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AdS/CFT provides a non-perturbative, UV-complete 
definition of quantum gravity in Anti-de Sitter space.

There are conditions on a CFT such that it captures 
semi-classical gravitational features.

Quantum theory

Gravity



AdS/CFT provides a non-perturbative, UV-complete 
definition of quantum gravity in Anti-de Sitter space.

How to go about building CFTs with  
semi-classical gravitational features?

Quantum theory

Gravity



We will focus on the difficulties you encounter in AdS3/CFT2.
Not universal, but it illustrates the challenges.

CFT2

AdS3
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Universality Strategy Output
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Holographic
CFTs

Universality: Necessary conditions on the spectrum of CFT2.
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Symmetric Product
CFTs

Strategy: Describing a subspace of CFT2. 
Restrict the analysis to supersymmetric states. 
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Our Landscape

Output: Finding the needles in the haystack. Minimal models come to rescue.
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AdS3 Gravity

The theory:
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The spectrum:

1. Light States:  Perturbative states
2. Heavy States: Black holes
3. Other stuff, e.g., multi-centered, conical defects (to be ignored today)
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2GN
� 1Universal entry in AdS3/CFT2:



Holographic CFT2

1. Black hole regime

2. Perturbative regime

We will discuss two conditions

AdS3

C
FT2



Holographic CFT2

AH � GN

1. Black hole regime:

SBH = ln d(c, E)
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[Strominger+Vafa; Strominger]



Holographic CFT2

AH � GN

1. Black hole regime:

While the Cardy regime correctly accounts the entropy of very large 
BHs, we want CFTs with an extended Cardy regime that covers black 
hole that are large relative to the Planck scale.
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Holographic CFT2

2. Perturbative regime:

• Presence of Hawking-Page transition [Keller; Hartman, Keller, Stoica]

• Extended Cardy regime for  BPS BHs [Benjamin, Cheng, Kachru, Moore, 
Paquette; Benjamin, Kachru, Keller, Paquette ]

Light = Energy is O(1) in Planck units. 
Perturbative excitations that do not form a black hole.   

The black hole regime puts already restrictions on these states:
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Expectations of the string/gravity spectrum
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CFT2

Warning: Sizes are not meaningful.

• Large central charge: semi-classical limit
• Necessary conditions on spectrum

1. Black hole regime: extended Cardy regime  
2. Perturbative regime: slow growth
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Strategy

We want CFTs with large central charge
We want control on the spectrum



Strategy

We want CFTs with large central charge
We want control on the spectrum

Search within symmetric product theories.

index t = k
2
c/6. This unwrapping trick thus allows us to also analyze CFTs with fractional charges

using wJf. Conversely, given a wJf ', its index t may not always correspond to the central charge

c/6: it could also describe a CFT of smaller central charge with fractional U(1) charges , whose

elliptic genus has been unwrapped.

Just like for the partition function, modular invariance gives a Cardy-type formula for the

asymptotic behavior of the spectrum of states in �(⌧, z). The role of the energy is now e↵ectively

played by the discriminant

� = 4tn� l
2
, (2.4)

where t is the index of the weak Jacobi form. Note that the discriminant is bounded from below by

�t
2. We will call �min the discriminant of the state of minimal discriminant. If the discriminant

is large and positive, then the behavior is again given by

c(n, l) ⇠ e
⇡

q
|�min|

t2
�

, for � � 1 . (2.5)

(See for instance appendix B of [34].) The role of light states is played by states with negative

discriminant � < 0: so-called polar states. As in (2.1), their degeneracy does not a↵ect the

derivation of (2.5), and can be chosen (almost) completely freely. The only input in the Cardy-

type formula above is the discriminant of the most polar term, �min.

