Mock Modular $\frac{1}{4}$-BPS entropy from

 $\frac{1}{2}$-BPS states in $4 d, \mathcal{N}=4$

Re-re-recounting all dyons that don't die, for hopefully one last time

Dyonic black hole degeneracies in $\mathcal{N}=4$ string theory from Dabholkar-Harvey degeneracies

Abhishek Chowdhury ${ }^{a, b}$, Abhiram Kidambi ${ }^{a, c}$, Sameer Murthy ${ }^{d}$, Valentin Reys ${ }^{e}$, Timm Wrase ${ }^{a}$
${ }^{a}$ Institute of Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
${ }^{b}$ IIT Bhubaneshwar, SBS Building, Argul, Khordha, 752050, Odisha, India
${ }^{c}$ Stanford Insititute for Theoretical Physics, Stanford University, Palo Alto, California, USA
${ }^{d}$ King's College London, Strand, London WC2R 2LS, United Kingdom
${ }^{e}$ Institute of Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium

Never underestimate the joy that people derive from hearing something they already know.

Idea of talk

String compactification: Type II on $K 3 \times T^{2} \equiv$ Het on T^{6}

Dyonic BH solutions:	$\frac{1}{2}-\mathrm{BPS}$	$\frac{1}{4}-\mathrm{BPS}$ Area: Partition function: [Dabholkar, Harvey]
Zero area	Large BH	
[Dijkgraaf, Verlinde, Verlinde]		

Remove Wall Crossing effects
$\frac{1}{\Phi_{10}(\tau, \sigma, z)}$ counts all $\frac{1}{4}$-BPS states
Mock modular Jacobi forms that count single center states

Idea of talk

String compactification: Type II on $K 3 \times T^{2} \equiv$ Het on T^{6}

Dyonic BH solutions:	$\frac{1}{2}-\mathrm{BPS}$	$\frac{1}{4}-\mathrm{BPS}$
Area:	Zero area	Large BH
Partition function:	$\frac{1}{\eta(\tau)^{24}}$	
[Dabholkar, Harvey]	$\frac{1}{\Phi_{10}(\tau, \sigma, z)}$	
[Dijkgraaf, Verlinde, Verlinde]		

Fourier expansion coefficients of

$$
\frac{1}{\eta(\tau)^{24}}
$$

Exact formula + tecnhiques*

Mock modular Jacobi forms that count single center states

* = Black hole metamorphosis, Rademacher expansion for MJF's

Automorphic forms and BH's

Key Mantra 1: BPS black hole "partition functions" are automorphic forms that can be computed from the SCFT.

Ex: $\frac{1}{2}$-BPS states $\quad \frac{1}{\eta(\tau)^{24}}=q^{-1} \prod_{i=1}^{\infty} \frac{1}{\left(1-q^{i}\right)^{24}}, q=e^{2 \pi i \tau}$

Key Mantra 2: Black hole degeneracies are extracted charge wise from the Fourier expansion coefficients of the automorphic forms.

$$
\frac{1}{\eta(\tau)^{24}}=\sum_{n \geq-1} c(n) q^{n}
$$

Automorphic forms and BH's

Key Mantra 1: BPS black hole "partition functions" are automorphic forms that can be computed from the SCFT.

Ex: $\frac{1}{2}$-BPS states $\quad \frac{1}{\eta(\tau)^{24}}=q^{-1} \prod_{i=1}^{\infty} \frac{1}{\left(1-q^{i}\right)^{24}}, q=e^{2 \pi i \tau}$

Key Mantra 2: Black hole degeneracies are extracted charge wise from the Fourier expansion coefficients of the automorphic forms.

$$
\frac{1}{\eta(\tau)^{24}}=\sum_{n \geq-1} c(n) q^{n}
$$

Degeneracy of $\frac{1}{2}$-BPS BH's with electric or magnetic T-dual invariant n

Key Mantra 3: Need only know the degeneracies of "polar terms" to compute all BPS degeneracies (Rademacher expansion)

Mock modular dyonic BH entropy

Dyonic black holes with electric charge Q and magnetic charge P.

$$
\frac{1}{4}-\mathrm{BPS} \text { states counted by inverse of Igusa cusp form } \frac{1}{\Phi_{10}(\tau, \sigma, z)}
$$

Remark: Discrimininat $\Delta=4 m n-\ell^{2}$ is U-duality invariant quantity built out of T-dual invariants.

