Mock Modular $\frac{1}{4}$ -BPS entropy from $\frac{1}{2}$ -BPS states in 4d, $\mathcal{N} = 4$

Abhiram Kidambi (TU Wien)

Workshop on Black Holes: BPS, BMS and Integrability IST Lisboa

Re-re-recounting all dyons that don't die, for hopefully one last time

Abhiram Kidambi (TU Wien)

Workshop on Black Holes: BPS, BMS and Integrability IST Lisboa

HADAD

Dyonic black hole degeneracies in $\mathcal{N} = 4$ string theory from Dabholkar-Harvey degeneracies

Abhishek Chowdhury a,b , Abhiram Kidambi a,c , Sameer Murthy d , Valentin Reys e , Timm Wrase a

^a Institute of Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
 ^b IIT Bhubaneshwar, SBS Building, Argul, Khordha, 752050, Odisha, India
 ^c Stanford Institute for Theoretical Physics, Stanford University, Palo Alto, California, USA
 ^d King's College London, Strand, London WC2R 2LS, United Kingdom
 ^e Institute of Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium

Never underestimate the joy that people derive from hearing something they already know.

Idea of talk

String compactification: Type II on $K3 \times T^2 \equiv$ Het on T^6

[Dabholkar, Murthy, Zagier]

Idea of talk

String compactification: Type II on $K3 \times T^2 \equiv$ Het on T^6

Fourier expansion coefficients of $\frac{1}{\eta(\tau)^{24}}$ Exact formula + tecnhiques* Mock modular Jacobi forms that count single center states

[CMKRW]

Hereit Sen et.al; , Denef, Moore, Andriyash, Jafferis]
Rademacher expansion for MJF's
[Murthy, Bringmann; Reys, Ferrari]

Automorphic forms and BH's

Key Mantra 1: BPS black hole "partition functions" are automorphic forms that can be computed from the SCFT.

Ex:
$$\frac{1}{2}$$
-BPS states $\frac{1}{\eta(\tau)^{24}} = q^{-1} \prod_{i=1}^{\infty} \frac{1}{(1-q^i)^{24}}, \ q = e^{2\pi i \tau}$

Key Mantra 2: Black hole degeneracies are extracted charge wise from the Fourier expansion coefficients of the automorphic forms.

$$\frac{1}{\eta(\tau)^{24}} = \sum_{n \ge -1} c(n) q^r$$

Automorphic forms and BH's

Key Mantra 1: BPS black hole "partition functions" are automorphic forms that can be computed from the SCFT.

Ex:
$$\frac{1}{2}$$
-BPS states $\frac{1}{\eta(\tau)^{24}} = q^{-1} \prod_{i=1}^{\infty} \frac{1}{(1-q^i)^{24}}, \ q = e^{2\pi i \tau}$

Key Mantra 2: Black hole degeneracies are extracted charge wise from the Fourier expansion coefficients of the automorphic forms.

Key Mantra 3: Need only know the degeneracies of "*polar terms*" to compute all BPS degeneracies (Rademacher expansion)

Dyonic black holes with electric charge Q and magnetic charge P.

 $\frac{1}{4}$ -BPS states counted by inverse of Igusa cusp form $\frac{1}{\Phi_{10}(\tau, \sigma, z)}$

Remark: Discrimininat $\Delta = 4mn - \ell^2$ is U-duality invariant quantity built out of T-dual invariants.

 $\psi_m^F(\tau,z)$ is a holomorphic, mock–modular Jacobi form.

Fourier Expansion: $\psi_m^F(\tau, z) = \sum_{n,\ell} c_m^F(n,\ell) q^n y^\ell$

 $\psi_m^F(\tau,z)$ is a holomorphic, mock–modular Jacobi form.