2.2 Partition function of symmetric product orbifolds

In holography, we are interested in families of CFTs with a good large c limit. This means in

particular that in the large c limit the CFTs should have a finite number of states at any finite

dimension h. The best known constructions of this type are symmetric orbifolds, who are part of a

larger set of CFTs known as permutation orbifolds [14,15,35]. Symmetric orbifolds are constructed

in the following way: we start with a seed CFT C of central charge c and partition function Z(⌧ ; C),

take their m-fold tensor product, and then orbifold by all possible permutations of the m factors,

that is by the entire symmetric group Sm:

Cm = C
⌦m

/Sm . (2.6)

It turns out that the generating function for the partition functions of the Cm has a very simple

form [36]:

Z(⌧, ⇢) =
X

m

Z(⌧ ; Cm) pm =
Y

m>0,n2Z

1

(1� pmqn)d(mn)
=

X

m,n

dm(n)pmq
n
, p ⌘ e

2⇡i⇢
, (2.7)

where d(n) are the degeneracies appearing in Z(⌧ ; C). What can we say about the growth of

coe�cients dm(n) of the m-th symmetric orbifold? Obviously, for n asymptotically large, that is
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coe�cients dm(n) of the m-th symmetric orbifold? Obviously, for n asymptotically large, that is
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Strategy

Only hope: Add marginal 
deformation to make the 
spectrum sparse

Focus on quantities that are protected.
Those should have gravitational features.

We want CFTs with large central charge
We want control on the spectrum

Search within symmetric product theories.



CFT2

Warning: Sizes are not meaningful.

• Large central charge: semi-classical limit
• Necessary conditions on spectrum

1. Black hole regime: extended Cardy regime  
2. Protected quantities have gravitational features
3. Marginal BPS operator

Region of 
exploration

Large central charge



BPS states in SCFT2

�(⌧, z) = trRR

⇣
(�1)F qL0� c

24 yJ0 q̄L̄0� c̄
24

⌘

The elliptic genera is related to a weak Jacobi form of index t.

Focus on protected quantities: the elliptic genera.



BPS states in SCFT2

�(⌧, z) = trRR

⇣
(�1)F qL0� c

24 yJ0 q̄L̄0� c̄
24

⌘

The elliptic genera is related to a weak Jacobi form of index t.

Focus on symmetric product orbifolds: easy to get large values of c.

Focus on protected quantities: the elliptic genera.

Z(⇢, ⌧, z) =
X

r

�(⌧, z; Symr(M)) e2⇡i⇢ t r =
Y

n,l,r2Z
r>0

(1� qnylptr)�c(nr,l)



BPS states in SCFT2

�(⌧, z) = trRR

⇣
(�1)F qL0� c

24 yJ0 q̄L̄0� c̄
24

⌘

Necessary condition on 
light states in NS sector

Focus on protected quantities: the elliptic genera.

Z(⇢, ⌧, z) =
X

r

�(⌧, z; Symr(M)) e2⇡i⇢ t r =
Y

n,l,r2Z
r>0

(1� qnylptr)�c(nr,l)

The elliptic genera is related to a weak Jacobi form of index t.

Focus on symmetric product orbifolds: easy to get large values of c.

a

ln dNS
1 (h) ⇠ h� � < 1b
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BPS states in SCFT2

�(⌧, z) = trRR

⇣
(�1)F qL0� c

24 yJ0 q̄L̄0� c̄
24

⌘
Focus on protected quantities: the elliptic genera.

Note: The partition function of symmetric product CFT2 has g=1.
The elliptic genus can display cancellations that capture the 
spectrum away from the symmetric product point. 

Z(⇢, ⌧, z) =
X

r

�(⌧, z; Symr(M)) e2⇡i⇢ t r =
Y

n,l,r2Z
r>0

(1� qnylptr)�c(nr,l)

The elliptic genera is related to a weak Jacobi form of index t.

Focus on symmetric product orbifolds: easy to get large values of c.

Necessary condition on 
light states in NS sector

a

ln dNS
1 (h) ⇠ h� � < 1b
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BPS states in SCFT2

�(⌧, z) = trRR

⇣
(�1)F qL0� c

24 yJ0 q̄L̄0� c̄
24

⌘

Spoiler!
We can tell you unambiguously which wJFs are holographic, i.e g<1. 
New examples are unveiled.   

