Arithmetic of decay walls through continued fractions

A new exact dyon counting solution in $\mathcal{N}=4 \mathrm{CHL}$ models

Martí Rosselló

with Gabriel Cardoso and Suresh Nampuri, arXiv:2007.10302

Introduction

Understanding the microscopic origin of Black Hole entropy remains a central question in Quantum Gravity.

$$
S_{\text {stat }}(Q)=\ln d(Q) \leftrightarrow S_{B H}(Q)
$$

Address it in the context of $\mathcal{N}=4$ supersymmetric String Theory. Concretely: study the degeneracies of a special type of 1/4-BPS dyons, namely decadent dyons.

Our work has been inspired by the recent results of [Chowdhury, Kidambi, Murthy, Reys, Wrase '19]. Here we propose a new systematic way to tackle these issues.

Introduction

- Dyonic degeneracies

- Siegel modular forms
- Wall-crossing
- Continued fractions

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ddots}}}
$$

CHL models

Consider $\mathcal{N}=4 \mathrm{CHL}$ models obtained by compactifying heterotic string theory on $T^{5} \times S^{1} / \mathbb{Z}_{N}$ with $N=1,2,3,5,7$. These models have $r=\frac{48}{N+1}+4$ Abelian gauge fields. The S-duality group is

$$
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z}) \text { s.t. }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad \bmod N\right\}
$$

and the T-duality group is a subgroup $T(\mathbb{Z})$ of $O(r-6,6 ; \mathbb{Z})$.
The U-duality group is
[Chaudhuri, Hockney, Lykken '95]
[...]

$$
\Gamma_{1}(N) \times T(\mathbb{Z})
$$

Dyons in CHL models

A generic $1 / 4$-BPS state carries electric, \vec{Q}, and magnetic, \vec{P}, charge w.r.t. the r Abelian gauge fields. Dyonic degeneracies are functions of the T-duality invariants

$$
\begin{gathered}
m=P \cdot P / 2 \in \mathbb{Z}, \quad n=Q \cdot Q / 2 \in \mathbb{Z} / N, \quad \ell=P \cdot Q \in \mathbb{Z} \\
d(\vec{P}, \vec{Q})=d(m, n, \ell)
\end{gathered}
$$

We differentiate between two types of dyons:

- Single centre 1/4-BPS dyonic black holes with finite or zero horizon area in twoderivative gravity
- Two-centred bound states of $1 / 2-$ BPS constituents

Dyons in CHL models

Dyons in \mathbb{Z}_{N} CHL models with $N=1,2,3,5,7$ have two discrete U-duality invariants

$$
\text { Area } \sim \sqrt{\Delta} \quad \Delta=Q^{2} P^{2}-(Q \cdot P)^{2}=4 m n-\ell^{2} \quad \text { Discriminant }
$$

$$
\text { (In this talk } I=1 \text {) } \quad I=\operatorname{gcd}\left(Q_{i} P_{j}-Q_{j} P_{i}\right), \quad 1 \leq i, j \leq r \quad \text { Torsion }
$$

Single centre 1/4-BPS black holes with finite horizon area have $\Delta>0$. Will focus on

$$
\Delta \leq 0
$$

$\Delta<0$ are always two-centred states $\Delta=0$ can be two-centred and single centred states

Siegel modular forms

The generating function for dyonic degeneracies in these CHL models is a modular form of a subgroup of the genus-2 modular group $\operatorname{Sp}(2, \mathbb{Z})$

$$
\begin{array}{ll}
\Omega \rightarrow(A \Omega+B)(C \Omega+D)^{-1} & \Omega=\left(\begin{array}{cc}
\rho & v \\
v & \sigma
\end{array}\right) \operatorname{Im}(\Omega)>0 \\
\Phi_{k}(\Omega) \rightarrow \operatorname{det}(C \Omega+D)^{k} \Phi_{k}(\Omega) & \left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \tilde{G} \subset S p(2, \mathbb{Z})
\end{array}
$$