Mock modular dyonic BH entropy

Fourier expansion: $\quad \frac{1}{\Phi_{10}(\tau, \sigma, z)}=\sum_{n, m, \ell} c(n, m, \ell) q^{n} p^{m} y^{\ell}$

Degeneracy of $\frac{1}{4}$-BPS state $\left(Q^{2} / 2, P^{2}, P \cdot Q\right)=(n, m, \ell)$

Integral picks up residue at pole if \mathcal{C} encompasses it [Cheng, Verlinde]

Mock modular dyonic BH entropy

Fourier-Jacobi expansion: $\quad \frac{1}{\Phi_{10}(\tau, \sigma, z)}=\sum_{m \geq-1} \psi_{m}(\tau, z) p^{m}$
Meromorphic! $\psi_{m}(\tau, z)$ is a JF of weight -10 and index m

Remove the residue contribution to the integral

Single center $\frac{1}{4}$-BPS degeneracies
[Dabholkar, Murthy, Zagier]
Averaging function: $\operatorname{Av}^{(m)}\left[\frac{y}{(y-1)^{2}}\right]=\sum_{\lambda} q^{m \lambda^{2}} y^{2 m \lambda} \frac{q^{\lambda} y}{(y-1)^{2}}$
Appell-Lerch sum: $\mathcal{A}_{2, m}(\tau, z)=\sum_{s \in \mathbb{Z}} \frac{q^{m s^{2}+s} y^{2 m s+1}}{\left(1-q^{s} y\right)^{2}} \quad$ [DMZ]
Polar piece: $\psi_{m}^{P}(\tau, z)=\frac{p_{24}(m+1)}{\eta(\tau)^{24}} \mathcal{A}_{2, m}(\tau, z) \quad$ Coeff of q^{m} in Fourier exp of $\frac{1}{\eta(\tau)^{24}}$
Single center $\frac{1}{4}$-BPS PF: $\psi_{m}^{F}(\tau, z)=\psi_{m}(\tau, z)-\psi_{m}^{P}(\tau, z)$

Mock modular dyonic BH entropy

$\psi_{m}^{F}(\tau, z)$ is a holomorphic, mock-modular Jacobi form.

Fourier Expansion: $\quad \psi_{m}^{F}(\tau, z)=\sum_{n, \ell} c_{m}^{F}(n, \ell) q^{n} y^{\ell}$

Mock modular dyonic BH entropy

$\psi_{m}^{F}(\tau, z)$ is a holomorphic, mock-modular Jacobi form.
Fourier Expansion: $\quad \psi_{m}^{F}(\tau, z)=\sum_{n, \ell}\left({ }_{m}^{F}(n, \ell) n^{n} y^{\ell} \quad\right.$ Deg. of single center $\frac{1}{4}$-BPS BH

Mock modular dyonic BH entropy

$\psi_{m}^{F}(\tau, z)$ is a holomorphic, mock-modular Jacobi form.

MMJF's are weakly holomorphic: Finite number of terms with $\Delta=4 m n-\ell^{2}<0$ (Polar terms or negative discriminant states)

Hardy-Ramanujan growth of FEC's
(Cardy formula)
$\Delta<0$ states "seed" large black hole entropy

Polar coefficients are required input for Hardy-Ramanujan-Rademacher circle method

Hardy-Ramananujan-Rademacher circle method

[Dijkgraaf, Maldacena, Moore, Verlinde;
Moore, Manschot; Murthy, Bringmann;
Ferrari, Reys]

Modularity and polar coefficients are enough to fully determine all FEC's

Mock-modularity

Hardy-Ramananujan-Rademacher circle method

$$
\begin{aligned}
c_{m}^{\mathrm{F}}(n, \ell)= & 2 \pi \sum_{k=1}^{\infty} \sum_{\substack{\tilde{\ell} \in \mathbb{Z} / 2 m \mathbb{Z} \\
4 m \tilde{n}-\tilde{\ell}^{2}<0}} c_{m}^{\mathrm{F}}(\tilde{n}, \tilde{\ell}) \frac{K l\left(\frac{\Delta}{4 m}, \frac{\widetilde{\Delta}}{4 m} ; k, \psi\right)_{\ell \tilde{\ell}}\left(\frac{|\widetilde{\Delta}|}{\Delta}\right)^{23 / 4} I_{23 / 2}\left(\frac{\pi}{m k} \sqrt{|\widetilde{\Delta}| \Delta}\right)}{k}+\sqrt{2 m} \sum_{k=1}^{\infty} \frac{K l\left(\frac{\Delta}{4 m},-1 ; k, \psi\right)_{\ell 0}\left(\frac{4 m}{\Delta}\right)^{6} I_{12}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta}\right)}{\sqrt{k}} \\
& -\frac{1}{2 \pi} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z} / 2 m \pi \mathbb{Z} \\
g \in \mathbb{Z} / 2 m k \mathbb{Z} \\
g=j(\bmod 2 m)}} \frac{K l\left(\frac{\Delta}{4 m},-1-\frac{g^{2}}{4 m} ; k, \psi\right)_{\ell j}}{k^{2}}\left(\frac{4 m}{\Delta}\right)^{25 / 4} \times \\
& \times \int_{-1 / \sqrt{m}}^{+1 / \sqrt{m}} f_{k, g, m}(u) I_{25 / 2}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta\left(1-m u^{2}\right)}\right)\left(1-m u^{2}\right)^{25 / 4} \mathrm{~d} u
\end{aligned}
$$

