherent sheaves and quiver representations

- By the Baer-Bondal-Rickard theorem, given a (full,cyclic, strong) exceptional collection on S, the derived category of coherent sheaves $\mathcal{D}(S)$ is isomorphic to the derived category of quiver representations $\mathcal{D}(Q)$:

$$
\mathcal{D}(S) \simeq \mathcal{D}(Q)
$$

- $\mathcal{D}(S)$ is graded by the Chern vector $\operatorname{ch}(E) \in K(S)$ while $\mathcal{D}(Q)$ is graded by the dimension vector $\vec{N} \in \mathbb{Z}^{Q_{0}}$. The two are related by

$$
\operatorname{ch}(E)=-\sum_{i} N_{i} \operatorname{ch}\left(E_{i}^{\vee}\right)
$$

with overall minus sign such that $N_{i}>0$ for large D0-brane charge.

Coherent sheaves and quiver representations

- The Gieseker stability condition on $\mathcal{D}(S)$ translates into a stability condition $\vec{\zeta}$ on Q,

$$
\zeta_{i}=\lambda \operatorname{Im}\left(Z_{\gamma_{i}} \overline{Z_{\gamma}}\right), \quad \lambda \in \mathbb{R}^{+}
$$

where $Z_{\gamma}=-\frac{N}{2} J^{2}+J \cdot c_{1}-\mathrm{ch}_{2}$ is the central charge in the large volume limit.

Coherent sheaves and quiver representations

- The Gieseker stability condition on $\mathcal{D}(S)$ translates into a stability condition $\vec{\zeta}$ on Q,

$$
\zeta_{i}=\lambda \operatorname{Im}\left(Z_{\gamma_{i}} \overline{Z_{\gamma}}\right), \quad \lambda \in \mathbb{R}^{+}
$$

where $Z_{\gamma}=-\frac{N}{2} J^{2}+J \cdot c_{1}-\mathrm{ch}_{2}$ is the central charge in the large volume limit.

- This automatically satisfies $\sum_{i} N_{i} \zeta_{i}=0$, and yields, for subrepresentations with dimension vector $\vec{N}^{\prime} \leq \vec{N}$,

$$
\begin{aligned}
\sum_{i} N_{i}^{\prime} \zeta_{i}= & \rho\left[N \int_{S} J \cdot c_{1}\left(E^{\prime}\right)-N^{\prime} \int_{S} J \cdot c_{1}(E)\right] \\
& +N^{\prime} \operatorname{ch}_{2}(E)-N \operatorname{ch}_{2}\left(E^{\prime}\right)
\end{aligned}
$$

where $\rho \gg 1$. The first term is the standard difference of slopes.

Coherent sheaves and quiver representations

- Under the assignment $(\operatorname{ch} E, J) \rightarrow(\vec{N}, \vec{\zeta})$, the moduli spaces of semi-stable objects are expected to be isomorphic. In particular, their dimension should match:

$$
\begin{aligned}
d_{\mathbb{C}}\left(\mathcal{M}_{\gamma, J}^{S}\right) & =1-\chi(E, E)=1-\sum_{i, j} N_{i} S_{i j} N_{j} \\
& =\sum_{S_{i j}<0}\left|S_{i j}\right| N_{i} N_{j}-\sum_{S_{i j}>0} S_{i j} N_{i} N_{j}-\sum_{i} N_{i}^{2}+1
\end{aligned}
$$

Coherent sheaves and quiver representations

- Under the assignment (ch $E, J) \rightarrow(\vec{N}, \vec{\zeta})$, the moduli spaces of semi-stable objects are expected to be isomorphic. In particular, their dimension should match:

$$
\begin{aligned}
d_{\mathbb{C}}\left(\mathcal{M}_{\gamma, J}^{S}\right) & =1-\chi(E, E)=1-\sum_{i, j} N_{i} S_{i j} N_{j} \\
& =\sum_{S_{i j}<0}\left|S_{i j}\right| N_{i} N_{j}-\sum_{S_{i j}>0} S_{i j} N_{i} N_{j}-\sum_{i} N_{i}^{2}+1
\end{aligned}
$$

This matches the expected dimension of the quiver moduli space $\mathcal{M}_{\vec{N}, \zeta}^{Q}$ in the Beilinson branch where $\Phi_{i j \alpha}=0$ when-- ever $S_{i j}>0$.

Coherent sheaves and quiver representations

- Under the assignment (ch $E, J) \rightarrow(\vec{N}, \vec{\zeta})$, the moduli spaces of semi-stable objects are expected to be isomorphic. In particular, their dimension should match:

$$
\begin{aligned}
d_{\mathbb{C}}\left(\mathcal{M}_{\gamma, J}^{S}\right) & =1-\chi(E, E)=1-\sum_{i, j} N_{i} S_{i j} N_{j} \\
& =\sum_{S_{i j}<0}\left|S_{i j}\right| N_{i} N_{j}-\sum_{S_{i j}>0} S_{i j} N_{i} N_{j}-\sum_{i} N_{i}^{2}+1
\end{aligned}
$$

This matches the expected dimension of the quiver moduli space $\mathcal{M} \underset{\vec{N}, \stackrel{\zeta}{Q}}{Q}$ in the Beilinson branch where $\Phi_{i j \alpha}=0$ when-

- ever $S_{i j}>0$.