[Dijgkraaf, Verlinde,
Verlinde '96]
[Jatkar, Sen '05]
$k=\frac{24}{N+1}-2 \quad \frac{1}{\Phi_{k}(\rho, \sigma, v)}=\sum_{m, n N \geq-1}(-1)^{\ell+1} d(m, n, \ell) e^{2 \pi i(m \rho+n \sigma+\ell v)}$
For $N=1,2,3,5,7$, $m, n N, \ell \in \mathbb{Z}$

Invariant under $\Gamma_{0}(N)$
$k=10,6,4,2,1$

Wall-crossing

Wall of marginal stability

Poles in the Siegel modular form

Two-centred bound state

$$
\begin{gathered}
\longleftrightarrow d(m, n, \ell)=(-1)^{\ell+1} \int_{C} d \rho d \sigma d v p^{-m} q^{-n} y^{-\ell} \Phi_{k}^{-1} \\
p=e^{2 \pi i}, q=e^{2 \pi i \sigma}, y=e^{2 \pi i v}
\end{gathered}
$$

$$
|x|<1
$$

Changing the contour C

$$
\text { Ex: } \frac{1}{1-x}=\sum_{n \geq 0} x^{n} \text { or }-\sum_{\substack{n \geq 1 \\ \\ \\|x|>1}} x^{-n}
$$

[Sen, '07]
[Dabholkar, Gaiotto Nampuri '07]

Poles and walls

1has an infinite family of second order poles in the (ρ, σ, v) space

$$
\begin{aligned}
& p q \sigma_{2}+r s \rho_{2}+(p s+q r) v_{2}=0, \quad\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right) \in \Gamma_{0}(N) \\
& \Gamma_{0}(N)=\left\{\left.\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z}) \right\rvert\, r \equiv 0 \bmod N\right\}
\end{aligned}
$$

Represent walls in the $\left(v_{2} / \sigma_{2}, \rho_{2} / \sigma_{2}\right)$ plane by lines joining $\frac{p}{r}$ and $\frac{q}{s}$

$$
N=1
$$

Dyonic decay

The decay modes at each wall of marginal stability are determined by the corresponding matrix in $\Gamma_{0}(N)$

$$
\gamma=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \in \Gamma_{0}(N):\binom{Q}{P} \rightarrow\binom{p(s Q-q P)}{r(s Q-q P)}+\binom{q(-r Q+p P)}{s(-r Q+p P)} .
$$

The decay corresponding to the identity matrix is the 'elementary' split

$$
\gamma=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right):\binom{Q}{P} \rightarrow\binom{Q}{0}+\binom{0}{P}, v_{2}=0
$$

‘Elementary’ split

The change in the degeneracy from the 'elementary' split

$$
\begin{gathered}
\gamma=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right):\binom{Q}{P} \rightarrow\binom{Q}{0}+\binom{0}{P}, v_{2}=0 \\
\frac{1}{\Phi_{k}(\rho, \sigma, v)} \xrightarrow{v \rightarrow 0} \frac{1}{v^{2}} \frac{1}{f^{(k)}(\rho)} \frac{1}{f^{(k)}\left(\frac{\sigma}{N}\right)}
\end{gathered}
$$

where $f^{(k)}(\rho)=\eta(\rho)^{k+2} \eta(N \rho)^{k+2}$,

$$
\frac{1}{f^{(k)}(\rho)}=\sum_{m=-1}^{\infty} d_{1}(m) e^{2 \pi i m \rho}, \frac{1}{f^{(k)}(\sigma / N)}=\sum_{n=-1 / N}^{\infty} d_{2}(n) e^{2 \pi i n \sigma} .
$$

$$
\text { is } \quad \Delta d(m, n, \ell)=(-1)^{\ell+1}|\ell| d_{1}(m) d_{2}(n)
$$