Hardy-Ramananujan-Rademacher circle method

$$
\begin{aligned}
& c_{m}^{\mathrm{F}}(n, \ell)=2 \pi \sum_{k=1}^{\infty} \sum_{\substack{\tilde{\ell} \in \mathbb{Z} / 2 m \mathbb{Z} \\
4 m \widetilde{n}-\tilde{\ell}^{2}<0}} c_{m}^{\mathrm{F}}(\tilde{n}, \tilde{\ell}) \frac{\left.K l\left(\frac{\Delta}{4 m}, \frac{\widetilde{\Delta}}{4 m} ; k, \psi\right)\right)_{\ell \widetilde{\ell}}}{k}\left(\frac{|\widetilde{\Delta}|}{\Delta}\right)^{23 / 4} I_{23 / 2}\left(\frac{\pi}{m k} \sqrt{|\widetilde{\Delta}| \Delta}\right) \\
& +\sqrt{2 m} \sum_{k=1}^{\infty} \frac{K l\left(\frac{\Delta}{4 m},-1 ; k, \psi\right)_{\ell 0}}{\sqrt{h}}\left(\frac{4 m}{\Delta}\right)^{6} I_{12}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta}\right) \\
& -\frac{1}{2 \pi} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z} / 2 m \mathbb{Z} \\
g \in \mathbb{Z} / 2 m k \mathbb{Z} \\
g \equiv j(\bmod 2 m)}} \frac{K l\left(\frac{\Delta}{4 m},-1-\frac{g^{2}}{4 m} ; k, \psi\right)_{\ell j}}{k^{2}}\left(\frac{4 m}{\Delta}\right)^{25 / 4} \times \\
& \times \int_{-1 / \sqrt{m}}^{+1 / \sqrt{m}} f_{k, g, m}(u) I_{25 / 2}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta\left(1-m u^{2}\right)}\right)\left(1-m u^{2}\right)^{25 / 4} \mathrm{~d} u
\end{aligned}
$$

Kloosterman sum

$$
K l(\mu, \nu ; k, \psi)_{\tilde{\ell}}:=\sum_{\substack{0 \leq h<k \\(h, k)=1}} e^{2 \pi \mathrm{i}\left(-\frac{h}{k} \mu+\frac{h^{\prime}}{k} \nu\right)} \psi(\gamma)_{\tilde{\ell}}
$$

ψ is an appropriate multiplier system

$$
\gamma=\left(\begin{array}{cc}
h^{\prime}-\frac{h h^{\prime}+1}{k} \\
k & -h
\end{array}\right) \in S L(2, \mathbb{Z}) \text { and } h h^{\prime} \equiv-1(\bmod k)
$$