- The Beilinson branch is consistent with $\vec{\zeta}$ only when the slope $\nu_{J}(E)$ lies in a certain window.

DT invariants, VW invariants and modularity

- The DT invariants counting semi-stable coherent sheaves on S are then equal to the DT invariants counting semi-stable representations of (Q, W). When $J \cdot c_{1}(S)>0$, by virtue of vanishing theorems they coincide with VW invariants.

DT invariants, VW invariants and modularity

- The DT invariants counting semi-stable coherent sheaves on S are then equal to the DT invariants counting semi-stable representations of (Q, W). When $J \cdot c_{1}(S)>0$, by virtue of vanishing theorems they coincide with VW invariants.
- The refined DT/VW invariants are given by the Poincaré polynomial of the moduli space $\mathcal{M}=\mathcal{M}_{\gamma, J}^{S}=\mathcal{M}_{\vec{N}, \vec{\zeta}}^{Q}$ (for intersection homology)

$$
\Omega(\vec{N}, \vec{\zeta}, y)=\sum_{p=0}^{d_{\mathbb{C}}(\mathcal{M})}(-y)^{2 p-d_{\mathbb{C}}(\mathcal{M})} b_{p}(\mathcal{M})
$$

DT invariants, VW invariants and modularity

- The DT invariants counting semi-stable coherent sheaves on S are then equal to the DT invariants counting semi-stable representations of (Q, W). When $J \cdot c_{1}(S)>0$, by virtue of vanishing theorems they coincide with VW invariants.
- The refined DT/VW invariants are given by the Poincaré polynomial of the moduli space $\mathcal{M}=\mathcal{M}_{\gamma, J}^{S}=\mathcal{M}_{\vec{N}, \vec{\zeta}}^{Q}$ (for intersection homology)

$$
\Omega(\vec{N}, \vec{\zeta}, y)=\sum_{p=0}^{d_{\mathbb{C}}(\mathcal{M})}(-y)^{2 p-d_{\mathbb{C}}(\mathcal{M})} b_{p}(\mathcal{M})
$$

- The 'rational DT invariants' have simpler behavior under wall-crossing,

$$
\bar{\Omega}(\vec{N}, \vec{\zeta}, y)=\sum_{m \mid \vec{N}} \frac{y-1 / y}{m\left(y^{m}-1 / y^{m}\right)} \Omega\left(\vec{N} / m, \vec{\zeta}, y^{m}\right)
$$

DT invariants and VW invariants

- In a sector with fixed ('t Hooft flux) c_{1}, the partition function

$$
h_{N, c_{1}, J}^{S}(\tau, y)=\sum_{n} \frac{\bar{\Omega}\left(\left[N, c_{1}, \frac{1}{2} c_{1}^{2}-n\right], J, y\right)}{y-y^{-1}} q^{n-\frac{N-1}{2 N} c_{1}^{2}-\frac{N_{\chi}(S)}{24}}
$$

is expected to transform as a vector-valued Jacobi form of weight
$-\frac{1}{2} b_{2}(S)$ and index $-\frac{1}{6} K_{S}^{2}\left(N^{3}-N\right)$.

DT invariants and VW invariants

- In a sector with fixed ('t Hooft flux) c_{1}, the partition function

$$
h_{N, c_{1}, J}^{S}(\tau, y)=\sum_{n} \frac{\bar{\Omega}\left(\left[N, c_{1}, \frac{1}{2} c_{1}^{2}-n\right], J, y\right)}{y-y^{-1}} q^{n-\frac{N-1}{2 N} c_{1}^{2}-\frac{N \chi(S)}{24}}
$$

is expected to transform as a vector-valued Jacobi form of weight $-\frac{1}{2} b_{2}(S)$ and index $-\frac{1}{6} K_{S}^{2}\left(N^{3}-N\right)$.

- When $b_{2}^{+}(S)=1$, additional non-holomorphic contributions from reducible connections at the boundary of moduli space $\mathcal{M}_{\gamma, J}^{S}$ are needed to restore modularity. In general $h_{N, c_{1}, J}^{S}(\tau, y)$ is a vector-valued mock Jacobi form of depth $N-1$, subject to wall-crossing in J.

Vafa Witten 1994; Alexandrov Manschot BP 2019; Dabholkar Putrov Witten 2020

DT invariants and VW invariants

- For $N=1$, there are no non-holomorphic contributions, nor any dependence on J, and h_{1} is truly modular,

$$
h_{1}^{S}(\tau, y)=\frac{\mathrm{i}}{\theta_{1}\left(\tau, y^{2}\right) \eta(\tau)^{b_{2}(S)-1}}
$$

DT invariants and VW invariants

- For $N=1$, there are no non-holomorphic contributions, nor any dependence on J, and h_{1} is truly modular,

$$
h_{1}^{S}(\tau, y)=\frac{i}{\theta_{1}\left(\tau, y^{2}\right) \eta(\tau)^{b_{2}(S)-1}}
$$

- The partition function $h_{N, c_{1}, J}^{S}$ has simple transformations under blow up and wall-crossing. This can be used to compute it in principle for any rational surface.

