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Motivation

The main object of interest:

BPS indices €2(~) — (signed) number of BPS states in theories
with extended SUSY

 degeneracies of BPS black holes

* spectrum of states in supersymmetric gauge theories

 weights of instanton corrections to the effective action

* Donaldson-Thomas invariants of Calabi-Yau manifolds

« Vafa-Witten invariants of complex surfaces — topologically twisted SYM

It is useful to study generating functions h.. (1) = Z Q(~y) e2™ 07
qo >0
Sometimes they possess non-trivial ar 4 b 0 b
modular properties: [ g—— (c d) € SL(2,Z)
they can be modular forms, ar + b
mock modular forms, h (CT n d) = (c7 +d)"h(T)

higher depth mock modular forms...



Motivation

The goal: understand modular properties of
the generating functions of BPS indices 2(~)

e Can be used to extract the asymptotic behavior of BPS indices
to compare with the macroscopic entropy of BPS black holes

e Can be used to find them exactly!

e They encode a non-trivial geometry of the quantum corrected
moduli spaces affected by BPS instantons
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The plan of the talk

D4-D2-DO0 black holes in Type IIA/CY and their BPS indices

Modularity of the generating functions of (refined) BPS indices
and their modular completions

Applications:

a) BPS dyons in N=4 string theory

b) Vafa-Witten theory on projective surfaces

c) Holomorphic anomaly for BPS partition function
d) Quantization of the moduli space

Conclusions



D4-D2-DO0 black holes in Type [IA/CY

These are Y2 BPS black holes in 4d N=2 SUGRA

non-trivial

)

with electro-magnetic charge cycle on CY
v = (0,p% qa, qo0) a=1,...,b(CY) 4
label 4- and 2-dim cycles
wrapped by D4 and D2-branes
black hole ~ _ generalized Donaldson-Thomas

BPS index () — degeneracy invariant of CY

Natural generating function h}?f:qa (1) = Z Q(~) e2™07
qo >0
but: e the generating function depends on too many charges

e DT invariants depend on CY moduli: €2(~; z*) — wall-crossing
(BPS bound states can form or decay)

no nice modular properties expected



MSW invariants

Solution: consider MSW invariants
count states in SCFT constructed

QE/ISW = Q(% Zgo (’Y)) large volume

iIn Maldacena,Strominger,Witten ‘97

Properties:
e independent of CY moduli

e invariant under spectral flow symmetry

. B

QvMSW — Qp(éo)

do = qo — % k%q.q, — invariant charge
bounded from above

attractor point
Z50(7) = lim (=¢" +iAp?)

4 spectral flow Y
Qa = Qaq — K)abﬁb
qo — qo — €"qa + % Kabe® e

Kab = KabeP® — quadratic form, given

by intersection numbers of 4-cycles,
\_ of indefinite signature (1,b, —1) /

4 generating function A where
of MSW invariants _ 1
= oy —omiger | V)= 55 0(v/d)
hp(T) = Z Qp(qo) € d|~y
\_ do <ggr* Y, rational invariants




The origin of modular symmetry

modular group Q S-duality
M-theor \ —p T A Gy | 1B
Y/cy xT2 YPE A/ cyxst T duality YPEIB/cyxst

<«—» D4-D2-DObl.h. <eeeep D3-D1-D(-1) inst.
affect the metric on the QK moduli space M

Zﬂ LTwistor description of D-instantons}

I\/I“L;_bram;"/divisor

S.A.,Pioline,Saueressig,Vandoren 08

preserved by[non-pert. corrections| S.A.’09

{M carries an isometric action of SL(2,

. . . .

A function G on M (called “instanton generating potential”) :
constructed from DT-invariants is modular of weight (—%,5

. :

[ Restriction on (the generating function of) BPS indices Q(v)]

.

The functions h,(7) have a modular anomaly, but one can construct
an explicit expression for a non-holomorphic modular completion A, (7, T)




Refinement

There is a refined version of BPS indices (v, y) ~ Try (—y)
y — refinement parameter conjugate to the angular momentum

2J3

4 generating function of refined N
MSW invariants

. (q N
h;ef(,r’ y) _ Z 'p(QOa y) 6—271'1(107'

-1
\_ Go <Goax y—y single order
poleat y — 1

The claim: the unrefined construction of the modular completion ﬁp(fr, T)
has a natural generalization to the refined case provided
the (log of the) refinement parameter transforms as Jacobi elliptic variable:

