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Introduction

Understanding the microscopic origin of Black Hole entropy remains a central question
in Quantum Gravity.

S.,.(Q) = Ind(Q) < Spu(0)

Address it in the context of /' = 4 supersymmetric String Theory. Concretely: study the
degeneracies of a special type of 1/4—BPS dyons, namely decadent dyons.

Our work has been inspired by the recent results of [Chowdhury, Kidambi, Murthy, Reys,
Wrase '19|. Here we propose a new systematic way to tackle these issues.
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CHL models

Consider ./ = 4 CHL models obtained by compactifying heterotic string theory on
438
T X Sl/ZN with N = 1,2.3,5,7. These models have r =

N+ 1
fields. The S—duality group is

B a b a b |
['\(N) = {(c d) e PSL(2,7) s . t. (c d) (O 1) mod N}

and the 7'—duality group is a subgroup 7(Z) of O(r — 6, 6; Z).

+ 4 Abelian gauge

[Chaudhuri, Hockney, Lykken ’95]

The group Is 1

['\(N) X T(Z)



Dyons in CHL models

A generic 1/4-BPS state carries electric, 5 and magnetic, F charge w.r.t. the r
Abelian gauge fields. Dyonic degeneracies are functions of the 1 —duality invariants

m=P-P2€Z, n=Q-Q/2€ZIN, £=P-Q€Z

d(?, 5) =d(m,n, )

We differentiate between two types of dyons:

 Single centre 1/4-BPS dyonic black holes with finite or zero horizon area in two-
derivative gravity Immortal

e Two-centred bound states of 1/2-BPS constituents

Can decay [Cheng, Verlinde *07]



Dyons in CHL models

Dyons in Z,; CHL models with N = 1,2,3,5,7 have two discrete U—duality invariants

Area ~ v/ A A = Q2P2 — (0 - P)2 = dmn — £? Discriminant

(Inthistalk / = 1) I=ged(Q;P;—Q:P), 1<i,j<r Torsion

[Banerjee, Sen ’07]

Single centre 1/4-BPS black holes with finite horizon area have A > 0. Will focus on
A <O

A < 0 are always two-centred states
A = 0 can be two-centred and single centred states



Siegel modular forms

The generating function for dyonic degeneracies in these CHL models is a
modular form of a subgroup of the genus-2 modular group Sp(2,2)

Q- (AQ+B)(CQ+D)" Q= (p V) Im(Q) > 0

V O [Dijgkraaf, Verlinde,
Verlinde '96]
O, (Q) — det(CQ + D) ®,(Q) (‘é g) e GcSp,z) - atkar Sen 03]
| .
ha . ( . V) — Z (_ 1)f+1d(m, n, f)€27u(mp+na+fv)
k=N_|_1_2 kp9 > m,nNz_l
For N =1,2,3,5,7, m,nN, ¢ € Z Invariant under 1 (V)

k=10,6,4,2,1



Wall-crossing

Wall of marginal Poles in the Siegel
stability modular form

Single centre

P Jd(m,n,t) = (—l)f“J dpdodv p~"q "y~ @; !
C

p = eZm’p, g = 627zio"y — eQJZ'iV

Changing the contour C

x| <1
Two-centred bound state i
Ex: — Zx” or — Zx_”
1 — x [Sen, '07]
n>0 n>1

— [Dabholkar, Gaiotto
‘X‘ > 1 Nampuri ’07]



| Poles and walls

E has an infinite family of second order poles in the (p, o, v) space
k

pqo, + rsp, + (ps + qr)v, = 0, (IZ z) € 1'h(V)

r 98

[o(N) = { (p q) e PSL(2.Z)|r=0 mod N}

Represent walls in the (v,/0,, p,/0,) plane by lines joining P and 4

r \)

r
T;i J:: N =1 [Sen, ’07]

/3

2/3
2/5 1/2 3/5



Dyonic decay

The decay modes at each wall of marginal stability are determined by the
corresponding matrix in I'y(V)

(P a (0 _ (psQ—aP)\ , (4(-rQ+pP
}’—(r S)EFO(N). (P> (’”(SQ—QP))+<S(—VQ+pP))°

The decay corresponding to the identity matrix is the ‘elementary’ spilit

=09 ()= () () v

[Sen, ’07]



‘ , H .
Elementary’ split T
The change in the degeneracy from the ‘elementary’ spilit

() (9~ ©)+ () e

I ..ol 1 1
> O
i (p,0,v) ve fO(p) fOS)

where f“(p) = n(p)*+* n(Np)*=, v

| — . | = .
— d (Wl) emep , — d (n) e2mn0 .
fO(p) Zl | )~ &

[Sen, ’07]

S Adim,n,¢) = (=11 Z|d,(m)d,(n)



Generic split

This i1s extended to the other walls by mapping a generic dyon decay to the
elementary [-wall

(7)) (40) L) - () (2)

The charge bilinears (m, n, £) transform as .