Yoshioka 1994; Göttsche 1998; Manschot 2010-2016

DT invariants and VW invariants

- For $N=1$, there are no non-holomorphic contributions, nor any dependence on J, and h_{1} is truly modular,

$$
h_{1}^{S}(\tau, y)=\frac{i}{\theta_{1}\left(\tau, y^{2}\right) \eta(\tau)^{b_{2}(S)-1}}
$$

- The partition function $h_{N, c_{1}, J}^{S}$ has simple transformations under blow up and wall-crossing. This can be used to compute it in principle for any rational surface.

Yoshioka 1994; Göttsche 1998; Manschot 2010-2016

- Mock modular properties and holomorphic anomalies allow to computing the generating function of VW invariants for any del Pezzo surfaces at arbitrary rank directly.

Alexandrov 2020 (see previous talk)

DT invariants and VW invariants

- For $N=1$, there are no non-holomorphic contributions, nor any dependence on J, and h_{1} is truly modular,

$$
h_{1}^{S}(\tau, y)=\frac{\mathrm{i}}{\theta_{1}\left(\tau, y^{2}\right) \eta(\tau)^{b_{2}(S)-1}}
$$

- The partition function $h_{N, c_{1}, J}^{S}$ has simple transformations under blow up and wall-crossing. This can be used to compute it in principle for any rational surface.

Yoshioka 1994; Göttsche 1998; Manschot 2010-2016

- Mock modular properties and holomorphic anomalies allow to computing the generating function of VW invariants for any del Pezzo surfaces at arbitrary rank directly.

$$
\text { Alexandrov } 2020 \text { (see previous talk) }
$$

- I shall demonstrate that quivers provide an alternative way of computing these invariants. But first, some more background on wall-crossing and attractor indices is needed.

Outline

(1) Quivers from exceptional collections
(2) Wall-crossing and attractor indices
(3) Examples

4 Conclusion
B. Pioline (LPTHE)

Wall-crossing and attractor indices

- The DT invariants $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ jump on hyperplanes where stable representations become semi-stable. The discontinuity is given by the Konsevitch-Soibelman wall-crossing formula.

Wall-crossing and attractor indices

- The DT invariants $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ jump on hyperplanes where stable representations become semi-stable. The discontinuity is given by the Konsevitch-Soibelman wall-crossing formula.
- Physically, the jump can be interpreted as the (dis)appearance of multi-centered black hole bound states.

Denef Moore 2007; Andriyash et al 2010

Wall-crossing and attractor indices

- The DT invariants $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ jump on hyperplanes where stable representations become semi-stable. The discontinuity is given by the Konsevitch-Soibelman wall-crossing formula.
- Physically, the jump can be interpreted as the (dis)appearance of multi-centered black hole bound states.

Denef Moore 2007; Andriyash et al 2010

- The KS formula can be derived using localisation in the black hole supersymmetric quantum mechanics. Rational invariants $\bar{\Omega}(\gamma, t)$ arise as effective indices for particles with Boltzmann statistics.

Manschot BP Sen 2010

Wall-crossing and attractor indices

- For fixed \vec{N}, there is a particular stability condition

$$
\zeta_{i}^{\star}(\vec{N})=-\kappa_{i j} N^{j}
$$

known as 'attractor point' or 'self-stability' where bound states are ruled out. This is analogous to the attractor point for spherically symmetric black holes in $\mathcal{N}=2$ supergravity.

Wall-crossing and attractor indices

- The full spectrum can be constructed as bound states of these attractor BPS states, labelled by attractor flow trees:

Denef '00; Denef Green Raugas '01; Denef Moore'07

Wall-crossing and attractor indices

- The 'flow tree formula' allows to express $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ in terms of the attractor indices $\bar{\Omega}^{\star}\left(\vec{N}_{i}, y\right):=\bar{\Omega}\left(\vec{N}_{i}, \vec{\zeta}^{\star}\left(\vec{N}_{i}\right), y\right)$:

$$
\bar{\Omega}(\vec{N}, \vec{\zeta}, y)=\sum_{\vec{N}=\sum_{i=1}^{n} \vec{N}_{i}} \frac{g_{\mathrm{tr}}\left(\left\{\vec{N}_{i}, \vec{\zeta}_{i}\right\}, y\right)}{\left|\operatorname{Aut}\left\{\vec{N}_{i}\right\}\right|} \prod_{i=1}^{n} \bar{\Omega}_{*}\left(\vec{N}_{i}, y, t\right)
$$

where g_{tr} is a sum over all possible stable flow trees ending on the leaves $\gamma_{1}, \ldots, \gamma_{n}$.

Wall-crossing and attractor indices

- The 'flow tree formula' allows to express $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ in terms of the attractor indices $\bar{\Omega}^{\star}\left(\vec{N}_{i}, y\right):=\bar{\Omega}\left(\vec{N}_{i}, \vec{\zeta}^{\star}\left(\vec{N}_{i}\right), y\right)$:

$$
\bar{\Omega}(\vec{N}, \vec{\zeta}, y)=\sum_{\vec{N}=\sum_{i=1}^{n} \vec{N}_{i}} \frac{g_{\mathrm{tr}}\left(\left\{\vec{N}_{i}, \vec{\zeta}_{j}\right\}, y\right)}{\left|\operatorname{Aut}\left\{\vec{N}_{i}\right\}\right|} \prod_{i=1}^{n} \bar{\Omega}_{*}\left(\vec{N}_{i}, y, t\right)
$$

where g_{tr} is a sum over all possible stable flow trees ending on the leaves $\gamma_{1}, \ldots, \gamma_{n}$.