Focus on protected quantities: the elliptic genera.

Z(⇢, ⌧, z) =
X

r

�(⌧, z; Symr(M)) e2⇡i⇢ t r =
Y

n,l,r2Z
r>0

(1� qnylptr)�c(nr,l)

The elliptic genera is related to a weak Jacobi form of index t.

Focus on symmetric product orbifolds: easy to get large values of c.

Necessary condition on 
light states in NS sector

a

ln dNS
1 (h) ⇠ h� � < 1b
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CFT2

Warning: Sizes are not meaningful.

Region of 
exploration

• Large central charge: semi-classical limit
• Necessary conditions on spectrum

1. Black hole regime: extended Cardy regime  
2. Perturbative BPS spectrum: slow growth
3. Marginal BPS operator

Large central charge



1 2

Landscape



Our procedure in a few steps:

r

1. Select one seed theory:  select a Jacobi form.
2. Perform symmetric product orbifold: increases c
3. Relate generating function to Siegel paramodular form: gives the 

mathematical control to extract spectrum.
4. Build a modular form that capture the light part of the CFT spectrum

�NS,1 ⌘
X

h,l

dNS
1 (h, l)qhyl =

Y

h�0,l2Z
(h,l) 6=(0,0)

1

(1� qhyl)f(h,l)

Generating functional for light (perturbative) states at infinite r



Classification

�NS,1 ⌘
X

h,l

dNS
1 (h, l)qhyl =

Y

h�0,l2Z
(h,l) 6=(0,0)

1

(1� qhyl)f(h,l)

Generating functional for light states at infinite c

Stringy Examples

Promising 
(semi-classical gravity)

Examples

f(h) ⇠e2⇡⌫0h

) dNS
1 (h) ⇠ e2⇡⌫0h

f(h) ⇠�h,h0

) dNS
1 (h) ⇠ e

p
h



Promising Examples

Good news!
We can easily diagnose if a Symmetric Product Orbifold  
obeys holographic conditions.

More generally we see that promising forms are relatively rare: the space of all wJf grows like

j(t) '
t
2

12
, (4.4)

and the number of promising wJf grows very slowly. However, experimentally we find that there is

always at least one promising form for every t, b = b
p
tc.

t b dim
1 1 1
2 1 1
3 1 1
4 1 1
4 2 2
5 1 0
5 2 1
6 1 1
6 2 2
7 1 0
7 2 1

t b dim
8 1 0
8 2 2
9 1 0
9 2 1
9 3 3
10 1 0
10 2 1
10 3 2
11 1 0
11 2 0
11 3 1

t b dim
12 1 0
12 2 2
12 3 3
13 1 0
13 2 0
13 3 1
14 1 0
14 2 0
14 3 1
15 1 0
15 2 1
15 3 2

t b dim
16 1 0
16 2 1
16 3 2
16 4 4
17 1 0
17 2 0
17 3 0
17 4 2
18 1 0
18 2 0
18 3 3
18 4 3

Table 2: Dimension of space of promising forms. When the dimension is zero, it means that a wJf of

index t and most polar term y�b
does not exist.

4.2 Explicit expressions for f(n, l)

In all cases where the growth is supergravity-like, the outcome is that the f̃(n, l) are bounded and

essentially constant. In fact for these cases we can give simple closed form expressions for them.

To do this, we first remind the definition

f̃(n, l) = f(n, l)� c(0, l)� �n,0

X

m>0

c(0, l + bm) . (4.5)

The f(n, l) can be computed as described in [27]. For promising forms, it turns out that they vanish

unless

n = 0 or tn+ bl = 0 , (4.6)

and that they only depend on nb := n mod b and on lb := 2(n� nb)t/b+ l mod b. Note that we

automatically have nbt/b 2 Z. The f(n, l) thus take at most b2 di↵erent values. In total we have

f(n, l) =

8
<

:

P
m̂2bZ�l�nbt/b

c(�nbm̂/b� n
2
b
t/b

2
, m̂) : tn+ bl = 0 or n = 0

0 : else
. (4.7)

19
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Promising Examples

What is the physics behind this classification!?
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Constructing the CFT

From the mathematical classification of Jacobi forms, there 
are two necessary properties on the seed:

1. SCFT with at least N=(2,2) or more. Restricts b to divide t,

2. Central charge is bounded,

c = 6
b2

t
 6

Note:
𝑐 ≤ 6 is a necessary condition for both the requirement of 
slow growth and marginal operators in the spectrum.