Q},2/2 =n,=s’n+qg°m—qst,

y \
..—\\) )\ \\‘,
-

PJ,Z/Z =m,=r’n+ p*m—pr¢

Q},-P},=L”},=—2rsn—2pqm + (ps+qr)C . P ‘ 1

[Sen, '07] [Cheng, Verlinde '07] [Sen, ’11]




Wall-crossing formula

Q

P
marginal stability, labelled by a 1',(/V) matrix y, to the dyonic degeneracy formula

Cy

IS equal to the jJump contribution of the dyon (P
Y

The wall-crossing jump contribution of a dyon ( )across a generic line of

) across the elementary T-wall

A, dm,n,¢) = (=12, di(m)dy(n,) .

[Sen, ’11]



Dyon counting problem

Consider the dyonic charge bilinears
(m,n, ) satisfying A = 4mn — > < ()
and 0 < 7 < m. Want to compute

in the

Want to find a decay path in the upper-half. Given (m, n, £) construct a sequence

of walls W(m, n, ) crossed when going from the to a point * . Then,
k k
dm.n.)=d.+ ) A=do+ (=D ) |£,|di(m)dy(n,)
- Vi € ‘;/(zmln 2

Hopefully known (i.e. 0) or computable




Solution for A <0

Downward trajectory given by consecutive left-right choice associated to the

| 1 O 1 1
— T —
matrices [/ ( | 1) | ( 0 1)

This defines our of decay walls: multiply
I and U matrices to generate the walls of marginal

stability. Decompose matrix in W(m, n, £) as

y=U"T2U% --- T, 5.>0
Wim,n,¢) = {U,U?, ..., U U"T, ..., UT2, U T2 U, ..., U T2 U%, ..., 1.}

¥y« determines all s;: Only need to determine y.



Solution for A <0

To find ys, for A = 4mn — % < 0 and 0 < Z < m, we know that there is a ¥
such that

m, <—lorn, <-—1 [Sen *11]
which implies d. = 0.
Consider
C \/ vV —A
£ <Pty
2m r 2m 2m
For the conditions and It IS sufficient
c  q 1
0<———< —

2m s )



Solution for A <O
7 ‘J__ p V-A

Two conditions

— — <—<<—+
2m r 2m 2m
£ |
0<— -4~
2m S )
Dy
g — ng(f,ZM) Find <§]> satisfying
s—qgr =1
m, = mA/g* o

1€
with fy* — SA/g

_ 2 o
n, =qm+sn—qst



Continued fractions A<O
Apply Euclid’s algorithm to find the ged of £ and 2m: = ay2m + 1y,
2m = ayry+ry,
The set of quotients {ay, d;, @, ...,a,} ro = ayry + 1y,
ry = ayry + 13,

IS elegantly encoded in the finite continued fraction
representation of £/2 m:

ady_ 172 + Fn—1 >

— = dy Fn—2 Ay -1 >

and determines the matrices

£lg g 1 0\ /1 a\[(1 O 1 0
= (zm/g S) B <a1 1) (0 f) (a3 1)"‘(61” 1) 1 0da Determines the

sequence W(m.,n., ¢
(g Clg\ (1 0\ [l a\ (1 O l a, g (m,n,?)
Ve = s 2mlg B a 1 0 1 a, 1 0 1

N———

I even



Result for A <0

Given m, n, £ with A = 4mn — 7> < 0 and 0 < Z < m, compute
C12m = [ay,aq,...,a,].
This defines
W(m,n, )
and then in the

k
Z ‘ f}’i ‘ dl (m}/i) dz(n}/l)
I =1
v, € Wim,n,?)

k
dm,n,0) =d+ ) A;=de+ (=1
i=1




The set W(m, n, £) is determined by the the ratio
of the two numbers 7 and 2m



Diagrammatic representation A <0
1

ake £/2m =2/7 = [0;a,,a,] =10;3,2] =—— 1 0\ /(1 a 1 2

- o 3+% = 1) )G 3)