- The flow tree formula is purely combinatoric, and does not require integrating the attractor flow!

Alexandrov BP 2018

Wall-crossing and attractor indices

- Remarkably, attractor indices for quivers coming from Fano surfaces have a special property:
$\Omega_{\star}(\vec{N}, y)=0$ unless \vec{N} is supported on a single node with height 1 (in which case $\Omega_{\star}=1$) or $\vec{N} \propto \vec{N}_{D 0}$ (for a pure D0-brane)

Wall-crossing and attractor indices

- Remarkably, attractor indices for quivers coming from Fano surfaces have a special property:
$\Omega_{\star}(\vec{N}, y)=0$ unless \vec{N} is supported on a single node with height 1 (in which case $\Omega_{\star}=1$) or $\vec{N} \propto \vec{N}_{D 0}$ (for a pure D0-brane)
- To see this, we exhibit a positive quadratic form $\mathcal{Q}(\vec{N})$ and rational coefficients $\lambda_{i} \in \mathbb{Q}$ such that the expected dimension of the moduli space $\mathcal{M}_{\vec{N}, \overrightarrow{\zeta^{*}}(\vec{N})}^{Q}$ in the attractor chamber can be written as

$$
d_{\mathbb{C}}^{*}=1-\mathcal{Q}(\vec{N})-\sum_{i} \lambda_{i} N_{i} \zeta_{i}^{\star}
$$

where $\lambda_{i}=0$ or $\operatorname{sgn}\left(\lambda_{i}\right)=\operatorname{sgn}\left(\zeta_{i}^{\star}\right)$ for all i. The quadratic form is degenerate along $\vec{N}_{D 0} \cdot \mathcal{Q}(\vec{N})$ is found case-by-case.

Beaujard Manschot BP 2020

Wall-crossing and attractor indices

- Since $\left\langle\vec{N}_{D 0}, \vec{N}\right\rangle=0$ for any \vec{N}, the flow tree formula does not involve the unknown indices $\Omega_{\star}\left(p \vec{N}_{D 0}\right)$. Thus it can be used to compute $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ for any $(\vec{N}, \vec{\zeta})$!

Wall-crossing and attractor indices

- Since $\left\langle\vec{N}_{D 0}, \vec{N}\right\rangle=0$ for any \vec{N}, the flow tree formula does not involve the unknown indices $\Omega_{\star}\left(p \vec{N}_{D 0}\right)$. Thus it can be used to compute $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ for any $(\vec{N}, \vec{\zeta})$!
- The large volume attractor point for local CY geometries turns out to correspond to the 'anti-attractor' or 'canonical' stability condition

$$
\vec{\zeta}_{c}(\vec{N})=-\zeta^{\star}(\vec{N})=+\kappa_{i j} N^{j}
$$

Wall-crossing and attractor indices

- Since $\left\langle\vec{N}_{D 0}, \vec{N}\right\rangle=0$ for any \vec{N}, the flow tree formula does not involve the unknown indices $\Omega_{\star}\left(p \vec{N}_{D 0}\right)$. Thus it can be used to compute $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ for any $(\vec{N}, \vec{\zeta})$!
- The large volume attractor point for local CY geometries turns out to correspond to the 'anti-attractor' or 'canonical' stability condition

$$
\vec{\zeta}_{c}(\vec{N})=-\zeta^{\star}(\vec{N})=+\kappa_{i j} N^{j}
$$

- This sounds puzzling at first: multi-centered black hole are not supposed to appear at the large volume attractor point, but apparently the BPS spectrum at this point can still be interpreted as multi-particle bound states in the quiver quantum mechanics !

Wall-crossing and attractor indices

- Since $\left\langle\vec{N}_{D 0}, \vec{N}\right\rangle=0$ for any \vec{N}, the flow tree formula does not involve the unknown indices $\Omega_{\star}\left(p \vec{N}_{D 0}\right)$. Thus it can be used to compute $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ for any $(\vec{N}, \vec{\zeta})$!
- The large volume attractor point for local CY geometries turns out to correspond to the 'anti-attractor' or 'canonical' stability condition

$$
\vec{\zeta}_{c}(\vec{N})=-\zeta^{\star}(\vec{N})=+\kappa_{i j} N^{j}
$$

- This sounds puzzling at first: multi-centered black hole are not supposed to appear at the large volume attractor point, but apparently the BPS spectrum at this point can still be interpreted as multi-particle bound states in the quiver quantum mechanics!
- Presumably this micro-structure is revealed as one travels from large volume to the genuine (finite volume) attractor point.

Attractor indices and pure Higgs indices

- While there are no genuine bound states at the attractor point $\vec{\zeta}=\overrightarrow{\zeta^{\star}}(\vec{N})$, from the Coulomb branch prospective there can still be contributions from 'scaling solutions', where several centers approach at arbitrary small distance.

Bena Wang Warner 2007; de Boer El-Showk Messamah Den Bleeken 2008

Attractor indices and pure Higgs indices

- While there are no genuine bound states at the attractor point $\vec{\zeta}=\overrightarrow{\zeta^{\star}}(\vec{N})$, from the Coulomb branch prospective there can still be contributions from 'scaling solutions', where several centers approach at arbitrary small distance.

