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Introduction
Understanding the microscopic origin of Black Hole entropy remains a central question 
in Quantum Gravity.


  


Address it in the context of  supersymmetric String Theory. Concretely: study the 
degeneracies of a special type of BPS dyons, namely decadent dyons.


Our work has been inspired by the recent results of [Chowdhury, Kidambi, Murthy, Reys, 
Wrase ’19]. Here we propose a new systematic way to tackle these issues.

Sstat(Q) = ln d(Q) ↔ SBH(Q)

𝒩 = 4
1/4−



Introduction

• Dyonic degeneracies


• Siegel modular forms


• Wall-crossing


• Continued fractions 
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CHL models
Consider  CHL models obtained by compactifying heterotic string theory on 

 with . These models have  Abelian gauge 

fields. The duality group is





and the duality group is a subgroup  of . 


The duality group is

  


𝒩 = 4
T5 × S1/ℤN N = 1,2,3,5,7 r =

48
N + 1

+ 4

S−

Γ1(N) = {(a b
c d) ∈ PSL(2,ℤ) s . t . (a b

c d) ≡ (1 *
0 1 ) mod N}

T− T(ℤ) O(r − 6, 6; ℤ)

U−
Γ1(N) × T(ℤ)

[Chaudhuri, Hockney, Lykken ’95]
[…]



Dyons in CHL models
A generic -BPS state carries electric, , and magnetic, , charge w.r.t. the  
Abelian gauge fields. Dyonic degeneracies are functions of the duality invariants


,      ,     


1/4 ⃗Q ⃗P r
T−

m = P ⋅ P/2 ∈ ℤ n = Q ⋅ Q/2 ∈ ℤ/N ℓ = P ⋅ Q ∈ ℤ

d( ⃗P , ⃗Q) = d(m, n, ℓ)
We differentiate between two types of dyons:


• Single centre -BPS dyonic black holes with finite or zero horizon area in two-
derivative gravity


• Two-centred bound states of -BPS constituents

1/4

1/2

Immortal

Can decay
[Cheng, Verlinde ’07]



Dyons in CHL models
Dyons in  CHL models with  have two discrete duality invariants


 


,    


Single centre -BPS black holes with finite horizon area have . Will focus on





 are always two-centred states

 can be two-centred and single centred states


ℤN N = 1,2,3,5,7 U−

Δ = Q2P2 − (Q ⋅ P)2 = 4mn − ℓ2

I = gcd(QiPj − QjPi) 1 ≤ i, j ≤ r

1/4 Δ > 0

Δ ≤ 0

Δ < 0
Δ = 0

Discriminant

Torsion(In this talk )I = 1
[Banerjee, Sen ’07]

Area  ∼ Δ



Siegel modular forms
The generating function for dyonic degeneracies in these CHL models is a 
modular form of a subgroup of the genus-2 modular group 
Sp(2,ℤ)

Ω → (AΩ + B)(CΩ + D)−1

Φk(Ω) → det(CΩ + D)k Φk(Ω)

Ω = (ρ v
v σ)

(A B
C D) ∈ G̃ ⊂ Sp(2,ℤ)

1
Φk(ρ, σ, v)

= ∑
m, nN ≥ − 1
m, nN, ℓ ∈ ℤ

(−1)ℓ+1d(m, n, ℓ)e2πi(mρ+nσ+ℓv)

k =
24

N + 1
− 2

For   
N = 1,2,3,5,7,
k = 10,6,4,2,1

[Dijgkraaf, Verlinde,  
Verlinde ’96] 

[Jatkar, Sen ’05]

Invariant under Γ0(N)

Im(Ω) > 0



Wall-crossing

Single centre

Two-centred bound state

Wall of marginal

 stability

Changing the contour C

Poles in the Siegel 

modular form

d(m, n, ℓ) = (−1)ℓ+1 ∫C
dρdσdv p−mq−ny−ℓΦ−1

k

Ex: 
1

1 − x
= ∑

n≥0

xn or  − ∑
n≥1

x−n

|x | > 1

|x | < 1

p = e2πiρ, q = e2πiσ, y = e2πiv

[Sen, ’07]
[Dabholkar, Gaiotto 

Nampuri ’07]
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Poles and walls
 has an infinite family of second order poles in the  space


             

 


Represent walls in the  plane by lines joining    and  

1
Φk

(ρ, σ, v)

pqσ2 + rsρ2 + (ps + qr)v2 = 0, (p q
r s) ∈ Γ0(N)

Γ0(N) = {(p q
r s) ∈ PSL(2,ℤ) | r ≡ 0 mod N}

(v2/σ2, ρ2/σ2)
p
r

q
s

[Sen, ’07]
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Dyonic decay
The decay modes at each wall of marginal stability are determined by the 
corresponding matrix in 





The decay corresponding to the identity matrix is the ‘elementary’ split


Γ0(N)

γ = (p q
r s) ∈ Γ0(N) : (Q

P) → (p (s Q − q P)
r (s Q − q P)) + (q (−r Q + p P)

s (−r Q + p P)) .