N=2  Minimal Models

What you need to know about SUSY Minimal Models:

• CFT2 whose spectrum is built from a finite number of irreducible 
representations of the N=2 super-Virasoro algebra.

• Obey ADE classification.

• Central charge a

c =
3k

k + 2
< 3 k = 1, 2, . . . b

<latexit sha1_base64="WEdNMYXJ0oRSPR/dcoc/CEm57nE="></latexit>
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Constructing the CFT
t b c = 6b2

t dim CFTs

1 1 6 1 K3 sigma model

2 1 3 1

3 1 2 1 D4

4 1 3

2
1 A3

4 2 6 2 Unwrapped K3; T 4
/G

6 1 1 1 A2

6 2 4 2

8 2 3 1 (A3)2

9 3 6 3 Unwrapped K3

10 2 12

5
1 D6

12 2 2 2 A5; unwrapped D4

12 3 9

2
3

15 3 18

5
2 (A4)2

16 4 6 4 Unwrapped K3; Unwrapped T
4
/G

18 3 3 2 Kazama-Suzuki theory at M = 2, k = 3

Table 3: Space of primitive weak Jacobi forms for t  18, namely the dimension of the

space of weak Jacobi forms for a given t, b that both exhibits slow growth in the symmetric

product, and satisfies basic physical consistency conditions in order to describe the elliptic

genus of a 2d CFT. Some CFTs associated with certain weak Jacobi forms in this table have

been identified.

21
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Moduli

Marginal operators are crucial!
Symmetric product orbifold is the weakly coupled description.
These operators should drive the CFT2 to strong coupling.

Moduli: 
• marginal operators: 
• SUSY:            descendants of (anti-)chiral primaries in NS sector with  

a

(h, h̄) = (1, 1)b
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must be the G
�

�1/2 (G+
�1/2) descendant of a (anti-)chiral primary in the NS sector of

Q = 1(�1) , h = 1/2 . (2.15)

The moduli are thus given by primary operators with (2.15), which may be of the form (c, c),

(a, c), (c, a), or (a, a).

A priori, we can choose � in (2.14) any way we want. However, we want to ensure that

our theory has a good planar limit for N ! 1. This only happens for an appropriate choice

of �. In the case of 4d SYM, this corresponds to the statement that the ‘t Hooft coupling �

is related to the Yang-Mills coupling by � = Ng
2. For symmetric orbifolds, the situation is

more complicated. As we review in appendix D, the correct choice of � depends on the type

of multi-trace operator O. In particular, when O is a K-trace operator, we have

� = 2�K . (2.16)

It then turns out that to leading order in N , only single-trace moduli lead to significant

deformations of the CFT. All other moduli contribute O(N�1) corrections to the spectrum.

We will therefore be mostly interested in single-trace moduli.

2.4 Twisted sector moduli

Having established how single trace moduli can deform the symmetric orbifold, let us now

explain how to count them. To identify such exactly marginal operators, it is useful to work

in the Ramond sector. If we have chiral primaries in the NS sector of SymN(X) obeying

(2.15), then the corresponding Ramond ground states will have

h =
cN

24
, Q = 1� cN

6
, (2.17)

if the primary is chiral, and

h =
cN

24
, Q = �1 +

cN

6
, (2.18)

for anti-chiral primaries. These are the operators we want to detect and quantify, which as

we will see are straightforward to count.

