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Asymptotic symmetries

Asymptotic symmetries = boundary condition preserving
transformations modulo proper gauge transformations

» AdS/CFT
> basic ingredient of AdS/CFT tests based on symmetries
> captures universal UV features of QFTs (conformal symmetries)
> Brown—Henneaux precursor for AdS3/CFT,
» Flat space
P basic ingredient of flat space holography tests based on symmetries
> captures universal IR features of QFTs (Ward id's <+ soft theorems)
» Barnich—Compére precursor for FS3/CCFTy
» Holography beyond AdS/CFT
> asymptotic holography beyond AdS/CFT?
» near horizon holography?
P asymptotic symmetries important input for structure of dual QFT
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BMS,

Brief history:

> general relativity in limit of low curvature # special relativity
> if yes, expect Poincaré as asymptotic symmetries

» Bondi, van der Burgh, Metzner and Sachs '62 (BMS):
no, get infinite extension of Poincaré by super-translations P(x)

> (extended) BMSy algebra (J,(z): diff S? or restriction thereof)
{al@), Ba)} = (Ju(a)0h — Jy(2)2]) 8(x — o)
{Ual@), P} = (5 P2 = P@)3,) d(x — ')
{P(z), P(2')} =0
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BMS,

Brief history:

| 4
| 4
| 4

general relativity in limit of low curvature # special relativity
if yes, expect Poincaré as asymptotic symmetries

Bondi, van der Burgh, Metzner and Sachs '62 (BMS):
no, get infinite extension of Poincaré by super-translations P(x)

(extended) BMS, algebra (J,(z): diff S? or restriction thereof)
{al@), Ba)} = (Ju(a)0h — Jy(2)2]) 8(x — o)
Ual@), P')} = (5 P(a)0s — P(@)3,) 8(z — )
{P(z), P(2')} =0

s: spin of super-translations (in original BMS,: s = 1)

i)

get same algebra as near horizon symmetries (in any dimension > 3)
Donnay, Giribet, Gonzélez, Pino '15 s = 0 (‘scalar super-translations’)
DG, Perez, Troncoso, Sheikh-Jabbari, Zwikel '19 arbitrary s
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BMS3

» Barnich, Gomberoff, Gonzédlez '12 BMS3 from CFTs by contraction
» Change the Virasoro basis £,, £,

Ly =Ly —Lp M, =

(Ln+L_p)

~|

P In this new basis Virasoro algebras reads
[Loy Lun] = (n —m) Lpsm + % (1% = 1) Gnsm.0
[Loy My] = (n — 1) My + %1 (7% = 1) 6.0
(M, M) = 0(1/52)

with central charges c;, =c— ¢ and cpy = % (c + E)
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» Barnich, Gomberoff, Gonzédlez '12 BMS3 from CFTs by contraction
» Change the Virasoro basis £,, £,

Ly =Ly —Lp M, =

(Ln+Lon)

~|

P In this new basis Virasoro algebras reads

C
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BMS3

» Barnich, Gomberoff, Gonzédlez '12 BMS3 from CFTs by contraction
» Change the Virasoro basis £,, £,

Ly =Ly —Lp M, =

(Ln+Lon)

~|

P In this new basis Virasoro algebras reads

C
[Lpn, L] = (n —m) Lyym + é (n® = 1) Sptm, o

[Ln, Mm] = (n - m) Mn+m + % (n3 — n) 6n+m,0
[an Mm] = 0(1/52)

with central charges ¢, = ¢ —¢ and cpr = % (¢ +¢)
» Contraction means ¢ — oo and yields BMS3 (M,,: super-translations)
» Example: Einstein gravity
3¢
2G

c=c= = c, =0 cy=

3
G
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Motivation for BMSy

> because it is there (maybe)

> BMSs useful for toy models of flat space holography

» BMS, perhaps useful for near horizon holography

» construct SYK-like models with asymptotically flat gravity side

The SYK model is a strongly interacting quantum system that is
solvable at large N.

black holes

slide from Stanford's talk at Strings 2017

chaos and the
Regge limit
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Difficulties with BMS,

» general point in 2d: co-dimension 2 structureless
sort of ok in AdSs, so maybe ‘sort of" ok for BMS, as well

> AdSy algebra is half of AdSs algebra
same cannot be true for BMSo/BMS;3 relation

just means we have no quick way of cheating towards BMS,
P super-rotations can only be in time direction

ok at least in Euclidean theory
P super-translations can only be radial super-translations

ok, why not?

[ Ignore difficulties and proceed* ]

* van Nieuwenhuizen: task of theoretical physicists is to break no-go theorems
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Asymptotically Ricci-flat metrics

» Gauge-fix to Eddington—Finkelstein coordinates
ds? = —2dudr + K (u, r) du?

Not obvious that this is possible with proper gauge trafos!