1 0 1 0 1 0 1 1 1 2
1 1)°\2 1)°\3 1/)°\3 4/)°\3 7

In general, from the %2 —chamber to the chamber below £/2m, one crosses
n

z a; walls

=1




Endpoint degeneracy A <O

m,, = mA/g* <0

Two options:
em, <—1 = di=0 Arbitrarily negative
. m, =—1 = d.#0 butcanbe computed: /
T (J>0)
(m,n,©), = (=L,n. ) > (=L —j*—jls=n,lu+2j=7¢)
Jo

do= Y  £,,d=Ddm,) =) (€+2)d(=1)d 0 - —jt.) .

ueiT, T2,...,T/0} j=1

Equivalent to:
Extend continued fraction to [0; ay, a,, ..., a,, jo]



A =0,

Same logic, but now have
_ 2 __
my* — m A/g — O’ New relevant
= — SA/g — (). discrete invariant:

Y
Since PSL(2,7) action preserves ¢ = gcd(m, n, ¢), ged(m, n, £)

n, = g°m+ s*n — qst = @

We have a sequence of decay walls given by continued fraction of £/2m and last
wall yielding an immortal dyon with charge bilinears

(m,.n,,¢, ) =(0,4,0)or(g,0,0).



A =0,

Expand the inverse Igusa cusp form, 'Dabholkar, Murthy, Zagier "12]
1 . > .
e — l/j_le—Zmp + 2 (Wnlj(g, V) —+ l//n};(d, V)) ezmmﬂ ’
Dyo(p, 0, V) —
Ez((f)
l//g(o')=2 = -2 Z nd;(n)q”

Therefore

dm,n,€)=2§d,@— ),
ye W(im,n,?0)

12,1 dy(m,) dy(n)

Note For A = O the immortal degeneracy is only a functionof g: d. . (m,n,¢)=722d,(g)



The logic is the same, but the details more intricate.

Proceed as earlier, build set W(m, n, £) from the
continued fraction of £/2m but now select the
matrices in I (V).

For A = O immortal counting function different,

k+2 Er(6/N) — Ey(0) )
12(N = 1) n**2(6/N) n¥+2(6) Z dy(n) q" (o i ol NS

nNENO @mmmmmmm® N=17

[Bossard, Cosnier-Horeau, Pioline ’18]

Wfk, ()(0) —



Summary

We use continued fractions to set up an arithmetic of decay walls which we used
to explicitly compute all the polar coefficients of

1

D,

The appearance of continued fractions is naturally explained by the theory of
Binary Quadratic Forms (m,n, ) < mx* — Cxy + nyz.
Consistent with [Moore 98]

[Benjamin, Kachru, Ono, Rolen ’18], [Banerjee, Bhand, Dutta, Sen, Singh ’20], [Borsten, Duff, Marrani '20] ...



Thank you



Ol
—_

DO [ =
L=

Example

N =

e

1
4

£/2m = 2/7 = [0:;3,2] with walls ( ) ( ) (; (1))@ i)(; %)

A =0 -

~ d.(49,4,28) = d(1,0,0) = 2d,(1) = 648
(25,4,20),(9.4,12),(1,4,4), (1,1,2), (1,0,0).

d(49,4,28) = 648 — (20d,(25)d,(4) + 12d,(9)d,(4) + 4d,(1)d,(4) + 2d,(1)d,(1))
— — 459542242 945399203 613 080.

c[49, 4, 28] = 459542242945 399203613080

NI\



Orienting the walls

We give an to the walls: . Then,

[Sen; 1104.1498]
For 2 > 0 the For 7 < 0 the
bound states exists “ ‘ bound states exists | “
to the left of the ‘ to the right of the \
elementary T-wall elementary T-wall

0 0

1 1

This i1s extended to the other walls by mapping a generic dyon decay to the
elementary T-wall

(7)) (90) L) - () (2)



Wall distinction b

____1
roos s
ps —qr =1
Define sets R
['.(N) = yz(i z)EFO(N)\rs>O /\p
L (N)=147 = (f z) e T\(N)|rs <0 /\
_ _ (0 -1 _
Note that, for N =1, § = [0 ely(l) and I (1) =1_(1)S
Want: y € I' (V) with £, > 0 (p Q)S: (_q p)
ros —S T

or  yel_(N)with?, <0



Explicit formula A<O

Continued fractions give the following explicit formula for (m, n, £) with
dmn — ¢?> < 0and 0 < 7 < m:

Compute £/2m = [0; ay, ..., a,]. Define from these r numbers m;;, n;;, £';
roq
d(m,n, ) = de+ (=D Y N | £;]di(mydy(ny)
i=1 j=1
When d. # 0, formula is aclztually simpler: it imposes £ = m and n = Z(m — 1)