γ = (1 0
0 1) : (Q

P) → (Q
0) + (0

P), v2 = 0
[Sen, ’07]



‘Elementary’ split
The change in the degeneracy from the ‘elementary’ split


 





where   ,





is          

γ = (1 0
0 1) : (Q

P) → (Q
0) + (0

P), v2 = 0

1
Φk(ρ, σ, v)

v → 0 1
v2

1
f (k)(ρ)

1
f (k)( σ

N )

f (k)(ρ) = η(ρ)k+2 η(Nρ)k+2

1
f (k)(ρ)

=
∞

∑
m=−1

d1(m) e2πimρ ,
1

f (k)(σ/N)
=

∞

∑
n=−1/N

d2(n) e2πinσ .

Δ d(m, n, ℓ) = (−1)ℓ + 1 |ℓ | d1(m) d2(n)

0
1

i∞

[Sen, ’07]



Generic split

The charge bilinears  transform as

,      

(m, n, ℓ)

Q2
γ /2 = nγ = s2 n + q2 m − qs ℓ

P2
γ /2 = mγ = r2 n + p2 m − pr ℓ

Qγ ⋅ Pγ = ℓγ = − 2rs n − 2pq m + (ps + qr) ℓ . p
r

0
1

i∞

q
s

This is extended to the other walls by mapping a generic dyon decay to the 
elementary T-wall

γ−1 (Q
P) = (

Qγ

Pγ) → (sQ − qP
0 ) + ( 0

−rQ + pP) = (Qγ

0 ) + ( 0
Pγ) .

[Sen, ’11][Cheng, Verlinde ’07][Sen, ’07]



Wall-crossing formula
The wall-crossing jump contribution of a dyon across a generic line of 

marginal stability, labelled by a  matrix , to the dyonic degeneracy formula 

is equal to the jump contribution of the dyon  across the elementary T-wall

(Q
P)

Γ0(N) γ

(
Qγ

Pγ)
Δγ d(m, n, ℓ) = (−1)ℓγ+1 |ℓγ | d1(mγ) d2(nγ) .

[Sen, ’11]
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Dyon counting problem
Consider the dyonic charge bilinears

 satisfying 
and . Want to compute

 in the -chamber. 

Want to find a decay path in the upper-half. Given  construct a sequence 
of walls  crossed when going from the -chamber to a point  . Then,

(m, n, ℓ) Δ = 4mn − ℓ2 ≤ 0
0 ≤ ℓ ≤ m

d(m, n, ℓ) ℛ

(m, n, ℓ)
W(m, n, ℓ) ℛ *

d(m, n, ℓ) = d* +
k

∑
i=1

Δi = d* + (−1)ℓ+1
k

∑
i = 1

γi ∈ W(m, n, ℓ)

|ℓγi
| d1(mγi

) d2(nγi
) ,

Hopefully known (i.e. 0) or computable

ℛ



Solution for N = 1
Downward trajectory given by consecutive left-right choice associated to the 

matrices   ,  U = (1 0
1 1) T = (1 1

0 1)

Δ < 0k = 10

This defines our arithmetic of decay walls: multiply
 and  matrices to generate the walls of marginal

stability. Decompose matrix in  as

 determines all : Only need to determine 

T U
W(m, n, ℓ)

W(m, n, ℓ) = {U, U2, …, Us1, Us1 T, …, Us1Ts2, Us1 Ts2 U, …, Us1 Ts2 Us3, …, γ*}
γ* si γ*

γ = Us1 Ts2 Us3 ⋯ Tsr , sr ≥ 0 0
1

1
1
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U2
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U2T
UT2

UTU

ℛ



Solution for N = 1
To find , for   and  , we know that there is a  
such that

 or 
which implies .
Consider   

 

For the conditions  and  it is sufficient

 

γ* Δ = 4mn − ℓ2 < 0 0 ≤ ℓ ≤ m γ*

mγ*
< − 1 nγ*

< − 1
d* = 0

mγ*
< 0 ⟹ mγ*

= r2n + p2m − prℓ < 0
ℓ

2 m
−

−Δ
2 m

<
p
r

<
ℓ

2 m
+

−Δ
2 m

r, s > 0 ℓγ*
> 0

0 ≤
ℓ

2m
−

q
s

≤
1
rs

Δ < 0

[Sen ’11]



Solution for N = 1
Two conditions

 

 

Solved by

,     

 with                                            .