- W
2T then w
ct +d

Q a b o
or (5)H(C d) (5> for w=a—1708

The unrefined construction can be obtained by taking the limit y — 1

If y=e
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Modular completion

h;;ef _ h;ef + Z Z Rref({’}/i}; 7.2) (_,y) i<j Vij eﬂlTQn({%}) H href

n=— 221, 1'72_

Jacobi modular form of weight —% b2

1=1

e 7Vij = (Vi,7vj) — Dirac skew-symmetric product

o (), =
=1

e R™ _ sum over (Schroder) trees of products of €57 (71,72+3)
signs and generalized error functions of order n-1

assigned to vertices of the trees, with parameters

defined by charges \ N

Generalized error functions

OF ({v;}, x) = / TP H sgn(v; - ') ;

A0 For n=1 reduces to
Span{wv; } .
the usual error function

®F (v, ) = Exf (\/?r ﬂ)

v

(+)
b . . . E3" (V142435 V4, V54+6+7+8)
K" qaqb — E ki iaQib — indefinite quadratic form > " e

V54+6+T+8

£ (2, vs)

Y5 Ye Y7 )8

Y2 73

P(v) — projector on Span{v;}



Modular completion — unrefined limit

The unrefined limit v — 1

It is well-defined because the sum over charges produces a zero of
order n-1 which cancels the poles of the refined generating functions

. B

The unrefined construction differs only by the factors assigned to vertices
of the trees which now involve sums of derivatives of the generalized error
functions

/Example: n =2 \

1 2Ty |’)/12| 27'2’72
Ry' = — = sgn(v2) Erfc 12| Ry = — Bsa -
- 2 (pp1p2) ’ 8m "2\ (pp1p2)
where (pp1p2) = ﬁabdpapzfpg
Bz (x?) = 2 e~ T _ 2nErfe(y/7|z|)

o - /




The origin of the completion

indefinite theta series of signature
These results follow from (nbe —=n+1,n—1)

Modular properties of the
G~ —— Z [ D hp(r ] 00 (1,t%,b%,...) —> theta series determine
i=1 p; the properties of A, (1)

[ g

for n > 2 there is
] a modular anomaly

n 1

rearrange
the expansion

S Iy

SICASN AN

\

modular modular
completion invariant

How to construct modular
completions of indefinite
theta series?

0O



Indefinite theta series

Op(T,2) = Z (—1)9P omiTa’+2mig-z  |f the quadratic form q” is positive
qEA+Lp definite, the theta series is known to
d-dim. lattice ; be a Jacobi modular form
at +b  z
: . . SN 9 o
What if the quadratic form is indefinite p (cr-|—d’ cr+d> p(T, Z)

—> the theta series diverges!

But one can make it convergent by restricting to the wedge where g° >0
Example: Lorentzian signature (d — 1,1)

Ip(r,2) = ) (~1)77 {Sgn((q +b)-v) —sgn((q+0b) - v’)] e™iTd +2miq-z
geEA+3p »—c—1b

12

Converges if v*, v"?, v - v’ < 0. But the sign functions spoil modularity!

Can it be cured? — Yes! BT
The modular completion of 9,(7, 2) sgu(z - v) — Erf (\/7? ] )
IS obtained by replacement x = /275(q + b)

This is an example of mock modular form

Important

Lr-v _ null vectors don't
oroperty: Erf (\/7? ) — sgn(T - V) —

[v| ) Jv|—0 require completion



Mock modularity

Solution came from the twistorial
formulation of D-instantons

S.A.,Banerjee,Manschot,Pioline;
Nazaroglu '16

Problem: what are the modular
properties and the modular comg
for generic signature?

o0
The kernel for signature (d-n,n) is given - E
by combinations of products of n signs. H sgn(z - vi) = @, ({vi}, @)
The completion is obtained by o Al

\
é generalized error functions

Indefinite theta series
of signature (d — n,n) are examples of 9-h(7) is expressed via
mock modular forms of depth n mock modular forms of

. lower depth

irreducible divisors

v

Depth =n-1

The generating function of
(refined) MSW invariants is a higher depth
mock Jacobi form
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Helicity supertraces

BPS indices counting %-BPS states
in theory with N extended
supersymmetry are all different

an these results be applied
In cases with N>2 SUSY?

0O

. : i r
Helicity supertrace the first non-vanishing supertrace

2N
Bg(R) = Trr [(—1)2‘]31]5{} soaksup2K —>» K=—(r—1)
fermionic zero modes "
1 K B (HW
(590y)" Bly=1 QWIT) (y) = K(7y) center of mass
Bk (Rk ;) contribution

Helicity generating function
B(R,y) = Trr(—y)*”"
onRk j has zero of orderKat y = 1

All BPS indices can be expressed
through the refined index

o) 65_29(%9)|y:1
3 (Fo =]

Refined BPS index
Q : — agyi ~ Y]
)= B Ry~ - 1P

L )




Holomorphic anomaly

Conjecture: h;efis a mock Jacobi form of weight wyef = —5 rank(k4p)
with the completion satisfying a similar holomorphic anomaly
equation in string compactifications with any amount of SUSY

4 Za

KAB — KABCP

(y—y 1o ht = Z > O {%}yH Q(%i>Y) | |where A=1,...,bs +2b1
1=1

n=23""  ~y;=v and kapc generalizes
intersection numbers

K AB can be degenerate!