Generic split

This is extended to the other walls by mapping a generic dyon decay to the elementary T-wall

$$
\gamma^{-1}\binom{Q}{P}=\binom{Q_{\gamma}}{P_{\gamma}} \rightarrow\binom{s Q-q P}{0}+\binom{0}{-r Q+p P}=\binom{Q_{\gamma}}{0}+\binom{0}{P_{\gamma}} .
$$

The charge bilinears (m, n, ℓ) transform as

$$
Q_{\gamma}^{2} / 2=n_{\gamma}=s^{2} n+q^{2} m-q s \ell,
$$

$P_{\gamma}^{2} / 2=m_{\gamma}=r^{2} n+p^{2} m-p r \ell$
$Q_{\gamma} \cdot P_{\gamma}=\ell_{\gamma}=-2 r s n-2 p q m+(p s+q r) \ell$.

[Sen, '07] [Cheng, Verlinde '07] [Sen, '11]

Wall-crossing formula

The wall-crossing jump contribution of a dyon $\binom{Q}{P}$ across a generic line of marginal stability, labelled by a $\Gamma_{0}(N)$ matrix γ, to the dyonic degeneracy formula is equal to the jump contribution of the dyon $\binom{Q_{\gamma}}{P_{\gamma}}$ across the elementary T-wall

$$
\Delta_{\gamma} d(m, n, \ell)=(-1)^{\ell_{r}+1}\left|\ell_{\gamma}\right| d_{1}\left(m_{\gamma}\right) d_{2}\left(n_{\gamma}\right) .
$$

Dyon counting problem

Consider the dyonic charge bilinears (m, n, ℓ) satisfying $\Delta=4 m n-\ell^{2} \leq 0$ and $0 \leq \ell \leq m$. Want to compute $d(m, n, \ell)$ in the \mathscr{R}-chamber.

Want to find a decay path in the upper-half. Given (m, n, ℓ) construct a sequence of walls $W(m, n, \ell)$ crossed when going from the \mathscr{R}-chamber to a point *. Then,

$$
d(m, n, \ell)=d_{*}+\sum_{i=1}^{k} \Delta_{i}=d_{*}+(-1)^{\ell+1} \sum_{\substack{i=1 \\ \gamma_{i} \in W(m, n, \ell)}}^{k}\left|\ell_{\gamma_{i}}\right| d_{1}\left(m_{\gamma_{i}}\right) d_{2}\left(n_{\gamma_{i}}\right),
$$

$$
k=10
$$

Solution for $N=1$

Downward trajectory given by consecutive left-right choice associated to the matrices $U=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$

This defines our arithmetic of decay walls: multiply T and U matrices to generate the walls of marginal stability. Decompose matrix in $W(m, n, \ell)$ as

$$
\gamma=U^{s_{1}} T^{s_{2}} U^{s_{3}} \cdots T^{s_{r}}, \quad s_{r} \geq 0
$$

$$
W(m, n, \ell)=\left\{U, U^{2}, \ldots, U^{s_{1}}, U^{s_{1}} T, \ldots, U^{s_{1}} T^{s_{2}}, U^{s_{1}} T^{s_{2}} U, \ldots, U^{s_{1}} T^{s_{2}} U^{s_{3}}, \ldots, \gamma_{*}\right\}
$$

Solution for $N=1$

To find γ_{*}, for $\Delta=4 m n-\ell^{2}<0$ and $0 \leq \ell \leq m$, we know that there is a γ_{*} such that

$$
m_{\gamma_{*}}<-1 \text { or } n_{\gamma_{*}}<-1
$$

which implies $d_{*}=0$.
Consider $m_{\gamma_{*}}<0 \Longrightarrow m_{\gamma_{*}}=r^{2} n+p^{2} m-p r l<0$

$$
\frac{\ell}{2 m}-\frac{\sqrt{-\Delta}}{2 m}<\frac{p}{r}<\frac{\ell}{2 m}+\frac{\sqrt{-\Delta}}{2 m}
$$