ℓ
2 m

−
−Δ

2 m
<

p
r

<
ℓ

2 m
+

−Δ
2 m

0 ≤
ℓ

2m
−

q
s

≤
1
rs

(p
r) = ( ℓ/g

2m/g) g = gcd(ℓ,2m)

γ* = ( ℓ/g q
2m/g s)

Δ < 0

mγ*
= m Δ/g2

ℓγ*
= − sΔ/g

nγ*
= q2m + s2n − qsℓ

Find  satisfying
(q
s)

ps − qr = 1



Continued fractions 
Apply Euclid’s algorithm to find the gcd of  and :

The set of quotients 
is elegantly encoded in the finite continued fraction
representation of :

and determines the matrices            .

ℓ 2m

{a0, a1, a2, …, an}

ℓ/2 m

N = 1 Δ < 0
ℓ = a0 2m + r0 ,

2m = a1 r0 + r1 ,
r0 = a2 r1 + r2 ,
r1 = a3 r2 + r3 ,

⋮
rn−3 = an−1 rn−2 + rn−1 ,
rn−2 = an rn−1 ,ℓ

2m
= a0 +

1

a1+
1

a2+
1

⋱ +
1
an

γ* = (q ℓ/g
s 2m/g) = ( 1 0

a1 1) (1 a2

0 1 ) ( 1 0
a3 1)⋯(1 an

0 1 )

γ* = ( ℓ/g q
2m/g s) = ( 1 0

a1 1) (1 a2

0 1 ) ( 1 0
a3 1)⋯( 1 0

an 1)
 evenn

 oddn Determines the 

sequence W(m, n, ℓ)



Result for N = 1
Given  with   and  , compute

.
This defines

and then in the -chamber,

m, n, ℓ Δ = 4mn − ℓ2 < 0 0 ≤ ℓ ≤ m

ℓ/2 m = [a0, a1, …, ar]

W(m, n, ℓ)
ℛ

d(m, n, ℓ) = d* +
k

∑
i=1

Δi = d* + (−1)ℓ+1
k

∑
i = 1

γi ∈ W(m, n, ℓ)

|ℓγi
| d1(mγi

) d2(nγi
)

Δ < 0



The set  is determined by the the ratio 
of the two numbers  and 

W(m, n, ℓ)
ℓ 2m
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Diagrammatic representation N = 1Δ < 0

(1 0
1 1), (1 0

2 1), (1 0
3 1), (1 1

3 4), (1 2
3 7)

γ* = ( 1 0
a1 1) (1 a2

0 1 ) = (1 2
3 7)

Take   

In general, from the chamber to the chamber below , one crosses

 walls

ℓ/2m = 2/7 = [0; a1, a2] = [0; 3,2] =
1

3+
1
2

ℛ− ℓ/2m
n

∑
i=1

ai



Endpoint degeneracy
 

Two options:
•         
•            but can be computed: 

Equivalent to:
Extend continued fraction to 

mγ*
= m Δ/g2 < 0

mγ*
< − 1 ⇒ d* = 0

mγ*
= − 1 ⇒ d* ≠ 0

(m, n, ℓ)γ*
= (−1, n*, ℓ*) → (−1, n* − j2 − jℓ* = nj, ℓ* + 2j = ℓj)

[0; a1, a2, …, an, j0]

N = 1 Δ < 0

Tj ( j > 0)

Arbitrarily negative

d* = ∑
μ ∈{T, T2,…,Tj0}

ℓγ*μ d1(−1) d1(nγ*μ) =
j0

∑
j = 1

(ℓ* + 2j) d1(−1) d1(n* − j2 − jℓ*) .



, Δ = 0 N = 1
Same logic, but now have

,
.

Since  action preserves ,

 

We have a sequence of decay walls given by continued fraction of  and last 
wall yielding an immortal dyon with charge bilinears

 or .

mγ*
= m Δ/g2 = 0

ℓγ*
= − sΔ/g = 0

PSL(2,ℤ) g̃ = gcd(m, n, ℓ)

nγ*
= q2m + s2n − qsℓ = g̃

ℓ/2m

(mγ*
, nγ*

, ℓγ*
) = (0,g̃,0) (g̃,0,0)

d(0,g̃,0)?