Hardy-Ramananujan-Rademacher circle method

$$
\begin{aligned}
c_{m}^{\mathrm{F}}(n, \ell)= & 2 \pi \sum_{k=1}^{\infty} \sum_{\substack{\tilde{\ell} \in \mathbb{Z} / 2 m \mathbb{Z} \\
4 m \tilde{n}-\tilde{\ell}^{2}<0}} c_{m}^{\mathrm{F}}(\tilde{n}, \overparen{\ell}) \frac{K l\left(\frac{\Delta}{4 m}, \frac{\widetilde{\Delta}}{4 m} ; k, \psi\right)_{\ell ⿹ 勹}}{k}\left(\frac{|\widetilde{\Delta}|}{\Delta}\right)^{23 / 4} I_{23 / 2}\left(\frac{\pi}{m k} \sqrt{|\widetilde{\Delta}| \Delta}\right) \\
& +\sqrt{2 m} \sum_{k=1}^{\infty} \frac{K l\left(\frac{\Delta}{4 m},-1 ; k, \psi\right)_{\ell 0}}{\sqrt{k}}\left(\frac{4 m}{\Delta}\right)^{6} I_{12}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta}\right) \\
& -\frac{1}{2 \pi} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z} / 2 m \mathbb{Z} \\
g \in \mathbb{Z} 2 m k \mathbb{Z} \\
g=j(\bmod 2 m)}} \frac{K l\left(\frac{\Delta}{4 m},-1-\frac{g^{2}}{4 m} ; k, \psi\right)}{k^{2}}\left(\frac{4 m}{\Delta}\right)^{25 / 4} \times \\
& \times \int_{-1 / \sqrt{m}}^{+1 / \sqrt{m}} f_{k, g, m}\left(u \left\lvert\, I_{25 / 2}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta\left(1-m u^{2}\right)}\right)\left(1-m u^{2}\right)^{25 / 4} \mathrm{~d} u\right.\right.
\end{aligned}
$$

I-Bessel function

$$
I_{\rho}(x)=\frac{1}{2 \pi \mathrm{i}}\left(\frac{x}{2}\right)^{\rho} \int_{\epsilon-\mathrm{i} \infty}^{\epsilon+\mathrm{i} \infty} t^{-\rho-1} e^{t+\frac{x^{2}}{4 t}} \mathrm{~d} t
$$

Kloosterman sum

$$
K l(\mu, \nu ; k, \psi)_{\tilde{\ell}}:=\sum_{\substack{0 \leq h<k \\(h, k)=1}} e^{2 \pi \mathrm{i}\left(-\frac{h}{k} \mu+\frac{h^{\prime}}{k} \nu\right)} \psi(\gamma)_{\tilde{\ell}}
$$

ψ is an appropriate multiplier system

$$
\gamma=\left(\begin{array}{cc}
h^{\prime} & -\frac{h h^{\prime}+1}{k} \\
k & -h
\end{array}\right) \in S L(2, \mathbb{Z}) \text { and } h h^{\prime} \equiv-1(\bmod k)
$$

Hardy-Ramananujan-Rademacher circle method

$$
\begin{aligned}
& c_{m}^{\mathrm{F}}(n, \ell)=2 \pi \sum_{k=1}^{\infty} \sum_{\substack{\tilde{\imath} \in \mathbb{Z} / 2 m \mathbb{Z} \\
4 m \tilde{n}-\tilde{\ell}^{2}<0}} c_{m}^{\mathrm{F}}(\tilde{n}, \tilde{\ell}) \frac{K l\left(\frac{\Delta}{4 m}, \frac{\tilde{\Delta}}{4 m} ; k, \psi\right)}{h}\left(\frac{|\widetilde{\Delta}|}{\Delta}\right)^{23 / 4} I_{23 / 2}\left(\frac{\pi}{m k} \sqrt{|\widetilde{\Delta}| \Delta}\right) \\
& +\sqrt{2 m} \sum_{k=1}^{\infty} \frac{\sqrt{k l\left(\frac{\Delta}{4 m},-1 ; k, \psi\right)_{\ell 0}}}{\sqrt{k}}\left(\frac{4 m}{\Delta}\right)^{6} I_{12}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta}\right) \\
& -\frac{1}{2 \pi} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z} / 2 m \mathbb{Z} \\
g \in / 2 m \mathbb{Z} \\
g \equiv j(\bmod 2 m)}} \frac{K l\left(\frac{\Delta}{4 m},-1-\frac{g^{2}}{4 m} ; k, \psi\right)}{k^{2}}\left(\frac{4 m}{\Delta}\right)^{25 / 4} \times \\
& \times \int_{-1 / \sqrt{m}}^{+1 / \sqrt{m}} f_{k, g, n}\left(u I_{25 / 2}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta\left(1-m u^{2}\right)}\right)\left(1-m u^{2}\right)^{25 / 4} \mathrm{~d} u\right.
\end{aligned}
$$

I-Bessel function

$$
I_{\rho}(x)=\frac{1}{2 \pi \mathrm{i}}\left(\frac{x}{2}\right)^{\rho} \int_{\epsilon-\mathrm{i} \infty}^{\epsilon+\mathrm{i} \infty} t^{-\rho-1} e^{t+\frac{x^{2}}{4 t}} \mathrm{~d} t
$$