The Ramond ground states are 1/2-BPS states; for a seed CFT these are captured by

the function

Z 1
2�BPS(y, ȳ) =

X

Q,Q̄

d(Q, Q̄)yQȳQ̄ , (2.19)
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Moduli
Series k untwisted moduli twisted moduli single trace twisted

A2 1 1 28 1 twist 5, 1 twist 7

A3 2 3 26 1 twist 3, 1 twist 4, 1 twist 5

A5 4 9 24 1 twist 2, 1 twist 3, 1 twist 4

Ak+1 odd, � 3 P (k + 2)� 2 9 1 twist 3

Ak+1 even, � 6 P (k + 2)� 2 10 +

k

2+2P
r=1

P (r) 1 twist 2, 1 twist 3

D4 4 6 20 1 twist 2, 2 twist 3, 1 twist 4

D k

2+2 0 mod 4, � 8 P (k2 + 1) + P (k4 + 1) 8 +

k

4+1P
r=1

P (r) 1 twist 2, 1 twist 3

D k

2+2 2 mod 4, � 6 P (k2 + 1) 7 1 twist 3

E6 10 4 5 1 twist 2

E7 16 6 5 1 twist 2

E8 28 6 5 1 twist 2

Table 1: Number of moduli for symmetric orbifolds of the ADE minimal models.
We always take N large enough so that the moduli have converged. P (n) is the

integers partition function, i.e.
1P

n=0
P (n)qn =

1Q
n=1

1
(1�qn) .

4 The landscape of symmetric orbifold theories

4.1 A conjecture on the landscape

In the prior sections we established that the elliptic genus of any minimal model can be

unwrapped to give a weak Jacobi form of index t with maximal polar term q
0
y
b that is slow

growing, where t and b are related by

c =
6b2

t
. (4.1)

Let us now address the converse of that statement: Does every slow growing form come from

the elliptic genus of a N = (2, 2) CFT?

Before we can make a precise statement, let us first discuss several qualifications. First

we note that due to (2.9), any unwrapping of an elliptic genus automatically gives

t

b
2 Z . (4.2)

Any conjecture we are making can thus only hold for wJf that satisfy (4.2).

Next, we note that slow growing wJf form a vector space, whereas CFTs do not. The

best we can hope for is thus that elliptic genera of minimal models may give a basis for the

18

where d(Q, Q̄) is the multiplicity of the RR ground state of charge (Q, Q̄). To compute the

spectrum of 1/2-BPS states for the N -th symmetric orbifold, we use the generating function

(see, e.g. [33, 45]),

1X

N=0

Z
N
1
2�BPS(y, ȳ)p

N =
1Y

L=1

Y

Q,Q̄

1

(1� pLyQȳQ̄)d(Q,Q̄)
, (2.20)

where Z
N
1
2�BPS

(y, ȳ) is the 1/2-BPS spectrum of SymN(X). To identify the twisted sector

states, we can use a modified version of (2.20),

1X

N=0

Z
N,L

1
2�BPS

(y, ȳ)pN =
LmaxY

L=1

Y

Q,Q̄

1

(1� pLyQȳQ̄)d(Q,Q̄)
, (2.21)

which only counts states that have no twist cycle longer than Lmax. In particular, Lmax = 1

gives the untwisted states. Finally, for a given N we can identify which of these states ground

states carry charges as in (2.17)-(2.18). These formulas allows us to read o↵ the number of

moduli of a given chirality type from (2.20) for any N , and if it is single or multi trace

depending on which term in the product formula leads to that state. Note that this number

vanishes for N = 0, and can increase with N . In fact, for symmetric orbifolds, this number

stabilizes above a certain value of N , see e.g. [13].