New relevant 

discrete invariant:


gcd(m, n, ℓ)



Expand the inverse Igusa cusp form,

 

Therefore

1
Φ10(ρ, σ, v)

= ψ−1e−2πiρ +
∞

∑
m = 0

(ψF
m(σ, v) + ψP

m(σ, v)) e2πimρ ,

ψF
0 (σ) = 2

E2(σ)
η24(σ)

= − 2 ∑
n ≥ −1

n d1(n) qn

d(m, n, ℓ) = 2 g̃ d1(g̃) − ∑
γ ∈ W(m,n,ℓ)

|ℓγ | d1(mγ) d1(nγ)

d(0,g̃,0)

, Δ = 0 N = 1

Note For  the immortal degeneracy is only a function of :     Δ = 0 g̃ dimmortal(m, n, ℓ) = 2g̃d1(g̃)

[Dabholkar, Murthy, Zagier ’12]



N > 1
The logic is the same, but the details more intricate.

Proceed as earlier, build set  from the 
continued fraction of  but now select the 
matrices in .

For  immortal counting function different, 

W(m, n, ℓ)
ℓ/2m

Γ0(N)

Δ = 0

ψF
−k, 0(σ) =

k + 2
12 (N − 1)

E2(σ/N) − E2(σ)
ηk+2(σ/N) ηk+2(σ)

= ∑
nN∈ℕ0

dN(n) qn

Δ ≥ 0

N = 1

N = 7

N = 5

N = 3

N = 2

[Bossard, Cosnier-Horeau, Pioline ’18]



Summary
We use continued fractions to set up an arithmetic of decay walls which we used 
to explicitly compute all the polar coefficients of

The appearance of continued fractions is naturally explained by the theory of 
Binary Quadratic Forms . 

1
Φk

(m, n, ℓ) ↔ mx2 − ℓxy + ny2

[Benjamin, Kachru, Ono, Rolen ’18], [Banerjee, Bhand, Dutta, Sen, Singh ’20], [Borsten, Duff, Marrani ’20] …

Consistent with [Moore ’98]



Thank you
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Example

 with walls

, 

ℓ/2m = 2/7 = [0; 3,2]

(m, n, ℓ) = (49,4,28) Δ = 0

(25,4,20), (9,4,12), (1,4,4), (1,1,2), (1,0,0) .

d(49,4,28) = 648 − (20d1(25)d1(4) + 12d1(9)d1(4) + 4d1(1)d1(4) + 2d1(1)d1(1))
= − 459 542 242 945 399 203 613 080.

N = 1

d*(49,4,28) = d(1,0,0) = 2d1(1) = 648

(1 0
1 1), (1 0

2 1), (1 0
3 1), (1 1

3 4), (1 2
3 7)



Orienting the walls
We give an orientation to the walls: from  to . Then,q/s p/r

0
1

i∞

0
1

i∞

For  the 
bound states exists 
to the left of the 
elementary T-wall 

ℓ > 0 For  the 
bound states exists 
to the right of the 
elementary T-wall 

ℓ < 0

[Sen; 1104.1498]

This is extended to the other walls by mapping a generic dyon decay to the 
elementary T-wall

γ−1 (Q
P) = (

Qγ

Pγ) → (sQ − qP
0 ) + ( 0

−rQ + pP) = (Qγ

0 ) + ( 0
Pγ) .



Wall distinction
Define sets

Note that, for ,     and  

Want:  with 
or        with 

Γ+(N) = {γ = (p q
r s) ∈ Γ0(N) | rs > 0}

Γ−(N) = {γ = (p q
r s) ∈ Γ0(N) | rs < 0}

N = 1 S = (0 −1
1 0 ) ∈ Γ0(1) Γ+(1) = Γ−(1)S

γ ∈ Γ+(N) ℓγ > 0
γ ∈ Γ−(N) ℓγ < 0

p
r

q
s

p
r

q
s

ps − qr = 1

p
r

−
q
s

=
1
rs

(p q
r s) S = (−q p

−s r)



Explicit formula
Continued fractions give the following explicit formula for  with 

 and : 

Compute . Define from these  numbers 

When , formula is actually simpler: it imposes  and 

(m, n, ℓ)
4mn − ℓ2 < 0 0 ≤ ℓ ≤ m

ℓ/2m = [0; a1, …, ar] r mij, nij, ℓij

d(m, n, ℓ) = d* + (−1)ℓ+1
r

∑
i=1

ai

∑
j=1

|ℓij | d1(mij)d1(nij) .

d* ≠ 0 ℓ = m n =
1
4

(m − 1)

N = 1 Δ < 0

d(m, n, ℓ) = (
⌊ m

4 + 1−
1
2 ⌋

∑
q=1

(2q + 1) d1(n − q2 − q))+ 1
2 (m + 1) (d1(n))2 + d1(n) .