The unrefined limit to get QV1™): \ .
apply (y8,)" ~* and set y = 1

— hz(jN’T) is a mock modular form of weight w = K — 3 — S rankkap
—> # of derivatives: K —2=2N -2 -2N/r <n(N —-2) forn,N >2
for N > 2 equality holds only for » =N, n =2

i

4 )

Only bound states of two half-BPS
states contribute to the anomaly
\. y

For all » < NV, the generating
functions of %-BPS states are usual
modular forms




p— D4 on K3
N=4 dyons I ~.
Appear in Type IIA/K3xT?2 or in Het/T® — (Q ) _ ( Zoa —5) ; gg )
bs ’

E.-m. charge in (2,28) of SL(2,Z) x 0(22,6,Z) D6-brane charge N
Kl/z BPS states (QI I PI) —> ¢, =p*=0 26d vector
= - Gen. function — modular
(4]2) —24
rank(kap) =26 "> form of weight -12 s () o
(@ v, BPS states
rank{,g;fz 97 == Gen. function — mock modular form of weight -21/2

P’ =ged(p®) =1 —> I(v) = ged(Q A P) =1 - torsion (U-duality invariant)

The holomorphic anomaly for the gen. function is identical to

(4]2) 2m 1 Dabholkar,Murthy,Zagier ‘12
329 GF _ V/m Q¥R (m) g
Ortm 8w n(r)%# Z O, 0(7,0) Ormo(7, 2) Om,e(T, 2) = Z qmy"
% £=0 re2ma+f

generating function of immmortal dyons )

- . 3 gip—— )
Generalization (for p° = 1): /20ty = Z d A a2 (7, dz)
includes contributions for various values of torsion d|ged(p™)

J




. ) S.A.,Manschot,Pioline ‘19
Relation to Vafa-Witten

Consider a CY given by an elliptic fibration over a projective surface S and
take a local limit where the elliptic fiber becomes large

e local CY —the canonical bundle over S (refined) ~ (refined)
non-compact! DT invariant = VW invariant
of local CY of S

e The only surviving divisor is the base

: . a a charge
of the fibration [S] —> p =Npy «—— corresponding to [S]

All D4-brane charges are collinear!

degree of reducibility N rank of the VW gauge
of the divisor group U(N)

Prediction for all ranks and
surfaces with Ry voref = pief
by (S) =1, b1(S) =0 ’ ° i

— canonical polarization (attractor chamber)

Check: for S = P? the modular completions have been explicitly computed
for N=2 and 3 (only!). They perfectly coincide with our predictions!



. . . S.A. 2005.03680
Rank N Vafa-Witten invariants 2006.10074

The formula for the completion allows to find the VW invariants themselves!

Example: N =2

~ h2 .
ho = hy + 71 Z (Erf (2 % (KS Lk +5K§)) — sgn(Kg - k)) q_k yQKS-k
kEAsg S

where for all surfaces modularity requires the kernel
1

M = 01(, 22) n(7)b=(9)~1 Erf(yrv - (k + SKs))—Erf(y2v" - (k + 6Ks))




. . . S.A. 2005.03680
Rank N Vafa-Witten invariants 2006.10074

The formula for the completion allows to find the VW invariants themselves!

Example: N =2

0 h% T2 2 —k? 2Ks-k
h2:h2+7z (Erf(Z ﬁ(Kg-k+ﬁKS)>sgn(KS-k) q " oyets

kEAs S
where for all surfaces modularity requires the kernel
1
N T e T (e s sentn - (8 5 )
holomorphic! vy =0
h? 2 ,
ho o= Ha + = > (sen(Ks- k) —sgn(vo - (k+ BKs)) g™ g
j keAs
[
holomorphic & modular Hs is found by requiring well-defined unrefined limit

—> h;?hy musthaveazeroat y = +1

. B

for Hirzebruch and del Pezzo
H,y ~ in(7)
01(7,42)01(7,22)?

Explicit expressions
for generating functions of refined
VW invariants and their completions
for all N




. . . S.A. 2005.03680
Rank N Vafa-Witten invariants 2006.10074

The formula for the completion allows to find the VW invariants themselves!