[Dijkgraaf, Maldacena, Moore, Verlinde; Moore, Manschot; Murthy, Bringmann; Ferrari, Reys]

Modularity and polar coefficients are enough to fully determine all FEC's

[Murthy, Bringmann; Ferrari, Reys]

$$\begin{split} c_m^{\mathrm{F}}(n,\ell) &= 2\pi \sum_{k=1}^{\infty} \sum_{\substack{\tilde{\ell} \in \mathbb{Z}/2m\mathbb{Z} \\ 4m\bar{n}-\tilde{\ell}^2 < 0}} c_m^{\mathrm{F}}(\tilde{n},\tilde{\ell}) \underbrace{Kl(\frac{\Delta}{4m},\frac{\tilde{\Delta}_{4m}}{k};k,\psi)_{\ell \ell}}_{k} \left(\frac{|\tilde{\Delta}|}{\Delta}\right)^{23/4} I_{23/2} \left(\frac{\pi}{mk} \sqrt{|\tilde{\Delta}|\Delta}\right) \\ &+ \sqrt{2m} \sum_{k=1}^{\infty} \underbrace{Kl(\frac{\Delta}{4m},-1;k,\psi)_{\ell 0}}_{\sqrt{k}} \left(\frac{4m}{\Delta}\right)^6 I_{12} \left(\frac{2\pi}{k\sqrt{m}}\sqrt{\Delta}\right) \\ &- \frac{1}{2\pi} \sum_{\substack{k=1\\g \in \mathbb{Z}/2m\mathbb{Z}\\g \in \mathbb{Z}/2m\mathbb{Z}}\\g \in \mathbb{Z}/2m\mathbb{Z}/2m\mathbb{Z}\\g \in \mathbb{Z}/2m\mathbb{Z}\\g \in \mathbb{Z}/2m\mathbb{Z}|g \in \mathbb{Z}$$

Kloosterman sum

$$Kl(\mu,\nu;k,\psi)_{\ell\tilde{\ell}} \coloneqq \sum_{\substack{0 \le h < k\\(h,k)=1}} e^{2\pi i \left(-\frac{h}{k}\mu + \frac{h'}{k}\nu\right)} \psi(\gamma)_{\ell\tilde{\ell}}$$

 ψ is an appropriate multiplier system

$$\gamma = \begin{pmatrix} h' & -\frac{hh'+1}{k} \\ k & -h \end{pmatrix} \in SL(2,\mathbb{Z}) \text{ and } hh' \equiv -1 \pmod{k}$$

$$\begin{aligned} r_{m}^{\mathbb{P}}(n,\ell) &= 2\pi \sum_{k=1}^{\infty} \sum_{\substack{\ell \in \mathbb{Z}/2m\mathbb{Z} \\ 4m, -\ell^{2} < 0}} c_{m}^{\mathbb{P}}(n,\ell) \underbrace{Kl(\frac{\Delta}{4m}, \frac{\Delta}{4m}; k, \psi)_{\ell\ell}}_{k} \underbrace{\left(\frac{|\Delta|}{\Delta}\right)^{23/4} \underbrace{f_{23/2}\left(\frac{\pi}{mk}\sqrt{|\Delta|\Delta|}\right)}_{mk} \sqrt{|\Delta|\Delta|}}_{k} \\ &+ \sqrt{2m} \sum_{k=1}^{\infty} \underbrace{\int_{\substack{j \in \mathbb{Z}/2m\mathbb{Z} \\ j \in \mathbb{Z}/2m\mathbb{Z} \\ g \in \mathbb{Z} \\ g \in \mathbb{Z}/2m\mathbb{Z} \\ g \in \mathbb{Z} \\ g \in \mathbb{Z} \\ g \in \mathbb{Z} \\ g \in \mathbb{Z}/2m\mathbb{Z} \\ g \in \mathbb{Z} \\$$