For the conditions $r, s>0$ and $\ell_{\gamma_{*}}>0$ it is sufficient

$$
0 \leq \frac{\ell}{2 m}-\frac{q}{s} \leq \frac{1}{r s}
$$

Solution for $N=1$

Two conditions

$$
\begin{gathered}
\frac{\ell}{2 m}-\frac{\sqrt{-\Delta}}{2 m}<\frac{p}{r}<\frac{\ell}{2 m}+\frac{\sqrt{-\Delta}}{2 m} \\
0 \leq \frac{\ell}{2 m}-\frac{q}{s} \leq \frac{1}{r s}
\end{gathered}
$$

Solved by

$$
\begin{gathered}
\binom{p}{r}=\binom{l / g}{2 m / g}, \quad g=\operatorname{gcd}(l, 2 m) \\
m_{\gamma_{*}}=m \Delta / g^{2} \\
\gamma_{*}=\left(\begin{array}{cc}
l / g & q \\
2 m / g & s
\end{array}\right) \text { with } \begin{array}{l}
l_{\gamma_{*}}=-s \Delta / g \\
n_{\gamma_{*}}=q^{2} m+s^{2} n-q s l
\end{array}
\end{gathered}
$$

Continued fractions $N=1 \Delta<0$

Apply Euclid's algorithm to find the gcd of ℓ and $2 m$:

$$
\begin{aligned}
\ell & = & a_{0} 2 m+r_{0}, \\
2 m & = & a_{1} r_{0}+r_{1}, \\
r_{0} & = & a_{2} r_{1}+r_{2}, \\
r_{1} & = & a_{3} r_{2}+r_{3},
\end{aligned}
$$

is elegantly encoded in the finite continued fraction representation of $\ell / 2 \mathrm{~m}$:
and determines the matrices

$$
\frac{\ell}{2 m}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots+\frac{1}{a_{n}}}}}
$$

$r_{n-3}=$
$r_{n-2}=$

$$
\begin{array}{r}
a_{n-1} r_{n-2}+r_{n-1}, \\
a_{n} r_{n-1},
\end{array}
$$

$$
\begin{aligned}
& \gamma_{*}=\left(\begin{array}{cc}
\ell / g & q \\
2 m / g & s
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
a_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
a_{3} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & 0 \\
a_{n} & 1
\end{array}\right) \quad n \text { odd } \\
& \gamma_{*}=\left(\begin{array}{cc}
q & \ell / g \\
s & 2 m / g
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
a_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
a_{3} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & a_{n} \\
0 & 1
\end{array}\right) n \text { even }
\end{aligned}
$$

Determines the sequence $W(m, n, \ell)$

Result for $N=1$

Given m, n, ℓ with $\Delta=4 m n-\ell^{2}<0$ and $0 \leq \ell \leq m$, compute

$$
\ell / 2 m=\left[a_{0}, a_{1}, \ldots, a_{r}\right] .
$$

This defines

$$
W(m, n, \ell)
$$

and then in the \mathscr{R}-chamber,

$$
d(m, n, \ell)=d_{*}+\sum_{i=1}^{k} \Delta_{i}=d_{*}+(-1)^{\ell+1} \sum_{\substack{i=1 \\ \gamma_{i} \in W(m, n, \ell)}}^{k}\left|\ell_{\gamma_{i}}\right| d_{1}\left(m_{\gamma_{i}}\right) d_{2}\left(n_{\gamma_{i}}\right)
$$

The set $W(m, n, \ell)$ is determined by the the ratio of the two numbers ℓ and $2 m$

Diagrammatic representation $N=1 \Delta<0$

Take $\ell / 2 m=2 / 7=\left[0 ; a_{1}, a_{2}\right]=[0 ; 3,2]=\frac{1}{3+\frac{1}{2}} \quad \gamma_{*}=\left(\begin{array}{ll}1 & 0 \\ a_{1} & 1\end{array}\right)\left(\begin{array}{ll}1 & a_{2} \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
3 & 7
\end{array}\right)
$$