Example: N =2

~ h2 .
ho = hy + 71 Z (Erf (2 % (KS e +5K§)> — sgn(Kg - k)) q_k y2Ks-k
kEAsg S

where for all surfaces modularity requires the kernel
1
— Ert - (k —sgn(vg - (k+ K
" e R tf(y/rv - (k + BKs)) = sgn(vo - (k+ SKs))

holomorphic! v5 = 0

2
ho ; = H>+ % Z (sgn((—J)- k) —sgn(vo - (k + BKg))) q k" 2Kk
j keAs
[
holomorphic & modular Hs is found by requiring well-defined unrefined limit

—> h;?hy musthaveazeroat y = +1

. B

for Hirzebruch and del Pezzo
H,y ~ in(7)
01(7,42)01(7,22)?

Explicit expressions
for generating functions of refined
VW invariants and their completions
for all N and all J




Comments

e This construction requires only two ingredients:
1) a unimodular charge (second homology) lattice Ag
2) anull vector vy € Ag

What if there are several null vectors in the lattice?

e The null vectors satisfying vo-v)=1 & vo-Ks=1] Ks
give the same generating functions €«—— example of fiber-base duality

Requires very non-trivial identities Katz,Mayr,Vafa 97

; 1 1
between theta functions! simplest example o = IP* x IP
. . . . new
e Other null vectors give different generating functions =—> nvariants?

simplest example S = Iy

e What if the lattice does not have a null vector?  simplest example S = P?
Then one can extend the lattice by multiplying
the formula for the completion by a theta series

. B . B

Explicit results at all N for An improved version of the
S = P? blow-up formula



Holomorphic anomaly of VW partition function

The formula for the completion allows to prove an old conjecture for U(N)
Vafa-Witten theory (checked before for S = 1K3 and P? upto N < 3)

3
— = v/ 2T ~ o~ 7o NPy HSN
DZn = 3071 E N1 Ny Zn, ZN, NTUN 'N(T) N (T,0)
— 1 .
1 N1+N2:N / D:Tzz (8{-—E(80+—|—2'ﬂ'1b+)2>
Minahan,Nemeschansky, [ such that DN = 0 Siegel-Narain
‘ . : theta seri

Vafa,Warner ‘98 reduction to the quadratic term n__ /S thetaseries

due to collinearity of charges p® = Np

A similar anomaly equation for the refined partition function can be
written only using a non-commutative star product!

] P Do = WOya + WOya
f*g=fexp { (@ Ol e 55a§a)]9 = @0ce + 0%
2m1 Ca, ¢“— RR-fields coupled to
. D4 and D2-brane charges
1(275)3/2 .
DZref _ (327:;N (aua Zref*a ref ol aéa ref*ava Zr f)

Ni1+Nzx=N




Instanton generating potential & TBA equations

The geometry of the moduli space is encoded in H.(z), Darboux coordinates
on the twistor space of M satisfying a TBA-like equation

large volume limit of the
integral equation of 3 H,(z) = HCI exp[ Z/dz Ko (2,2") Hy (2")
vy er'y

Gaiotto-Moore-Neitzke
for N=2 SYM / S?

l b
where 'Efslﬁdgz(vj’ Wrm _-2W(nam¢ap?pg_+ i?{:Zj)

Instanton generating potential:

G = Z/dzH ——Z /dzlfdzzm,mﬂ H, _\/ir—gi {f[z}{pi(r)] Op(7,v)

yel'f 7 Yo el
refinement

pi

Reflned potential
Jacobi form of weight (-1, 1).

> aemt- fz[ri

where vEL n=1 Li=1
re rei,C dz re
H,Y f(z):Hﬁf f, I(Z)*ll—l—Z/ o H,y/f(Z,)]

non-commutative
TBA-like equation

The refinement effectively
guantizes the moduli space
consistently with S-duality



Conclusions

Main result: Explicit form of the modular completion of the generating function
of (refined) black hole degeneracies (DT invariants) at large volume attractor
point for arbitrary divisor of CY

—>  hp(7) —higher depth mock modular form

Numerous applications: N=4 dyons, VW invariants for arbitrary rank,
fiber-base duality, blow-up formula, holomorphic anomaly, quantization
of the moduli space consistent with S-duality....

Open problems:
e Extension of this technique to evaluation of DT invariants for compact CYs

e Understanding the non-commutative geometry of the refined moduli space
and relations to previous constructions

—> relation to twistorial topological string? [Ceccotti-Neitzke-Vafa '14]

e Geometric or physical meaning of the (refined) instanton generating potential

e Geometric of physical meaning of the invariants generated by “wrong” null
vectors

e Compactifications with N=8 supersymmetry