$$\begin{split} c_{m}^{\mathrm{F}}(n,\ell) &= 2\pi \sum_{k=1}^{\infty} \sum_{\substack{\ell \in \mathbb{Z}/2m\mathbb{Z} \\ 4mn - \ell^{2} < 0 \\ k=1}} c_{m}^{\mathrm{F}}(n,\ell) \underbrace{Kl(\frac{\Lambda}{4m}, \frac{\Lambda}{4m}; k, \psi)_{\ell \ell}}_{k} \left(\frac{|\tilde{\Delta}|}{\Delta}\right)^{23/4} \underbrace{t_{23/2}(\frac{\pi}{mk}\sqrt{|\tilde{\Delta}|\Delta})}_{mk} \sqrt{|\tilde{\Delta}|\Delta} \\ &+ \sqrt{2m} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z}/2m\mathbb{Z} \\ j \in \mathbb{Z}/2m\mathbb{Z} \\ g \equiv j (\mathrm{mod} \ 2m) \\ k}} \underbrace{Kl((\frac{\Lambda}{4m}, -1 - \frac{g^{2}}{4m}; k, \psi)_{\ell \ell}}_{k} \underbrace{(\frac{4m}{\Delta}\right)^{25/4} \times \\ &+ \sum_{j \in \mathbb{Z}/2m\mathbb{Z} \\ g \equiv j (\mathrm{mod} \ 2m) \\ k} \times \int_{-1/\sqrt{m}}^{+1/\sqrt{m}} \underbrace{f_{k,g,m}(u)}_{k,g,m}(u, \underbrace{I_{25/2}(\frac{2\pi}{k\sqrt{m}}\sqrt{\Delta}(1 - mu^{2})}_{k})(1 - mu^{2})^{25/4} \, \mathrm{d}u \\ & \mathbf{Kloosterman \ sum} \\ \end{split}$$

$$I - Bessel \ function \\ I_{\rho}(x) &= \frac{1}{2\pi i} \left(\frac{x}{2}\right)^{\rho} \int_{\epsilon - i\infty}^{\epsilon + i\infty} t^{-\rho - 1} e^{t + \frac{x^{2}}{4t}} \, \mathrm{d}t \\ \underbrace{Kloosterman \ sum}_{k} \underbrace{f_{k,g,m}(u) := \left\{\frac{\pi^{2}}{\sinh^{2}(\frac{\pi}{k} - \frac{\pi ig}{2mk})} & \text{if } g \neq 0 \ (\text{mod} \ 2mk), \\ \frac{\pi^{2}}{\sinh^{2}(\frac{\pi}{k})} - \frac{k^{2}}{u^{2}} & \text{if } g \equiv 0 \ (\text{mod} \ 2mk). \\ \end{array}\right\}}$$

$$Kloosterman \ sumther the system \\ \gamma &= \left(\frac{h' - \frac{\hbar h' + 1}{k}}{k} \right) \in SL(2,\mathbb{Z}) \ and \ hh' \equiv -1 \ (\text{mod} \ k) \\ \end{split}$$

$$\begin{aligned} c_m^{\rm F}(n,\ell) &= 2\pi \sum_{k=1}^{\infty} \sum_{\substack{\tilde{\ell} \in \mathbb{Z}/2m\mathbb{Z} \\ 4m\tilde{n} - \ell^2 < 0}} c_m^{\rm F}(\tilde{n},\tilde{\ell}) \frac{Kl(\frac{A}{4m},\frac{\tilde{A}}{4m};k,\psi)_{\ell\tilde{\ell}}}{k} \left(\frac{|\tilde{\Delta}|}{\Delta}\right)^{23/4} I_{23/2}\left(\frac{\pi}{mk}\sqrt{|\tilde{\Delta}|\Delta}\right) \\ &+ \sqrt{2m} \sum_{k=1}^{\infty} \frac{Kl(\frac{A}{4m},-1;k,\psi)_{\ell 0}}{\sqrt{k}} \left(\frac{4m}{\Delta}\right)^6 I_{12}\left(\frac{2\pi}{k\sqrt{m}}\sqrt{\Delta}\right) \\ &- \frac{1}{2\pi} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z}/2m\mathbb{Z} \\ g \equiv j(mod \ 2m) \\ g \equiv j(mod \ 2m)}} \frac{Kl(\frac{A}{4m},-1-\frac{g^2}{4m};k,\psi)_{\ell j}}{k^2} \left(\frac{4m}{\Delta}\right)^{25/4} \times \\ &\int_{-1/\sqrt{m}}^{+1/\sqrt{m}} f_{k,g,m}(u) I_{25/2}\left(\frac{2\pi}{k\sqrt{m}}\sqrt{\Delta(1-mu^2)}\right) (1-mu^2)^{25/4} \, \mathrm{d}u \end{aligned}$$
Polar coefficients $\tilde{c}_m^F(n,\ell) \\ \Delta &= 4mn - \ell^2 < 0 \end{aligned}$