Bena Wang Warner 2007; de Boer El-Showk Messamah Den Bleeken 2008

- The Coulomb branch formula gives a (conjectural) general prescription for removing these scaling contributions. It expresses $\bar{\Omega}(\vec{N}, \vec{\zeta}, y)$ in terms of 'single-centered' or 'pure-Higgs' indices :

$$
\bar{\Omega}(\vec{N}, \vec{\zeta}, y)=\sum_{\vec{N}=\sum_{i=1}^{n} \vec{N}_{i}} \frac{g_{\operatorname{tr}}\left(\left\{\vec{N}_{i}, \vec{\zeta}_{i}\right\}, y\right)}{\left|\operatorname{Aut}\left\{\vec{N}_{i}\right\}\right|} \prod_{i=1}^{n} \bar{\Omega}_{S}\left(\vec{N}_{i}, y, t\right)
$$

Denef Moore 2007, Manschot BP Sen 2011, Lee Yang Yi 2012

Attractor indices and pure Higgs indices

- The indices $\Omega_{S}\left(\vec{N}_{i}\right)$ do not depend on $\vec{\zeta}$, and are conjectured to count harmonic forms supported on the middle cohomology of the quiver moduli space.

Attractor indices and pure Higgs indices

- The indices $\Omega_{S}\left(\vec{N}_{i}\right)$ do not depend on $\vec{\zeta}$, and are conjectured to count harmonic forms supported on the middle cohomology of the quiver moduli space.
- Applying this formula, one finds evidence that, similar to Ω_{\star}, $\Omega_{\mathrm{S}}(\vec{N}, y)=0$ unless \vec{N} is supported on a single node with height 1 (in which case $\Omega_{\mathrm{S}}=1$) or $\vec{N} \propto \vec{N}_{D 0}$ (for a pure D0-brane)

Attractor indices and pure Higgs indices

- The indices $\Omega_{S}\left(\vec{N}_{i}\right)$ do not depend on $\vec{\zeta}$, and are conjectured to count harmonic forms supported on the middle cohomology of the quiver moduli space.
- Applying this formula, one finds evidence that, similar to Ω_{\star},
$\Omega_{\mathrm{S}}(\vec{N}, y)=0$ unless \vec{N} is supported on a single node with height 1 (in which case $\Omega_{\mathrm{S}}=1$) or $\vec{N} \propto \vec{N}_{D 0}$ (for a pure D0-brane)
- In particular, $\Omega_{\mathrm{S}}(\vec{N}, y)=\Omega_{\star}(\vec{N}, y)$ unless $\vec{N} \propto \vec{N}_{D 0}$. This is surprising since scaling solutions do exist classically. However, they are removed by quantum effects, under the 'minimal modification hypothesis'.

Outline

(1) Quivers from exceptional collections

(2) Wall-crossing and attractor indices

(3) Examples

4 Conclusion

Example 1: Local \mathbb{P}^{2}

- The projective plane admits a strong cyclic exceptional collection

$$
\begin{aligned}
& \mathcal{C}_{V}=(\mathcal{O}(0), \mathcal{O}(1), \mathcal{O}(2)) \\
& \gamma_{\vee}^{1}=[1,0,0] \\
& \gamma_{V}^{2}=\left[1,1, \frac{1}{2}\right] \quad S_{V}=\left(\begin{array}{lll}
1 & 3 & 6 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

Example 1: Local \mathbb{P}^{2}

- The projective plane admits a strong cyclic exceptional collection

$$
\begin{aligned}
& \mathcal{C}_{V}=(\mathcal{O}(0), \mathcal{O}(1), \mathcal{O}(2)) \\
& \gamma_{\vee}^{1}=[1,0,0] \\
& \gamma_{V}^{2}=\left[1,1, \frac{1}{2}\right] \quad S_{\vee}=\left(\begin{array}{lll}
1 & 3 & 6 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

- The dual collection is (with $\Omega(1)$ the twisted cotangent bundle)

$$
\begin{aligned}
& \quad \mathcal{C}=(\mathcal{O}, \Omega(1)[1], \mathcal{O}(-1)[2]) \\
& \gamma_{1}=[1,0,0] \\
& \gamma_{2}=\left[-2,1, \frac{1}{2}\right] \\
& \gamma_{3}=\left[1,-1, \frac{1}{2}\right]
\end{aligned} \quad S=\left(\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right), ~ l
$$

Example 1: Local \mathbb{P}^{2}

- This leads to the familiar quiver for $\mathbb{C}^{3} / \mathbb{Z}_{3}$,

Douglas Fiol Romelsberger 2000

Example 1: Local \mathbb{P}^{2}

- This leads to the familiar quiver for $\mathbb{C}^{3} / \mathbb{Z}_{3}$,

Douglas Fiol Romelsberger 2000

- The dimension vectors are given in terms of $\mathrm{ch}=\left[N, c_{1}, \mathrm{ch}_{2}\right]$ by

$$
\vec{N}=-\left(\frac{3}{2} c_{1}+\mathrm{ch}_{2}+N, \frac{1}{2} c_{1}+\mathrm{ch}_{2},-\frac{1}{2} c_{1}+\mathrm{ch}_{2}\right)
$$

Example 1: Local \mathbb{P}^{2}

- This leads to the familiar quiver for $\mathbb{C}^{3} / \mathbb{Z}_{3}$,

Douglas Fiol Romelsberger 2000

- The dimension vectors are given in terms of $\mathrm{ch}=\left[N, c_{1}, \mathrm{ch}_{2}\right]$ by

$$
\vec{N}=-\left(\frac{3}{2} c_{1}+\mathrm{ch}_{2}+N, \frac{1}{2} c_{1}+\mathrm{ch}_{2},-\frac{1}{2} c_{1}+\mathrm{ch}_{2}\right)
$$

- When $N_{1}=0$ or $N_{3}=0$, the 3-node quiver reduces to the Kronecker quiver K_{3}.