Kloosterman sum

$$
f_{k, g, m}(u):= \begin{cases}\frac{\pi^{2}}{\sinh ^{2}\left(\frac{\pi u}{k}-\frac{\pi \mathrm{i} g}{2 m k}\right)} & \text { if } g \not \equiv 0(\bmod 2 m k) \\ \frac{\pi^{2}}{\sinh ^{2}\left(\frac{\pi u}{k}\right)}-\frac{k^{2}}{u^{2}} & \text { if } g \equiv 0(\bmod 2 m k)\end{cases}
$$

$$
K l(\mu, \nu ; k, \psi)_{\tilde{\ell}}:=\sum_{\substack{0 \leq h<k \\(h, k)=1}} e^{2 \pi \mathrm{i}\left(-\frac{h}{k} \mu+\frac{h^{\prime}}{k} \nu\right)} \psi(\gamma)_{\tilde{\ell}}
$$

ψ is an appropriate multiplier system

$$
\gamma=\left(\begin{array}{cc}
h^{\prime} & -\frac{h h^{\prime}+1}{k} \\
k & -h
\end{array}\right) \in S L(2, \mathbb{Z}) \text { and } h h^{\prime} \equiv-1(\bmod k)
$$

Hardy-Ramananujan-Rademacher circle method

Issue from holography

Localization of $\frac{1}{4}$-BPS states in $\mathcal{N}=4$ SUGRA

Does not match for a certain $\Delta<0$ states

BUT

Hardy-Ramanujan growth of FEC's
(Cardy formula)
$\Delta<0$ states "seed" large black hole entropy

Polar coefficients are required input for Hardy-Ramanujan-Rademacher circle method

Attractors and walls

Degeneracy of $\frac{1}{4}$-BPS states is contour dependent
Choose contour on SUHP that corresponds to choosing attractor values
[Ferrara, Kallosh, Strominger;
Cheng-Verlinde; Sen; CMKRW]

Fourier-Jacobi expansion: SUHP reduces to UHP

Appell-Lerch sum: $\mathcal{A}_{2, m}(\tau, z)=\sum_{s \in \mathbb{Z}} \frac{q^{m s^{2}+s} y^{2 m s+1}}{\left(1-q^{s} y\right)^{2}}$
AL sum has different Fourier expansions in different strips of the UHP

Chamber in "axion-dilaton" moduli space corresponding to attractor contour

Attractors and walls

Chamber \mathcal{R} : All $\Delta>0$ states are single center $\frac{1}{4}$-BPS states
Subtraction of $\psi_{m}^{P}(\tau, z)$ removes bound states from vertical 'T-walls'
Negative discriminant 'bound states' contribute from semicircular 'S-walls'
$\Delta<0$ states in $\psi_{m}^{F}(\tau, z)$ are residual bound states of $\frac{1}{2}$-BPS "monopoles/instantons"

Attractors and walls

Problem of obtaining correct single center $\frac{1}{4}-$ BPS degeneracies

Problem of counting precisely all $\Delta<0$ states in \mathcal{R}

Counting $\Delta<0$ bound states: Walls

R

S-walls are semicircles that start and end on rationals.

Counting $\Delta<0$ bound states: Walls

$$
p / r>q / s, \text { if } \gamma \in \Gamma_{S}^{+}
$$

Each wall has an associated $S L(2, \mathbb{Z})$ matrix, γ.

Set of all walls in UHP:

$$
\begin{aligned}
\Gamma_{S}^{+} & :=\left\{\left.\gamma=\binom{p}{r} \in \operatorname{PSL}(2, \mathbb{Z}) \right\rvert\, r>0, s>0\right\}, \\
\Gamma_{S}^{-} & :=\left\{\left.\gamma=\binom{p}{p} \in \operatorname{sSL}(2, \mathbb{Z}) \right\rvert\, r>0, s<0\right\}, \\
\Gamma_{T} & :=\left\{\left.\gamma=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z}) \right\rvert\, r s=0\right\} .
\end{aligned}
$$

$p / r<q / s$, if $\gamma \in \Gamma_{S}^{-}$
$\Gamma_{S}^{-} \cup \Gamma_{S}^{+} \cup \Gamma_{T}=P S L(2, \mathbb{Z})$

Counting $\Delta<0$ bound states: Walls

$$
p / r>q / s, \text { if } \gamma \in \Gamma_{S}^{+}
$$

Each wall has an associated $S L(2, \mathbb{Z})$ matrix, γ.