In general, from the \mathscr{R}-chamber to the chamber below $\ell / 2 m$, one crosses

$$
\sum_{i=1}^{n} a_{i} \text { walls }
$$

Endpoint degeneracy $N=1 \Delta<0$

$$
m_{\gamma_{*}}=m \Delta / g^{2}<0
$$

Two options:

- $m_{\gamma_{*}}<-1 \Rightarrow d_{*}=0 \quad$ Arbitrarily negative
- $m_{\gamma_{*}}=-1 \Rightarrow d_{*} \neq 0$ but can be computed:

$$
\begin{gathered}
(m, n, \ell)_{\gamma_{*}}=\left(-1, n_{*}, \ell_{*}\right) \xrightarrow{T^{j}(j>0)}\left(-1, n_{*}-j^{2}-j \ell_{*}=n_{j}, \ell_{*}+2 j=\ell_{j}\right) \\
d_{*}=\sum_{\mu \in\left\{T, T^{2}, \ldots, T^{j}\right\}} \ell_{\gamma_{* \mu}} d_{1}(-1) d_{1}\left(n_{\gamma_{*}, \mu}\right)=\sum_{j=1}^{j_{0}}\left(\ell_{*}+2 j\right) d_{1}(-1) d_{1}\left(n_{*}-j^{2}-j \ell_{*}\right) .
\end{gathered}
$$

Equivalent to:
Extend continued fraction to $\left[0 ; a_{1}, a_{2}, \ldots, a_{n}, j_{0}\right]$

$$
\Delta=0, N=1
$$

Same logic, but now have

$$
\begin{aligned}
m_{\gamma_{*}} & =m \Delta / g^{2}=0, \\
\ell_{\gamma_{*}} & =-s \Delta / g=0
\end{aligned}
$$

Since $\operatorname{PSL}(2, \mathbb{Z})$ action preserves $\tilde{g}=\operatorname{gcd}(m, n, \ell)$,

New relevant discrete invariant:
$\operatorname{gcd}(m, n, \ell)$

$$
n_{\gamma_{*}}=q^{2} m+s^{2} n-q s \ell=\tilde{g}
$$

We have a sequence of decay walls given by continued fraction of $\ell / 2 m$ and last wall yielding an immortal dyon with charge bilinears

$$
\left(m_{\gamma_{*}}, n_{\gamma_{*}}, l_{\gamma_{*}}\right)=(0, \tilde{g}, 0) \text { or }(\tilde{g}, 0,0)
$$

$\Delta=0, N=1$

Expand the inverse Igusa cusp form,

$$
\begin{gather*}
\frac{1}{\Phi_{10}(\rho, \sigma, v)}=\psi_{-1} e^{-2 \pi i \rho}+\sum_{m=0}^{\infty}\left(\psi_{m}^{F}(\sigma, v)+\psi_{m}^{P}(\sigma, v)\right) e^{2 \pi i m \rho}, \\
\psi_{0}^{F}(\sigma)=2 \frac{E_{2}(\sigma)^{24}}{\eta^{24}(\sigma)}=-2 \sum_{n \geq-1} n d_{1}(n) q^{n} \tag{g}\\
d(0, \tilde{z},,
\end{gather*}
$$

Therefore

$$
d(m, n, \ell)=2 \tilde{g} d_{1}(\tilde{g})-\sum_{\gamma \in W(m, n, \ell)}\left|\ell_{\gamma}\right| d_{1}\left(m_{\gamma}\right) d_{1}\left(n_{\gamma}\right)
$$

Note For $\Delta=0$ the immortal degeneracy is only a function of $\tilde{g}: \quad d_{\text {immortal }}(m, n, \ell)=2 \tilde{g} d_{1}(\tilde{g})$

N
 >1
 $\Delta \geq 0$

The logic is the same, but the details more intricate.
Proceed as earlier, build set $W(m, n, \ell)$ from the continued fraction of $\ell / 2 m$ but now select the matrices in $\Gamma_{0}(N)$.