, N > 1 Δ = 0
For  dyons, need to compute  = 

where . Expand  and find

giving the final formula

Δ = 0 d* d(0, ̂g,0)

̂g =
gcd(m, nN, ℓ)

N
1/Φk

ψF
−k, 0(σ) =

k + 2
12 (N − 1)

E2(σ/N) − E2(σ)
ηk+2(σ/N) ηk+2(σ)

= ∑
nN∈ℕ0

dN(n) qn

d(m, n, ℓ) = − dN( ̂g) + ∑
γ ∈ WN(m,n,ℓ)

|ℓγ | d1(mγ) d2(nγ)

N = 1

N = 7

N = 5

N = 3

N = 2

Immortal part
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Examples

 with walls

1. a) , 

ℓ/2m = 2/7 = [0; 3,2]

(m, n, ℓ) = (14,1,8) Δ = − 8

(7,1,6), (2,1,4), (−1,1,2), (−1, − 2,4), (−1, − 7,6) .

d(14,1,8) = (−1)(6d1(7)d1(1) + 4d1(2)d1(1) + 2d1(−1)d1(1)) = − 58 671 297 648.

N = 1

(1 0
1 1), (1 0

2 1), (1 0
3 1), (1 1

3 4), (1 2
3 7)
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Examples

 with walls

1. b) , 

ℓ/2m = 2/7 = [0; 3,2]

(m, n, ℓ) = (49,4,28) Δ = 0

(25,4,20), (9,4,12), (1,4,4), (1,1,2), (1,0,0) .

d(49,4,28) = 648 − (20d1(25)d1(4) + 12d1(9)d1(4) + 4d1(1)d1(4) + 2d1(1)d1(1))
= − 459 542 242 945 399 203 613 080.

N = 1

d*(49,4,28) = d(1,0,0) = 2d1(1) = 648

(1 0
1 1), (1 0

2 1), (1 0
3 1), (1 1

3 4), (1 2
3 7)
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Examples

 with walls

2. a) , 

ℓ/2m = 2/7 = [0; 3,2]

(m, n, ℓ) = (7,
1
2

,4) Δ = − 2

(1,
1
2

,2), (−1, −
1
2

, − 2) .

d(7,
1
2

,4) = − 2d1(1)d2 ( 1
2 ) − 2d1(−1)d2 (−

1
2 ) = − 5410

N = 2

(1 0
2 1), (−1 1

−4 3)
(1 0

1 1), (1 0
2 1), (1 0

3 1), (1 1
3 4), (1 2

3 7)



Discussion
Consider

 

For  we can decompose

 

1
Φ10(ρ, σ, v)

=
∞

∑
m=−1

ψm(σ, v) e2πimρ

m ≥ 0

ψm = ψF
m + ψP

m

N = 1

[DMZ, ’11]F: Finite
P: Polar

ψP
m(σ, v) =

d(m)
η24(σ)

𝒜2,m(σ, v) 𝒜2,m(σ, v) = ∑
s∈ℤ

qms2+s y2ms+1

(1 − qs y)2
Appel-Lerch

Wall-crossing



Discussion
The finite part is a mock Jacobi form which captures the single centre dyonic 
degeneracy

for , .

In the -chamber  for 

Therefore, we have computed  for .

ψF
m(σ, v) = ∑

n,ℓ∈ℤ

cF
m(n, ℓ) qn yℓ , q = e2πiσ , y = e2πiv

Δ > 0 m > 0

ℛ c(m, n, ℓ) = cF
m(n, ℓ) 0 ≤ ℓ ≤ m

cF
m(n, ℓ) Δ ≤ 0

N = 1

[DMZ, ’11]

dimmortal(m, n, ℓ) = (−1)ℓ+1cF
m(n, ℓ)

[CKMRW, ’19]



Discussion N = 1

[FR, ’17]

The mixed
Rademacher 
expansion

computes the coefficients  with  in terms of  with .

Single centre BPS black hole degeneracies with  are determined in 
terms of the continued fraction of the rational number  (and some extra 

input for the case )

cF
m(n, ℓ) Δ > 0 cF

m(n′ , ℓ′ ) Δ < 0

1/4− I = 1
ℓ/2m

d* = − 1



Extra: Discrete attractor flow
[CV, ’08] Discrete attractor flow related to Stern-

Brocot tree

Stern-Brocot tree related to continued 
fractions

‘Inverse
discrete
attractor flow’
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Extra: BQF
Binary quadratic forms

x2 − |Δ | y2 = 4