Issue from holography

 $\Delta < 0$ states "seed" large black hole entropy

(Cardy formula)

Polar coefficients are required input for Hardy–Ramanujan–Rademacher circle method

Attractors and walls

Degeneracy of $\frac{1}{4}$ -BPS states is contour dependent

Choose contour on SUHP that corresponds to choosing attractor values

[Ferrara, Kallosh, Strominger; Cheng-Verlinde; Sen; CMKRW]

Fourier–Jacobi expansion: SUHP reduces to UHP

Appell–Lerch sum:
$$\mathcal{A}_{2,m}(\tau, z) = \sum_{s \in \mathbb{Z}} \frac{q^{ms^2+s}y^{2ms+1}}{(1-q^sy)^2}$$

AL sum has different Fourier expansions in different strips of the UHP

Chamber in "axion–dilaton" moduli space corresponding to attractor contour

[Sen; CMKRW]

Attractors and walls R

Counting $\Delta < 0\,$ bound states: Walls

S-walls are semicircles that start and end on rationals.

Counting $\Delta < 0$ bound states: Walls

Each wall has an associated $SL(2,\mathbb{Z})$ matrix, γ .

Set of all walls in UHP:

$$\Gamma_{S}^{+} \coloneqq \left\{ \gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL(2, \mathbb{Z}) \mid r > 0, s > 0 \right\},$$

$$\Gamma_{S}^{-} \coloneqq \left\{ \gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL(2, \mathbb{Z}) \mid r > 0, s < 0 \right\},$$

$$\Gamma_{T} \coloneqq \left\{ \gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL(2, \mathbb{Z}) \mid rs = 0 \right\}.$$

Counting $\Delta < 0$ bound states: Walls

Each wall has an associated $SL(2,\mathbb{Z})$ matrix, γ .

Set of all walls in UHP:

$$\Gamma_{S}^{+} \coloneqq \left\{ \gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL(2, \mathbb{Z}) \mid r > 0, s > 0 \right\},$$

$$\Gamma_{S}^{-} \coloneqq \left\{ \gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL(2, \mathbb{Z}) \mid r > 0, s < 0 \right\},$$

$$\Gamma_{T} \coloneqq \left\{ \gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL(2, \mathbb{Z}) \mid rs = 0 \right\}.$$

Counting $\Delta < 0$ bound states

 $\psi_m^P(\tau, z)$ removes contribution from T-walls. $\Delta < 0$ bound states can only come from S-walls.

Consider $\Delta < 0$ state $(n, m, \ell) = (Q^2/2, P^2/2, P \cdot Q)$

$$m_{\gamma} = r^2 n + p^2 m - pr\ell.$$

Counting $\Delta < 0$ bound states

Counting $\Delta < 0$ bound states

BUT $\frac{1}{2} \sum_{\gamma \in \Gamma_S} (-1)^{\ell_{\gamma}+1} \theta(\gamma, \mathcal{R}) |\ell_{\gamma}| d(m_{\gamma}) d(n_{\gamma})$

is a sum over an infinite set

Try to constrain it

Case 1:
$$\Delta < 0, (n_{\gamma} \ge 0, m_{\gamma} \ge 0)$$

$$n_{\gamma} = s^{2}n + q^{2}m - sq\ell,$$

$$\ell_{\gamma} = -2srn - 2pqm + \ell(ps + qr),$$

$$m_{\gamma} = r^{2}n + p^{2}m - pr\ell.$$

Solve for bounds on γ

[CMKRW]

Contribution from only $\gamma \in \Gamma_S$ such that $\gamma = \begin{pmatrix} p & q \\ r & r \end{pmatrix}, -m < p, q, r, s < m$

Bound state metamorphosis

Subtlety in case n_{γ} and/or $m_{\gamma} = -1$

Consider: n_{γ} or $m_{\gamma} = -1$ (electric or magnetic BSM)

A wall γ at which BSM occurs contributes to the degeneracy of $\Delta < 0$ states in \mathcal{R} iff $\tilde{\gamma}$ also contributes. Both their contributions are identified and counted only once.