For $\Delta=0$ immortal counting function different,
$\psi_{-k, 0}^{F}(\sigma)=\frac{k+2}{12(N-1)} \frac{E_{2}(\sigma / N)-E_{2}(\sigma)}{\eta^{k+2}(\sigma / N) \eta^{k+2}(\sigma)}=\sum_{n N \in \mathbb{N}_{0}} d_{N}(n) q^{n}$

Summary

We use continued fractions to set up an arithmetic of decay walls which we used to explicitly compute all the polar coefficients of

$$
\frac{1}{\Phi_{k}}
$$

The appearance of continued fractions is naturally explained by the theory of Binary Quadratic Forms $(m, n, \ell) \leftrightarrow m x^{2}-\ell x y+n y^{2}$.

Consistent with [Moore '98]
[Benjamin, Kachru, Ono, Rolen '18], [Banerjee, Bhand, Dutta, Sen, Singh '20], [Borsten, Duff, Marrani '20] ...

Thank you

Example

$$
N=1
$$

$\ell / 2 m=2 / 7=[0 ; 3,2]$ with walls $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$
$(m, n, \ell)=(49,4,28), \Delta=0 \longrightarrow d_{*}(49,4,28)=d(1,0,0)=2 d_{1}(1)=648$
$(25,4,20),(9,4,12),(1,4,4),(1,1,2),(1,0,0)$.
$d(49,4,28)=648-\left(20 d_{1}(25) d_{1}(4)+12 d_{1}(9) d_{1}(4)+4 d_{1}(1) d_{1}(4)+2 d_{1}(1) d_{1}(1)\right)$
$=-459542242945399203613080$.

```
c[49, 4, 28] = 459542 242945399203613080
```


Orienting the walls

We give an orientation to the walls: from q / s to p / r. Then,

For $\ell>0$ the bound states exists to the left of the elementary T-wall

For $\ell<0$ the bound states exists to the right of the elementary T-wall

This is extended to the other walls by mapping a generic dyon decay to the elementary T-wall

$$
\gamma^{-1}\binom{Q}{P}=\binom{Q_{\gamma}}{P_{\gamma}} \rightarrow\binom{s Q-q P}{0}+\binom{0}{-r Q+p P}=\binom{Q_{\gamma}}{0}+\binom{0}{P_{\gamma}} .
$$

Wall distinction

$$
\frac{p}{r}-\frac{q}{s}=\frac{1}{r s}
$$

Define sets

$$
\left.\begin{array}{l}
\Gamma_{+}(N)=\left\{\left.\gamma=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \in \Gamma_{0}(N) \right\rvert\, r s>0\right. \\
\Gamma_{-}(N)=\left\{\left.\gamma=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \in \Gamma_{0}(N) \right\rvert\, r s<0\right.
\end{array}\right\}
$$

Note that, for $N=1, S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in \Gamma_{0}(1)$ and $\Gamma_{+}(1)=\Gamma_{-}(1) S$
Want: $\gamma \in \Gamma_{+}(N)$ with $\ell_{\gamma}>0$
or $\quad \gamma \in \Gamma_{-}(N)$ with $\ell_{\gamma}<0$

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) S=\left(\begin{array}{cc}
-q & p \\
-s & r
\end{array}\right)
$$

Explicit formula

Continued fractions give the following explicit formula for (m, n, ℓ) with $4 m n-\ell^{2}<0$ and $0 \leq \ell \leq m$:

Compute $\ell / 2 m=\left[0 ; a_{1}, \ldots, a_{r}\right]$. Define from these r numbers $m_{i j}, n_{i j}, \ell_{i j}$

$$
d(m, n, \ell)=d_{*}+(-1)^{\ell+1} \sum_{i=1}^{r} \sum_{j=1}^{a_{i}}\left|\ell_{i j}\right| d_{1}\left(m_{i j}\right) d_{1}\left(n_{i j}\right)
$$