VE+I-3
d(m,n,f):( y (2q+1)d1(n—q2—q))+%(m+l) (d,(m))” + dy(n)

q=1



N>1,A=0

For A = O dyons, need to compute d: = d(0,2,0)

. gcd(m,nN, ) |

where ¢ = —— . Expand 1/®, and find
N
k+2 E,5(6/N) — E»(0)
F 2 2
— - d n

Vool 12(N = 1) n**3(c/N)n**+*(o) nzéw e
giving the final formula/ Immortal part
dm.n,¢)=—|dy@+ ), 16ldm)dyn) [ ~ v

}/ S WN(manaf)



Ol

e
DO | =
QO | =

Examples

1
1

N=1
1
1

0 1 0 1 0
1/°\2 1/)°\3 1

£/2m = 2/7 = [0;3,2] with walls

1. a) A =

d(14,1,8) = (- 1)(6d,(7)d,(1) + 4d,(2)d,(1) + 2d,(— 1)d,(1)) =

e

}G )G
(7,1,6), (2,1.4), (= 1,1,2), M (~1=76).

— 38671297 648.

c[14, 1, 8] = 58671297648

NI\



Ol
—_

DO [ =
L=

Examples

N=1

e

1
4

£12m = 2/7 = [0;3.2] with walls (} ?) (é ?) (; (1)) (é i) (é %)

1. b) CA=0
" d,(49,4,28) = d(1,0,0) = 2d,(1) = 648

(25,4,20),(9,4,12),(1,4,4), (1,1,2),(1,0,0).

d(49,4,28) = 648 — (20d,(25)d,(4) + 12d,(9)d,(4) + 4d,(1)d,(4) + 2d,(1)d,(1))
— — 459542242 945399203 613 080.

c[49, 4, 28] = 459542242945 399203613080

NI\



2. a)

1
d(7.54) = = 2di(1)d,

A= -2
1 1
(19592)9 (_19 o 59 _ 2) . c[7, &
: 2d,(—1)d A 53410
2 BN 2/

(

Examples

Ol
p—t

DO | =

W=

NI\



Discussion N =1

Consider
| -~ .
I 2mimp
= o,V)e
D,(p, 0, V) Z Vil )
m=—1
For m > 0 we can decompose
F P F: Finite [DMZ, *11]
=yl +
m m m P: Polar
d( ) qm52+s y2ms+1
(o) = ———dl, (0.v) o, ,(0,v)= ) ——
n-*(o) (1 —g*y)*
SEL Appel-Lerch

Wall-crossing



Discussion N =1

The finite part is a mock Jacobi form which captures the single centre dyonic
degeneracy

[DMZ, *11]
l//,f;(da V) = z nI;(n9 £)q"ye . g =e¥o | y= ¥
Bypmora(m. 1. ) = (=1 1k, )
for A > 0,m > 0.
In the cim,n, ) = cnli(n, )forO <7 <m [CKMRW, *19]

Therefore, we have computed cnli(n, £) for A < 0.



The mixed
Rademacher
expansion

Discussion N =1

~

o = Kl i i ko) 7 (18] 2/ T XA
mml) =21y > (@0 i 4k )i (lAI) -’23/2(% |A|A)
k=1

=1 Yez/2mZ
Amn—#2<0

s v S KI(A, ~1;k,9), <4m)6112( 2m \/z) (A.12)

1 vk A ky/m [FR, ’17]

L KU1 k), ()
Ty > . (%) =
k=1 j€Z/2mZ
gEZ/2mkZ
g=j(mod 2m)

+1/y/m
X / fk,g,m(u) 125/2 ( 2T \/A(l — muQ)) (]_ — mu2)25/4 dU,

1 ky/m

computes the coefficients c,f,:(n, £) with A > 0 in terms of c,,,li(n’, ") with A < 0.

Single centre 1/4—BPS black hole degeneracies with I = 1 are determined in
terms of the continued fraction of the rational number £/2m (and some extra

input for the case d.. = — 1)



Extra: Discrete attractor flow

[CV, "08] Discrete attractor flow related to Stern-
Brocot tree

Stern-Brocot tree related to




Extra: BQF

Binary quadratic forms

Oa
1/1 2 2
4/3 3/4 ]
x“—1A = 4
5/3 3/s a 4a
2/1 1/2 e
i
5/2 2/5 R 9a
3/1 1/3 ’:n'_ a
4/1 1/4
o Oa
-4/1 a
4a
-3/1 a
=5/2 4a
N oa 25a
-5/3 16a

-3/
—4/3

(b)