Set of all walls in UHP:

$$
\begin{aligned}
\Gamma_{S}^{+} & :=\left\{\left.\gamma=\binom{p}{r} \in \operatorname{PSL}(2, \mathbb{Z}) \right\rvert\, r>0, s>0\right\}, \\
\Gamma_{S}^{-} & :=\left\{\left.\gamma=\binom{p}{p} \in \operatorname{sSL}(2, \mathbb{Z}) \right\rvert\, r>0, s<0\right\}, \\
\Gamma_{T} & :=\left\{\left.\gamma=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z}) \right\rvert\, r s=0\right\} .
\end{aligned}
$$

$p / r<q / s$, if $\gamma \in \Gamma_{S}^{-}$
$\Gamma_{S}^{-} \cup \Gamma_{S}^{+} \cup \Gamma_{T}=P S L(2, \mathbb{Z})$

Counting $\Delta<0$ bound states

$\psi_{m}^{P}(\tau, z)$ removes contribution from T-walls. $\Delta<0$ bound states can only come from S-walls.
Consider $\Delta<0$ state $(n, m, \ell)=\left(Q^{2} / 2, P^{2} / 2, P \cdot Q\right)$
At a wall $\gamma=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right) \square\binom{Q}{P} \longrightarrow\binom{p(s Q-q P)}{r(s Q-q P)}+\binom{q(-r Q+p P)}{s(-r Q+p P)}$

Electric center

Magnetic center
$\left(n_{\gamma}, \ell_{\gamma}, m_{\gamma}\right)=\left(Q_{\gamma}^{2} / 2, Q_{\gamma} \cdot P_{\gamma}, P_{\gamma}^{2} / 2\right)$.

$$
\begin{aligned}
n_{\gamma} & =s^{2} n+q^{2} m-s q \ell \\
\ell_{\gamma} & =-2 s r n-2 p q m+\ell(p s+q r) \\
m_{\gamma} & =r^{2} n+p^{2} m-p r \ell
\end{aligned}
$$

Counting $\Delta<0$ bound states

Orientation of the wall $\gamma: q / s \rightarrow p / r$

Counting $\Delta<0$ bound states

$$
\begin{array}{r}
\text { Define: } \quad \theta(\gamma, \mathcal{R})=\left|\frac{\mathcal{O}(\gamma, \mathcal{R})+\operatorname{sgn}\left(\ell_{\gamma}\right)}{2}\right|, \quad \mathcal{O}(\gamma, \mathcal{R})= \begin{cases}+1, & \gamma \in \Gamma_{S}^{+} \\
-1, & \gamma \in \Gamma_{S}^{-}\end{cases} \\
\tilde{c}_{m}(n, \ell, \Delta<0) \text { contribution: } \frac{1}{2} \sum_{\gamma \in \Gamma_{S}}(-1)^{\ell_{\gamma}+1} \theta(\gamma, \mathcal{R})\left|\ell_{\gamma}\right| d\left(m_{\gamma}\right) d\left(n_{\gamma}\right) \\
\frac{1}{\eta(\tau)^{24}}=\sum_{n \geq-1} d(n) q^{n}
\end{array}
$$

is a sum over an infinite set

Try to constrain it

Case 1: $\Delta<0,\left(n_{\gamma} \geq 0, m_{\gamma} \geq 0\right)$

$$
\begin{aligned}
n_{\gamma} & =s^{2} n+q^{2} m-s q \ell \\
\ell_{\gamma} & =-2 s r n-2 p q m+\ell(p s+q r) \\
m_{\gamma} & =r^{2} n+p^{2} m-p r \ell
\end{aligned}
$$

[CMKRW]
Contribution from only $\gamma \in \Gamma_{S}$ such that

$$
\gamma=\left(\begin{array}{ll}
p & q \\
r & r
\end{array}\right),-m<p, q, r, s<m
$$

Bound state metamorphosis

Subtlety in case n_{γ} and/or $m_{\gamma}=-1$
Consider: n_{γ} or $m_{\gamma}=-1$ (electric or magnetic BSM)

For a wall γ with $n_{\gamma}=-1, m_{\gamma} \geq 0$, we define its metamorphic dual as

$$
\tilde{\gamma}=\gamma \cdot\left(\begin{array}{cc}
1 & 0 \\
-\ell_{\gamma} & 1
\end{array}\right)
$$

Given $(n, m, \ell), \gamma$ and $\tilde{\gamma}$ have the same contribution
 to polar coefficients $\tilde{c}_{m}(n, \ell)$

For a wall γ with $m_{\gamma}=-1, n_{\gamma} \geq 0$, we define its metamorphic dual as

$$
\tilde{\gamma}:=\gamma \cdot\left(\begin{array}{cc}
1 & -\ell_{\gamma} \\
0 & 1
\end{array}\right)
$$

A wall γ at which BSM occurs contributes to the degeneracy of $\Delta<0$ states in \mathcal{R} iff $\tilde{\gamma}$ also contributes. Both their contributions are identified and counted only once.