When $d_{*} \neq 0$, formula is actually simpler: it imposes $\ell=m$ and $n=\frac{1}{4}(m-1)$

$$
d(m, n, \ell)=\left(\sum_{q=1}^{\left\lfloor\sqrt{\frac{m}{4}+1}-\frac{1}{2}\right\rfloor}(2 q+1) d_{1}\left(n-q^{2}-q\right)\right)+\frac{1}{2}(m+1)\left(d_{1}(n)\right)^{2}+d_{1}(n) .
$$

$N>1, \Delta=0$

For $\Delta=0$ dyons, need to compute $d_{*}=d(0, \hat{g}, 0)$
where $\hat{g}=\frac{\operatorname{gcd}(m, n N, \ell)}{N}$. Expand $1 / \Phi_{k}$ and find
$\psi_{-k, 0}^{F}(\sigma)=\frac{k+2}{12(N-1)} \frac{E_{2}(\sigma / N)-E_{2}(\sigma)}{\eta^{k+2}(\sigma / N) \eta^{k+2}(\sigma)}=\sum_{n N \in \mathbb{N}_{0}} d_{N}(n) q^{n}$

giving the final formula
Immortal part

$d(m, n, \ell)=-\left(d_{N}(\hat{g})+\sum_{\gamma \in W_{N}(m, n, \ell)}\left|\ell_{\gamma}\right| d_{1}\left(m_{\gamma}\right) d_{2}\left(n_{\gamma}\right)\right)$

Examples

$$
N=1
$$

$\ell / 2 m=2 / 7=[0 ; 3,2]$ with walls $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$

1. a) $(m, n, \ell)=(14,1,8), \Delta=-8$

$$
(7,1,6),(2,1,4),(-1,1,2),(-1,-2,4),(-1,-7,6)
$$

$d(14,1,8)=(-1)\left(6 d_{1}(7) d_{1}(1)+4 d_{1}(2) d_{1}(1)+2 d_{1}(-1) d_{1}(1)\right)=-58671297648$.

```
c[14, 1, 8] = 58671297648
```


Examples

$$
N=1
$$

$\ell / 2 m=2 / 7=[0 ; 3,2]$ with walls $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$

1. b) $(m, n, \ell)=(49,4,28), \Delta=0 \longrightarrow d_{*}(49,4,28)=d(1,0,0)=2 d_{1}(1)=648$
$(25,4,20),(9,4,12),(1,4,4),(1,1,2),(1,0,0)$.
$d(49,4,28)=648-\left(20 d_{1}(25) d_{1}(4)+12 d_{1}(9) d_{1}(4)+4 d_{1}(1) d_{1}(4)+2 d_{1}(1) d_{1}(1)\right)$
$=-459542242945399203613080$.
```
c[49, 4, 28] = 459542 242945399203613080
```


Examples

$$
N=2
$$

$$
\ell / 2 m=2 / 7=[0 ; 3,2] \text { with walls }\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
3 & 7
\end{array}\right)
$$

$$
\text { 2. a) }(m, n, \ell)=\left(7, \frac{1}{2}, 4\right), \Delta=-2 \quad\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
-1 & 1 \\
-4 & 3
\end{array}\right)
$$

$$
\left(1, \frac{1}{2}, 2\right),\left(-1,-\frac{1}{2},-2\right)
$$

$$
\mathrm{c}\left[7, \frac{1}{2}, 4\right]=-5410
$$

$$
d\left(7, \frac{1}{2}, 4\right)=-2 d_{1}(1) d_{2}\left(\frac{1}{2}\right)-2 d_{1}(-1) d_{2}\left(-\frac{1}{2}\right)=-5410
$$

Discussion $\quad N=1$

Consider

$$
\frac{1}{\Phi_{10}(\rho, \sigma, v)}=\sum_{m=-1}^{\infty} \psi_{m}(\sigma, v) e^{2 \pi i m \rho}
$$