Let us focus on the (c, c) moduli, and explain how to count them. The generating function

for (c, c) primaries is

1X

N=0

Z
N

cc
(y, ȳ)pN =

1Y

L=1

Y

Q,Q̄

1

(1� pLyQ+cL/6ȳQ̄+cL/6)d(Q,Q̄)
, (2.22)

which is the appropriate spectral flow of (2.20) to the NS sector 1/2-BPS states. The lightest

moduli in a given twisted sector would potentially come from the NS ground state of the

seed: This corresponds to the values Q = �c/6 in (2.22). We find that in the NS sector, the

twist L BPS operator with the smallest charge has

Q =
c

6
(L� 1) , (2.23)

from which it immediately follows that its weight is

h =
c

12
(L� 1) . (2.24)

Note that for bosonic theories, the well-known expression for the weight of the twist operator

is h = c

24(L � 1/L), see e.g. [46, 47]; to impose the correct monodromy for fermions while

preserving supersymmetry, it is necessary to include a spin field, whose weight increases the
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We note that it is possible to compute the elliptic genus of the �-type minimal model by

exploiting the description of N = 2 superconformal minimal models as IR fixed points of

N = (2, 2) Landau-Ginzburg theories in 2 dimensions with superpotential W�. Superpoten-

tials in N = (2, 2) theories in 2d are famously protected by a nonrenormalization theorem; a

list of the superpotentials relevant for the N = 2 minimal models is given in Table 4. As de-

scribed in [55], the elliptic genus is an invariant of the 2d SQFT under renormalization group

flow, and thus can be computed via a “free-field” computation in the UV Landau-Ginzburg

description of the theory. This leads to the an expression in terms of free bosons and fermions

for the elliptic genus of the A-type minimal models [55], and was subsequently generalized

to the D- and E-type theories in [56], leading to the expression given in section 3.2.

Second, we recover the 1/2-BPS partition function Z
�
1
2�BPS

by specializing to q = 0, q̄ = 0.

Again only the BPS characters give a contribution, namely

�̃
r

s
(⌧, z)|q!0 =

8
>><

>>:

y
�

1
2+

r

m̄ s = r (mod 2m̄) ,

�y
1
2�

r

m̄ s = �r (mod 2m̄) ,

0 otherwise .

(A.14)

giving

Z
�
1
2�BPS =

1

2

X

0<r<m̄

N
�
r,r

⇣
(yȳ)

r

m̄
�

1
2 + (yȳ)�

r

m̄
+ 1

2

⌘
. (A.15)

If the CFT was a non-linear sigma model coming from a Calabi-Yau, this would be the Hodge

diamond. We also note that the 1/2-BPS partition function only depends on the diagonal

entries of the CIZ matrix and is always diagonal, even for the D and E series models.

A.2 Moduli

It can be seen from (A.15) that the minimal models only have Ramond ground states with

Q = Q̄. This means that only (c, c) and (a, a) moduli appear. For concreteness we will focus

on (c, c), as by charge conjugation symmetry there is the same number of (a, a) moduli.

From (A.15), we see that Ramond ground states of charge

Qr =
r

k + 2
� 1

2
, r = 1, . . . , k + 1 , (A.16)

can appear in the theory. From (2.15) and (2.22), we see that to find chiral primaries of the

right charge, we need to find configurations that satisfy

Q =
X

i

2ri � 2 + k(mi � 1)

2(k + 2)
!
= 1 , (A.17)

where ri is the representation, and mi the twist of the i
th single trace factor.
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exploiting the description of N = 2 superconformal minimal models as IR fixed points of

N = (2, 2) Landau-Ginzburg theories in 2 dimensions with superpotential W�. Superpoten-

tials in N = (2, 2) theories in 2d are famously protected by a nonrenormalization theorem; a

list of the superpotentials relevant for the N = 2 minimal models is given in Table 4. As de-

scribed in [55], the elliptic genus is an invariant of the 2d SQFT under renormalization group

flow, and thus can be computed via a “free-field” computation in the UV Landau-Ginzburg

description of the theory. This leads to the an expression in terms of free bosons and fermions

for the elliptic genus of the A-type minimal models [55], and was subsequently generalized

to the D- and E-type theories in [56], leading to the expression given in section 3.2.

Second, we recover the 1/2-BPS partition function Z
�
1
2�BPS

by specializing to q = 0, q̄ = 0.

Again only the BPS characters give a contribution, namely

�̃
r

s
(⌧, z)|q!0 =

8
>><

>>:

y
�

1
2+

r

m̄ s = r (mod 2m̄) ,

�y
1
2�

r

m̄ s = �r (mod 2m̄) ,

0 otherwise .