Case 2: $\Delta < 0, (n_{\gamma} \ge 0, m_{\gamma} = -1 \text{ or } n_{\gamma} = -1, m_{\gamma} \ge 0)$

Only contributing case

Case 2: $\Delta < 0, (n_{\gamma} \ge 0, m_{\gamma} = -1 \text{ or } n_{\gamma} = -1, m_{\gamma} \ge 0)$

$$n_{\gamma} = s^{2}n + q^{2}m - sq\ell,$$

$$\ell_{\gamma} = -2srn - 2pqm + \ell(ps + qr),$$

$$m_{\gamma} = r^{2}n + p^{2}m - pr\ell.$$

Solve for bounds on γ

Contribution from only $\gamma \in \Gamma_S$ such that

$$\gamma = \begin{pmatrix} p & q \\ r & r \end{pmatrix}, -(m+1) < p, q, r, s < m+1$$

Case 3: $\Delta < 0, (n_{\gamma} = m_{\gamma} = -1)$ Dyonic metamorphosis

Let γ be a wall at which $m_{\gamma} = n_{\gamma} = -1$. The metamorphic duals are

$$\begin{split} \tilde{\gamma}_i \ &= \ \tilde{\gamma}_{i-1} \cdot M_{(i \bmod 2)} \quad for \quad i > 0 \,, \quad and \quad \tilde{\gamma}_0 = \gamma \,, \\ where \ M_1, \ M_0 \ are \ defined \ as \quad M_1 \ \coloneqq \ \begin{pmatrix} 1 & -\ell_\gamma \\ 0 & 1 \end{pmatrix}, \qquad M_0 \ \coloneqq \ \begin{pmatrix} 1 & 0 \\ \ell_\gamma & 1 \end{pmatrix}. \end{split}$$

Given (n, m, ℓ) , γ , all $\tilde{\gamma}_i$ have the same contribution to polar coefficients $\tilde{c}_m(n, \ell)$

A wall γ at which dyonic BSM occurs contributes to the degeneracy of $\Delta < 0$ states in \mathcal{R} iff all $\tilde{\gamma}_i$ also contribute. All their contributions are identified and counted only once.

Contribution from only $\gamma \in \Gamma_S$ such that $\gamma = \begin{pmatrix} p & q \\ r & r \end{pmatrix}, -(m+1) \leq p, q, r, s \leq m+1$

Comment: Very interesting number theory here. Refer CMKRW.

Orbits of metamorphosis

Metamorphosis splits walls contributing to $\tilde{c}_m(n, \ell)$ into 'orbits' of length 1, 2, ∞

Let $\Gamma_{\mathsf{BSM}}(n, m, \ell) = PSL(2, \mathbb{Z})/BSM$

Define: $\Theta(\mu) = \prod_{\gamma \in \mu} \theta(\gamma, \mathcal{R}), \qquad \mu \in \Gamma_{BSM}(n, \ell, m)$

$$\Theta(\gamma) = \Theta(\mu), \quad \gamma \in \mu$$

$$\widetilde{c}_m(n,\ell) = \frac{1}{2} \sum_{\gamma \in \Gamma_{\text{BSM}}(n,\ell,m)} (-1)^{\ell_{\gamma}+1} \Theta(\gamma) \left| \ell_{\gamma} \right| d(m_{\gamma}) d(n_{\gamma})$$

Contribution from only $\gamma \in \Gamma_{\text{BSM}}$ such that $\gamma = \begin{pmatrix} p & q \\ r & r \end{pmatrix}, -(m+1) \leq p, q, r, s \leq m+1$