For $m \geq 0$ we can decompose

$$
\psi_{m}=\psi_{m}^{F}+\psi_{m}^{P} \quad \text { F: Finite }
$$

$$
\psi_{m}^{P}(\sigma, v)=\frac{d(m)}{\eta^{24}(\sigma)} \mathscr{A}_{2, m}(\sigma, v) \quad \mathscr{A}_{2, m}(\sigma, v)=\sum_{s \in \mathbb{Z}} \frac{q^{m s^{2}+s} y^{2 m s+1}}{\left(1-q^{s} y\right)^{2}}
$$

Discussion
 $N=1$

The finite part is a mock Jacobi form which captures the single centre dyonic degeneracy

$$
\begin{gathered}
\psi_{m}^{F}(\sigma, v)=\sum_{\substack{n, \ell \in \mathbb{Z} \\
d_{\text {immortal }}}} c_{m}^{F}(n, \ell) q^{n} y^{\ell}, \quad, \quad q=e^{2 \pi i \sigma}, \quad y=e^{2 \pi i v} \\
=(-1)^{\ell+1} c_{m}^{F}(n, \ell)
\end{gathered}
$$

for $\Delta>0, m>0$.
In the \mathscr{R}-chamber $c(m, n, \ell)=c_{m}^{F}(n, \ell)$ for $0 \leq \ell \leq m$
Therefore, we have computed $c_{m}^{F}(n, \ell)$ for $\Delta \leq 0$.

Discussion

$N=1$
The mixed Rademacher expansion

$$
\begin{align*}
& c_{m}^{\mathrm{F}}(n, \ell)=2 \pi \sum_{k=1}^{\infty} \sum_{\substack{\tilde{\ell} \in \mathbb{Z} / 2 m \mathbb{Z} \\
4 m \tilde{n}-\widetilde{\ell}^{2}<0}} c_{m}^{\mathrm{F}}(\widetilde{n}, \tilde{\ell}) \frac{K l\left(\frac{\Delta}{4 m}, \frac{\widetilde{\Delta}}{4 m} ; k, \psi\right) \tilde{\ell}}{k}\left(\frac{|\widetilde{\Delta}|}{\Delta}\right)^{23 / 4} I_{23 / 2}\left(\frac{\pi}{m k} \sqrt{|\widetilde{\Delta}| \Delta}\right) \\
& +\sqrt{2 m} \sum_{k=1}^{\infty} \frac{K l\left(\frac{\Delta}{4 m},-1 ; k, \psi\right)_{\ell 0}}{\sqrt{k}}\left(\frac{4 m}{\Delta}\right)^{6} I_{12}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta}\right) \tag{A.12}\\
& \text { [FR, '17] } \\
& -\frac{1}{2 \pi} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z} / 2 m \mathbb{Z} \\
g \in \mathbb{Z} / 2 m k \mathbb{Z} \\
g \equiv j(\bmod 2 m)}} \frac{K l\left(\frac{\Delta}{4 m},-1-\frac{g^{2}}{4 m} ; k, \psi\right)_{\ell j}}{k^{2}}\left(\frac{4 m}{\Delta}\right)^{25 / 4} \times \\
& \times \int_{-1 / \sqrt{m}}^{+1 / \sqrt{m}} f_{k, g, m}(u) I_{25 / 2}\left(\frac{2 \pi}{k \sqrt{m}} \sqrt{\Delta\left(1-m u^{2}\right)}\right)\left(1-m u^{2}\right)^{25 / 4} \mathrm{~d} u
\end{align*}
$$

computes the coefficients $c_{m}^{F}(n, \ell)$ with $\Delta>0$ in terms of $c_{m}^{F}\left(n^{\prime}, \ell^{\prime}\right)$ with $\Delta<0$.

Single centre $1 / 4-$ BPS black hole degeneracies with $I=1$ are determined in terms of the continued fraction of the rational number $\ell / 2 m$ (and some extra input for the case $d_{*}=-1$)

Extra: Discrete attractor flow

Discrete attractor flow related to SternBrocot tree

Stern-Brocot tree related to continued fractions
'Inverse discrete attractor flow'

Extra: BQF

Binary quadratic forms

$$
x^{2}-|\Delta| y^{2}=4
$$

(b)