Case 2: $\Delta<0,\left(n_{\gamma} \geq 0, m_{\gamma}=-1\right.$ or $\left.n_{\gamma}=-1, m_{\gamma} \geq 0\right)$

$\underline{\Sigma}$	R	

Only contributing case

Non-contributing

Case 2: $\Delta<0,\left(n_{\gamma} \geq 0, m_{\gamma}=-1\right.$ or $\left.n_{\gamma}=-1, m_{\gamma} \geq 0\right)$

$$
\begin{aligned}
n_{\gamma} & =s^{2} n+q^{2} m-s q \ell, \\
\ell_{\gamma} & =-2 s r n-2 p q m+\ell(p s+q r), \\
m_{\gamma} & =r^{2} n+p^{2} m-p r \ell .
\end{aligned}
$$

Contribution from only $\gamma \in \Gamma_{S}$ such that

$$
\gamma=\left(\begin{array}{ll}
p & q \\
r & r
\end{array}\right),-(m+1)<p, q, r, s<m+1
$$

Case 3: $\Delta<0,\left(n_{\gamma}=m_{\gamma}=-1\right)$

Dyonic metamorphosis

Let γ be a wall at which $m_{\gamma}=n_{\gamma}=-1$. The metamorphic duals are

$$
\tilde{\gamma}_{i}=\tilde{\gamma}_{i-1} \cdot M_{(i \bmod 2)} \quad \text { for } \quad i>0, \quad \text { and } \quad \tilde{\gamma}_{0}=\gamma
$$

where M_{1}, M_{0} are defined as $M_{1}:=\left(\begin{array}{cc}1 & -\ell_{\gamma} \\ 0 & 1\end{array}\right), \quad M_{0}:=\left(\begin{array}{cc}1 & 0 \\ \ell_{\gamma} & 1\end{array}\right)$.

Given $(n, m, \ell), \gamma$, all $\tilde{\gamma}_{i}$ have the same contribution to polar coefficients $\tilde{c}_{m}(n, \ell)$

A wall γ at which dyonic BSM occurs contributes to the degeneracy of $\Delta<0$ states in \mathcal{R} iff all $\tilde{\gamma}_{i}$ also contribute. All their contributions are identified and counted only once.

Case 3: $\Delta<0,\left(n_{\gamma}=m_{\gamma}=-1\right)$
 Dyonic metamorphosis

Contribution from only $\gamma \in \Gamma_{S}$ such that

$$
\gamma=\left(\begin{array}{ll}
p & q \\
r & r
\end{array}\right),-(m+1) \leq p, q, r, s \leq m+1
$$

Comment: Very interesting number theory here. Refer CMKRW.

Orbits of metamorphosis

Metamorphosis splits walls contributing to $\tilde{c}_{m}(n, \ell)$ into 'orbits' of length $1,2, \infty$

Let $\Gamma_{\mathrm{BSM}}(n, m, \ell)=P S L(2, \mathbb{Z}) / B S M$
Define: $\Theta(\mu)=\prod_{\gamma \in \mu} \theta(\gamma, \mathcal{R}), \quad \mu \in \Gamma_{\mathrm{BSM}}(n, \ell, m)$

$$
\Theta(\gamma)=\Theta(\mu), \quad \gamma \in \mu
$$

$$
\widetilde{c}_{m}(n, \ell)=\frac{1}{2} \sum_{\gamma \in \Gamma_{\mathrm{BSM}}(n, \ell, m)}(-1)^{\ell_{\gamma}+1} \Theta(\gamma)\left|\ell_{\gamma}\right| d\left(m_{\gamma}\right) d\left(n_{\gamma}\right)
$$

Contribution from only $\gamma \in \Gamma_{\mathrm{BSM}}$ such that

$$
\gamma=\left(\begin{array}{cc}
p & q \\
r & r
\end{array}\right),-(m+1) \leq p, q, r, s \leq m+1
$$