(A.14)

giving

Z
�
1
2�BPS =

1

2

X

0<r<m̄

N
�
r,r

⇣
(yȳ)
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If the CFT was a non-linear sigma model coming from a Calabi-Yau, this would be the Hodge

diamond. We also note that the 1/2-BPS partition function only depends on the diagonal

entries of the CIZ matrix and is always diagonal, even for the D and E series models.

A.2 Moduli

It can be seen from (A.15) that the minimal models only have Ramond ground states with

Q = Q̄. This means that only (c, c) and (a, a) moduli appear. For concreteness we will focus

on (c, c), as by charge conjugation symmetry there is the same number of (a, a) moduli.

From (A.15), we see that Ramond ground states of charge

Qr =
r

k + 2
� 1

2
, r = 1, . . . , k + 1 , (A.16)

can appear in the theory. From (2.15) and (2.22), we see that to find chiral primaries of the

right charge, we need to find configurations that satisfy

Q =
X

i

2ri � 2 + k(mi � 1)

2(k + 2)
!
= 1 , (A.17)

where ri is the representation, and mi the twist of the i
th single trace factor.
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a

c =
3k

k + 2
< 3 k = 1, 2, . . . b
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Moduli
Series k untwisted moduli twisted moduli single trace twisted

A2 1 1 28 1 twist 5, 1 twist 7

A3 2 3 26 1 twist 3, 1 twist 4, 1 twist 5

A5 4 9 24 1 twist 2, 1 twist 3, 1 twist 4

Ak+1 odd, � 3 P (k + 2)� 2 9 1 twist 3

Ak+1 even, � 6 P (k + 2)� 2 10 +

k

2+2P
r=1

P (r) 1 twist 2, 1 twist 3

D4 4 6 20 1 twist 2, 2 twist 3, 1 twist 4

D k

2+2 0 mod 4, � 8 P (k2 + 1) + P (k4 + 1) 8 +

k

4+1P
r=1

P (r) 1 twist 2, 1 twist 3

D k

2+2 2 mod 4, � 6 P (k2 + 1) 7 1 twist 3

E6 10 4 5 1 twist 2

E7 16 6 5 1 twist 2

E8 28 6 5 1 twist 2

Table 1: Number of moduli for symmetric orbifolds of the ADE minimal models.
We always take N large enough so that the moduli have converged. P (n) is the

integers partition function, i.e.
1P

n=0
P (n)qn =

1Q
n=1

1
(1�qn) .

4 The landscape of symmetric orbifold theories

4.1 A conjecture on the landscape

In the prior sections we established that the elliptic genus of any minimal model can be

unwrapped to give a weak Jacobi form of index t with maximal polar term q
0
y
b that is slow

growing, where t and b are related by

c =
6b2

t
. (4.1)

Let us now address the converse of that statement: Does every slow growing form come from

the elliptic genus of a N = (2, 2) CFT?

Before we can make a precise statement, let us first discuss several qualifications. First

we note that due to (2.9), any unwrapping of an elliptic genus automatically gives

t

b
2 Z . (4.2)

Any conjecture we are making can thus only hold for wJf that satisfy (4.2).

Next, we note that slow growing wJf form a vector space, whereas CFTs do not. The

best we can hope for is thus that elliptic genera of minimal models may give a basis for the
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Warning: Sizes are not meaningful.

Today: 

Classification of the overlap

Sum
m
ary

• Large central charge: semi-classical limit
• Necessary conditions on spectrum

1. Black hole regime: extended Cardy regime  
2. Perturbative regime: slow growth
3. Marginal BPS operator
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Warning: Sizes are not meaningful.

Next steps:

Build gravity dual, 

describe CFT at strong coupling, … 

mechanism behind AdS/CFT!

Sum
m
ary

• Large central charge: semi-classical limit
• Necessary conditions on spectrum

1. Black hole regime: extended Cardy regime  
2. Perturbative regime: slow growth
3. Marginal BPS operator
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