Example 1: Local \mathbb{P}^{2}

- The stability vector is

$$
\begin{aligned}
\vec{\zeta} & =3 \rho\left(N_{2}-N_{3}, N_{3}-N_{1}, N_{1}-N_{2}\right)+\left(-\frac{N_{2}+N_{3}}{2}, \frac{N_{1}+3 N_{3}}{2}, \frac{N_{1}-3 N_{2}}{2}\right) \\
& =-\rho \overrightarrow{\zeta^{\star}}+\mathcal{O}(1)
\end{aligned}
$$

Example 1: Local \mathbb{P}^{2}

- The stability vector is

$$
\begin{aligned}
\vec{\zeta} & =3 \rho\left(N_{2}-N_{3}, N_{3}-N_{1}, N_{1}-N_{2}\right)+\left(-\frac{N_{2}+N_{3}}{2}, \frac{N_{1}+3 N_{3}}{2}, \frac{N_{1}-3 N_{2}}{2}\right) \\
& =-\rho \overrightarrow{\zeta^{\star}}+\mathcal{O}(1)
\end{aligned}
$$

- In the Beilinson chamber $\Phi_{31 \alpha}=0$, the expected dimensions of \mathcal{M}^{Q} and \mathcal{M}^{S} agree,

$$
d_{\mathbb{C}}=3\left(N_{1} N_{2}+N_{2} N_{3}-N_{3} N_{1}\right)-N_{1}^{2}-N_{2}^{2}-N_{3}^{2}+1=c_{1}^{2}-2 N \operatorname{ch}_{2}-N^{2}+1
$$

This requires $\zeta_{1} \geq 0, \zeta_{3} \leq 0$ hence $-N \leq c_{1} \leq 0$.

Example 1: Local \mathbb{P}^{2}

- In the attractor chamber $\vec{\zeta}=\rho \overrightarrow{\zeta^{\star}}$, the expected dimension can be written as

$$
\begin{aligned}
& d_{\mathbb{C}}^{*}=1-\mathcal{Q}(\vec{N})+ \begin{cases}\frac{2}{3} N_{3} \zeta_{3}^{\star}-\frac{2}{3} N_{1} \zeta_{1}^{\star} & \zeta_{1}^{\star} \geq 0, \zeta_{3}^{\star} \leq 0 \\
\frac{2}{3} N_{1} \zeta_{1}^{\star}-\frac{2}{3} N_{2} \zeta_{2}^{\star} & \zeta_{2}^{\star} \geq 0, \zeta_{1}^{\star} \leq 0 \\
\frac{2}{3} N_{2} \zeta_{2}^{\star}-\frac{2}{3} N_{3} \zeta_{3}^{\star} & \zeta_{3}^{\star} \geq 0, \zeta_{2}^{\star} \leq 0\end{cases} \\
& \mathcal{Q}(\vec{N})=\frac{1}{2}\left(N_{1}-N_{2}\right)^{2}+\frac{1}{2}\left(N_{2}-N_{3}\right)^{2}+\frac{1}{2}\left(N_{3}-N_{1}\right)^{2}
\end{aligned}
$$

hence $d_{\mathbb{C}}^{*}<0$ unless $\vec{N} \in\{(1,0,0),(0,1,0),(0,0,1),(p, p, p)\}$. Hence $\Omega_{\star}(\vec{N})=0$ except in those cases.

Example 1: Local \mathbb{P}^{2}

- Using the flow tree formula with $\Omega_{\star}=0$, or the Coulomb branch formula with $\Omega_{\mathrm{S}}=0$, we get expected results:

$\left[N ; c_{1} ; c_{2}\right]$	\vec{N}	$\Omega_{c}(\vec{N})$
$[1 ; 0 ; 2]$	$(1,2,2)$	$y^{4}+2 y^{2}+3+\ldots$
$[1 ; 0 ; 3]$	$(2,3,3)$	$y^{6}+2 y^{4}+5 y^{2}+6+\ldots$
$[2 ; 0 ; 3]$	$(1,3,3)$	$-y^{9}-2 y^{7}-4 y^{5}-6 y^{3}-6 y-\ldots$
$[2 ;-1 ; 2]$	$(1,2,1)$	$y^{4}+2 y^{2}+3+\ldots$
$[2 ;-1 ; 3]$	$(2,3,2)$	$y^{8}+2 y^{6}+6 y^{4}+9 y^{2}+12+\ldots$
$[3 ;-1 ; 3]$	$(1,3,2)$	$y^{8}+2 y^{6}+5 y^{4}+8 y^{2}+10+\ldots$
$[4 ;-2 ; 4]$	$(1,3,1)$	$y^{5}+y^{3}+y+\ldots$
$[4 ;-2 ; 5]$	$(2,4,2)$	$-y^{13}-2 y^{11}-6 y^{9}-10 y^{7}-17 y^{5}-21 y^{3}-24 y-$.