Agreement with SUGRA Localization

I. Charges ($m, n, \ell ; \Delta$)	II. Walls $\gamma=q / s \rightarrow p / r$	III. Transf. charges $\left(m_{\gamma}, n_{\gamma}, \ell_{\gamma}\right)$	IV. Contribution from wall	V. Net Index $\widetilde{c}_{m}(n, \ell)$
$(1,-1,1 ;-5)$	$\begin{gathered} -1 / 2 \rightarrow 0 / 1 \\ -1 /-1 \rightarrow 0 / 1 \\ 0 / 1 \rightarrow 1 / 1 \\ -3 /-2 \rightarrow 1 / 1 \\ \vdots \end{gathered}$	$\begin{gathered} (-1,-1,3) \\ (-1,-1,-3) \\ (-1,-1,3) \\ (-1,-1,-3) \\ \vdots \end{gathered}$	3	3
$(1,-1,0 ;-4)$	$\begin{gathered} -1 / 1 \rightarrow 0 / 1 \\ -1 /-1 \rightarrow 0 / 1 \end{gathered}$	$\begin{gathered} (-1,0,2) \\ (-1,0,-2) \end{gathered}$	48	48
(1, 0,$1 ;-1)$	$0 / 1 \rightarrow 1 / 1$	$(0,0,1)$	576	600
	$\begin{gathered} 0 / 1 \rightarrow 1 / 2 \\ -1 /-1 \rightarrow 1 / 2 \end{gathered}$	$\begin{aligned} & (-1,0,1) \\ & (-1,0,-1) \end{aligned}$	24	
(2, -1, 2; -12)	$\begin{gathered} -1 / 3 \rightarrow 0 / 1 \\ -1 /-1 \rightarrow 0 / 1 \\ 0 / 1 \rightarrow 1 / 1 \\ -4 /-3 \rightarrow 1 / 1 \\ \vdots \end{gathered}$	$\begin{gathered} (-1,-1,4) \\ (-1,-1,-4) \\ (-1,-1,4) \\ (-1,-1,-4) \end{gathered}$	4	4
$(2,-1,1 ;-9)$	$\begin{gathered} -1 / 2 \rightarrow 0 / 1 \\ -1 /-1 \rightarrow 0 / 1 \end{gathered}$	$\begin{gathered} (-1,0,3) \\ (-1,0,-3) \end{gathered}$	72	72
$(2,-1,0 ;-8)$	$\begin{gathered} -1 / 1 \rightarrow 0 / 1 \\ -1 /-1 \rightarrow 0 / 1 \end{gathered}$	$\begin{gathered} (-1,1,2) \\ (-1,1,-2) \end{gathered}$	648	648
$(2,0,2 ;-4)$	$0 / 1 \rightarrow 1 / 1$	(0, 0, 2)	1152	1152
(2,0, 1; - 1)	$0 / 1 \rightarrow 1 / 1$	$(1,0,1)$	7776	8376
	$0 / 1 \rightarrow 1 / 2$	(0, 0, 1)	576	
	$\begin{gathered} 0 / 1 \rightarrow 1 / 3 \\ -1 /-2 \rightarrow 1 / 3 \end{gathered}$	$\begin{gathered} (-1,0,1) \\ (-1,0,-1) \\ \hline \end{gathered}$	24	
$(3,-1,3 ;-21)$	$\begin{gathered} -1 / 4 \rightarrow 0 / 1 \\ -1 /-1 \rightarrow 0 / 1 \\ 0 / 1 \rightarrow 1 / 1 \\ -5 /-4 \rightarrow 1 / 1 \\ \vdots \end{gathered}$	$\begin{gathered} (-1,-1,5) \\ (-1,-1,-5) \\ (-1,-1,5) \\ (-1,-1,-5) \\ \vdots \end{gathered}$	5	5
(3, -1, 2; -16)	$\begin{gathered} -1 / 3 \rightarrow 0 / 1 \\ -1 /-1 \rightarrow 0 / 1 \end{gathered}$	$\begin{gathered} (-1,0,4) \\ (-1,0,-4) \end{gathered}$	96	96

Many more checks in [CMKRW]

Conclusions

1. $\Delta<0$ states in $\psi_{m}^{F}(\tau, z)$ are $\frac{1}{2}$-BPS bound states
2. Should be counted exactly since they seed $\frac{1}{4}$-BPS BH entropy
3. Presented an exact formula which counts $\Delta<0$ states in an appropriate chamber
4. Subtleties from metamorphosis constrain the set of contributing walls
5. Implication of $m+1$ being the bound is that BH entropy is controlled by a finite number of worldsheet instantons
6. Exact formula is computationally advantageous
7. OSV type argument?

Outlook

1. Gravitational interpretation of $\Delta<0$ states? [Dabholkar, Gaiotto, Nampuri]
2. CHL extension [Cardoso, Nampuri, Rossello]

Obrigado!