Agreement with SUGRA Localization

I.	II.	III.	IV.	v.
Charges	Walls	Transf. charges	Contribution	Net Index
$(m,n,\ell;\Delta)$	$\gamma = q/s \rightarrow p/r$	$(m_\gamma, \ n_\gamma, \ \ell_\gamma)$	from wall	$\widetilde{c}_m(n,\ell)$
(1, -1, 1; -5)	$-1/2 \rightarrow 0/1$	(-1, -1, 3)	3	3
	$-1/-1 \rightarrow 0/1$	$(-1, \ -1, \ -3)$		
	$0/1 \rightarrow 1/1$	(-1, -1, 3)		
	$-3/-2 \rightarrow 1/1$	$(-1, \ -1, \ -3)$		
		:		
(1, -1, 0; -4)	$-1/1 \rightarrow 0/1$	$(-1, \ 0, \ 2)$	48	48
	-1/-1 ightarrow 0/1	$(-1, \ 0, \ -2)$	2000 2000 (2000)	
(1, 0, 1; -1)	$\begin{array}{c} 0/1 \rightarrow 1/1 \\ \hline 0/1 \rightarrow 1/2 \end{array}$	(0, 0, 1)	576	
		(-1, 0, 1)	24	600
	$-1/-1 \to 1/2$			
(2, -1, 2; -12)	$-1/3 \rightarrow 0/1$	(-1, -1, 4)	4	4
	$-1/-1 \rightarrow 0/1$			
	5 S S S S S S S S S S S S S S S S S S S	(-1, -1, 4)		
	$-4/-3 \rightarrow 1/1$	(-1, -1, -4)		
	:	:		8
(2, -1, 1; -9)	$-1/2 \rightarrow 0/1$	$(-1, \ 0, \ 3)$	72	72
	-1/-1 ightarrow 0/1	$(-1, 0, -3) \\ (-1, 1, 2)$		
(2, -1, 0; -8)	$-1/1 \rightarrow 0/1$		648	648
	$-1/-1 \rightarrow 0/1$	(-1, 1, -2)	60 - 3102	5 52
(2, 0, 2; -4)	$0/1 \rightarrow 1/1$	(0, 0, 2)	1152	1152
(2, 0, 1; -1)	$0/1 \rightarrow 1/1$	(1, 0, 1)	7776	8376
	$0/1 \rightarrow 1/2$	(0, 0, 1)	576	
	$0/1 \rightarrow 1/3$	(-1, 0, 1)	24	
	$-1/-2 \to 1/3$			-
(3, -1, 3; -21)	$-1/4 \rightarrow 0/1$	(-1, -1, 5)	5	5
	-1/-1 $ ightarrow$ $0/1$	A. 1997 - 1997 - 1997		
		(-1, -1, 5)		
	$-5/-4 \rightarrow 1/1$	(-1, -1, -5)		
		:		
(3, -1, 2; -16)	$-1/3 \rightarrow 0/1$	(-1, 0, 4)	96	96
	$-1/-1 \rightarrow 0/1$	(-1, 0, -4)		~~

Many more checks in [CMKRW]

Conclusions

- 1. $\Delta < 0$ states in $\psi_m^F(\tau, z)$ are $\frac{1}{2}$ -BPS bound states
- 2. Should be counted exactly since they seed $\frac{1}{4}$ -BPS BH entropy
- 3. Presented an exact formula which counts $\Delta < 0$ states in an appropriate chamber
- 4. Subtleties from metamorphosis constrain the set of contributing walls
- 5. Implication of m + 1 being the bound is that BH entropy is controlled by a finite number of worldsheet instantons
- 6. Exact formula is computationally advantageous
- 7. OSV type argument?

Outlook

- 1. Gravitational interpretation of $\Delta < 0$ states? [Dabholkar, Gaiotto, Nampuri]
- 2. CHL extension *[Cardoso, Nampuri, Rossello]*

Obrigado!