Example 2: Three-block collections I

- For \mathbb{F}_{0} and all del Pezzo surfaces $d P_{k}$ with $k \neq 1,2$, Karpov and Nogin have constructed strong cyclic exceptional collections with three-blocks structure with $\alpha+\beta+\gamma=\chi$ (S)

$$
S=\left(\begin{array}{c|c|c}
1_{\alpha} & -c & b \\
\hline & 1_{\beta} & -a \\
\hline & & 1_{\gamma}
\end{array}\right), \quad \kappa=\left(\begin{array}{c|c|c}
0_{\alpha} & c & -b \\
-c & 0_{\beta} & a \\
b & -a & 0_{\gamma}
\end{array}\right)
$$

where $\alpha x^{2}+\beta y^{2}+\gamma z^{2}=x y z \sqrt{K_{S}^{2} \alpha \beta \gamma}$

$$
\begin{aligned}
a & = \\
b & =\beta x K^{\prime} \\
c & =\gamma z K^{\prime} \\
K^{\prime} & =\sqrt{K_{S}^{2} /(\alpha \beta \gamma)}
\end{aligned}
$$

Example 2: Three-block collections II

- In the Beilinson chamber where $\Phi_{31, \alpha}=0$, the expected dimension of \mathcal{M}^{Q} agrees with that of \mathcal{M}^{S},

$$
\begin{gathered}
d_{\mathbb{C}}=c \mathcal{N}_{1} \mathcal{N}_{2}+a \mathcal{N}_{2} \mathcal{N}_{3}-b \mathcal{N}_{1} \mathcal{N}_{3}-\sum_{i} N_{i}^{2}+1 \\
\mathcal{N}_{1}=\sum_{i=1}^{\alpha} N_{i}, \quad \mathcal{N}_{2}=\sum_{i=\alpha+1}^{\alpha+\beta} N_{i}, \quad \mathcal{N}_{3}=\sum_{i=\alpha+\beta+1}^{\alpha+\beta+\gamma} N_{i}
\end{gathered}
$$

Example 2: Three-block collections III

- In the attractor chamber, one has instead

$$
d_{\mathbb{C}}^{*}=1-\mathcal{Q}(\vec{N})+\frac{2 \mathcal{A}}{\mathcal{A}+\mathcal{B}+\mathcal{C}} \mathcal{N}_{3} \varsigma_{3}^{\star}-\frac{2 \mathcal{C}}{\mathcal{A}+\mathcal{B}+\mathcal{C}} \mathcal{N}_{1} \varsigma_{1}^{\star}
$$

when $\varsigma_{3}^{\star} \leq 0, s_{1}^{\star} \geq 0$, or cyclic permutation thereof

- $\mathcal{Q}(\vec{N})$ is the positive quadratic form, degenerate along the direction $\vec{N}_{D 0}=(x, \ldots ; y, \ldots ; z, \ldots)$

$$
\sum_{i=1}^{r} N_{i}^{2}-\frac{\mathcal{A}+\mathcal{B}-\mathcal{C}}{\mathcal{A}+\mathcal{B}+\mathcal{C}} c \mathcal{N}_{1} \mathcal{N}_{2}-\frac{\mathcal{B}+\mathcal{C}-\mathcal{A}}{\mathcal{A}+\mathcal{B}+\mathcal{C}} a \mathcal{N}_{2} \mathcal{N}_{3}-\frac{\mathcal{C}+\mathcal{A}-\mathcal{B}}{\mathcal{A}+\mathcal{B}+\mathcal{C}} b \mathcal{N}_{3} \mathcal{N}_{1}
$$

Hence $\Omega_{\star}(\vec{N})=0$ except for simple representations or for D0-branes. Using flow tree formula we get agreement in other chambers with prediction from blow-up and wall-crossing formulae.

Example 3: Local toric surfaces

- Smooth toric surfaces are described by a toric fan spanned by vectors $v_{1}, \ldots, v_{r} \in \mathbb{Z}^{2}$ forming a convex polygon. Each vector corresponds to a toric divisor D_{i}, subject to linear equivalences

$$
\sum_{i}\left(u, v_{i}\right) D_{i}=0
$$

The intersection $D_{i} \cdot D_{j}$ vanishes unless $i-j \in\{-1,0,1\}(\bmod r)$, and $D_{i} \cdot D_{i+1}=1, D_{i} \cdot D_{i}=a_{i}$ where a_{i} are determined by

$$
v_{i-1}+v_{i+1}+a_{i} v_{i}=0
$$

Example 3: Local toric surfaces

- Smooth toric surfaces are described by a toric fan spanned by vectors $v_{1}, \ldots, v_{r} \in \mathbb{Z}^{2}$ forming a convex polygon. Each vector corresponds to a toric divisor D_{i}, subject to linear equivalences

$$
\sum_{i}\left(u, v_{i}\right) D_{i}=0
$$

The intersection $D_{i} \cdot D_{j}$ vanishes unless $i-j \in\{-1,0,1\}(\bmod r)$, and $D_{i} \cdot D_{i+1}=1, D_{i} \cdot D_{i}=a_{i}$ where a_{i} are determined by

$$
v_{i-1}+v_{i+1}+a_{i} v_{i}=0
$$

- Fano surfaces have $a_{i} \geq-1$ for all i, weak Fano surfaces have $a_{i} \geq-2$. There are 5 smooth toric Fano surfaces, and 11 weak Fano, related by blow-up/down.

Example 3: Local toric surfaces

Example 3: Local toric surfaces

- Toric Fano surfaces admit strongly cyclic exceptional collections.

$$
\mathcal{O}(0), \mathcal{O}\left(D_{1}\right), \mathcal{O}\left(D_{1}+D_{2}\right), \ldots, \mathcal{O}\left(D_{1}+\cdots+D_{r-1}\right)
$$

For weak Fano surfaces, this is not strongly exceptional but there is an alternative choice $D_{i} \rightarrow \tilde{D}_{i}$.

Hille Perling 2011

Example 3: Local toric surfaces

- Toric Fano surfaces admit strongly cyclic exceptional collections.

$$
\mathcal{O}(0), \mathcal{O}\left(D_{1}\right), \mathcal{O}\left(D_{1}+D_{2}\right), \ldots, \mathcal{O}\left(D_{1}+\cdots+D_{r-1}\right)
$$

For weak Fano surfaces, this is not strongly exceptional but there is an alternative choice $D_{i} \rightarrow \tilde{D}_{i}$.

Hille Perling 2011

- Alternatively, one may read off the quiver along with its superpotential from the brane tiling. The various branches are in one-to-one correspondance with the internal perfect matchings.

Franco Hanany Kennaway Vegh Wecht 2005; Hanany Herzog Vegh 2006

Example 3: Local toric surfaces

- Toric Fano surfaces admit strongly cyclic exceptional collections.

$$
\mathcal{O}(0), \mathcal{O}\left(D_{1}\right), \mathcal{O}\left(D_{1}+D_{2}\right), \ldots, \mathcal{O}\left(D_{1}+\cdots+D_{r-1}\right)
$$

For weak Fano surfaces, this is not strongly exceptional but there is an alternative choice $D_{i} \rightarrow \tilde{D}_{i}$.

Hille Perling 2011

- Alternatively, one may read off the quiver along with its superpotential from the brane tiling. The various branches are in one-to-one correspondance with the internal perfect matchings.

Franco Hanany Kennaway Vegh Wecht 2005; Hanany Herzog Vegh 2006

- In all these examples, the BPS indices computed using the attractor flow formula are in agreement with the result form the blow-up and wall-crossing formulae.

Outline

(1) Quivers from exceptional collections

(2) Wall-crossing and attractor indices

(3) Examples
(4) Conclusion
B. Pioline (LPTHE)

Summary and Outlook

- VW invariants of Fano surfaces S, or BPS indices counting D4-D2-D0 bound states on K_{S}, can be computed algorithmically at arbitrary rank through the flow tree formula.

Summary and Outlook

- VW invariants of Fano surfaces S, or BPS indices counting D4-D2-D0 bound states on K_{S}, can be computed algorithmically at arbitrary rank through the flow tree formula.
- Presumably this method should extend to any rational or ruled surface. How about K3 surfaces or surfaces of general type ? In general, VW invariants will also include contributions from the monopole branch, can this be described in the language of quivers?

Summary and Outlook

- VW invariants of Fano surfaces S, or BPS indices counting D4-D2-D0 bound states on K_{S}, can be computed algorithmically at arbitrary rank through the flow tree formula.
- Presumably this method should extend to any rational or ruled surface. How about K3 surfaces or surfaces of general type ? In general, VW invariants will also include contributions from the monopole branch, can this be described in the language of quivers?
- For $S=\mathbb{P}^{2}$, BPS indices can also be computed using scattering diagrams. Are those equivalent to the attractor flow trees ?

Gross Pandharipande Siebert 2010; Bridgeland 2017; Bousseau (2019)

Summary and Outlook

- An important consequence is that generating functions of quiver indices $Z_{\vec{N}_{0}}(\tau)=\sum_{n} \Omega\left(\vec{N}_{0}+n \vec{N}_{D 0}\right) q^{n}$ should have (mock) modular properties.

Summary and Outlook

- An important consequence is that generating functions of quiver indices $Z_{\vec{N}_{0}}(\tau)=\sum_{n} \Omega\left(\vec{N}_{0}+n \vec{N}_{D 0}\right) q^{n}$ should have (mock) modular properties.
- Modularity should follow from some vertex operator algebra acting on the cohomology of quiver varieties, generalizing Nakajima's action of \hat{A}_{1} on the Hilbert scheme of points. When S is toric, a natural candidate is the Quiver Yangian.

Li Yamazaki 2020

Summary and Outlook

- An important consequence is that generating functions of quiver indices $Z_{\vec{N}_{0}}(\tau)=\sum_{n} \Omega\left(\vec{N}_{0}+n \vec{N}_{D 0}\right) q^{n}$ should have (mock) modular properties.
- Modularity should follow from some vertex operator algebra acting on the cohomology of quiver varieties, generalizing Nakajima's action of \hat{A}_{1} on the Hilbert scheme of points. When S is toric, a natural candidate is the Quiver Yangian.

Li Yamazaki 2020

- It would be interesting to compute BPS indices in compact CY threefolds, where non-trivial single-centered black holes are expected to occur !

Thank you for your attention, and mind the wall !

B. Pioline (LPTHE)

BPS indices, VW invariants and quivers
Lisbon, 10/09/2020
$48 / 48$