Same remark applies to any gauge fixing, e.g. in AdS3
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Asymptotically Ricci-flat metrics

» Gauge-fix to Eddington—Finkelstein coordinates
ds? = —2dudr + K (u, r) du?
» Demand Ricci-flatness

K(u, r)=2P(u)r + 27 (u)

Note: for constant P and 7 Killing horizon
T

TR = ——=

P
Assume in most of talk constant P and T
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> Gauge-fix to Eddington—Finkelstein coordinates
ds* = —2dudr + K(u, ) du?
» Demand Ricci-flatness
K(u, r) =2P(u)r + 2T (u)
> Allow most general fluctuations 6P # 0 # §T

Daniel Grumiller — BMS» Kinematics 10/28



Asymptotically Ricci-flat metrics

> Gauge-fix to Eddington—Finkelstein coordinates
ds* = —2dudr + K(u, ) du?
» Demand Ricci-flatness
K(u, r) =2P(u)r + 2T (u)

> Allow most general fluctuations 6P # 0 # §T
> Whatever the gravity theory is going to be, require the following
boundary conditions for metric
ds* = —2dudr + (O(r) + O(1) +o(1)) du?
N————

state-dependent
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Asymptotically Ricci-flat metrics

> Gauge-fix to Eddington—Finkelstein coordinates
ds* = —2dudr + K(u, ) du?
» Demand Ricci-flatness
K(u, r) =2P(u)r + 2T (u)

> Allow most general fluctuations 6P # 0 # §T
> Whatever the gravity theory is going to be, require the following
boundary conditions for metric
ds* = —2dudr + (O(r) + O(1) +o(1)) du?
N————

state-dependent

[ Determine next asymptotic Killing vectors ]
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Asymptotic Killing vectors
» Class of metrics
ds? = —2dudr +2 (P(u)r + T (uw)) du?
preserved by asymptotic Killing vectors

E(e, n) = e(u)dy — (el(u)r + n(u))ar
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Asymptotic Killing vectors

» Class of metrics
ds? = —2dudr +2 (P(u)r + T (uw)) du?
preserved by asymptotic Killing vectors
£, m) = e(u)Ou — (¢'(w)r +n(w)) o

> ¢(u) generates ‘super-rotations’
» 1n(u) generates radial ‘super-translations’
» Metric functions transform non-trivially

LcP =€eP +€eP+€"
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Asymptotic Killing vectors

» Class of metrics
ds? = —2dudr +2 (P(u)r + T (uw)) du?
preserved by asymptotic Killing vectors
&(e, ) = e(u)du — (¢'(w)r + n(u))0,
> ¢(u) generates ‘super-rotations’

» 1n(u) generates radial ‘super-translations’
» Metric functions transform non-trivially

LcP =€eP +€eP+€"
LT =€T' +26T +n' —nP

» Looks promising!

P like u(1) current
T like Virasoro generator
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BMS; algebra
> Lie-bracket algebra of asymptotic Killing vectors

[&(er, m), E(ea, m2)] = E(e1€y — €2€y, (e1m2 — €2m1)’)
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BMS; algebra
> Lie-bracket algebra of asymptotic Killing vectors

[&(er, m), E(ea, m2)] = E(e1€y — €2€y, (e1m2 — €2m1)’)
» Algebra for Laurent modes L, = £(—u™*1,0), M,, = £(0,u"!)

[Lny Lin] = (n—m) Lyt
[Lny, M) = (=1 —m) My,
(M, M,,] =0

> Witt subalgebra generated by L,
spin-0 super-translations generated by M,

Call this algebra BMSs
Can (and will) have non-trivial central extensions
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Global aspects
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Global aspects

> Redefine function generating super-translations, = ¢’
> Redefine corresponding generators .J, = £(0, o = u")
[Lny, L) = (n—m) Lptm
[Lna Jm] =—-m Jn-l—m
[ oy Jm] =0

» Warped Witt algebra (J,,: spin-1 current)
> Relation to old super-translation generators (M,,: spin-0 current)

Jh=nM, n#0

P Almost basis change, but Jy mapped to zero and nothing maps to My
> Later: My interpretable as winding mode of Maxwell field

[ Dismiss winding mode and focus on warped Witt algebra ]
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Dilaton gravity in two dimensions (review hep-th/0204253)

> Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action

It [ eVl [XR- UV - V(X
1 - _ (m)
ey [)Md Vil (XK = S(X)]) +1

» Dilaton X defined by its coupling to curvature R
» Kinetic term (V.X)? contains coupling function U (X)
» Self-interaction potential V' (.X') leads to non-trivial geometries
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action
1
d? XR-UX)(VX):-V(X
g [ oVl [XR— U0V - V()

1
—_— ’7_ ( )
87 Gy /8/\/1 dz/|y| [XK —-S(X)]+1

» Dilaton X defined by its coupling to curvature R

» Kinetic term (V.X)? contains coupling function U (X)

» Self-interaction potential V(X)) leads to non-trivial geometries

» Gibbons—Hawking—York boundary term for Dirichlet boundary problem
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action

It [ eVl [XR- UV - V(X))

1
- dz/y] [XK — S(X)] + 1™
7 L drVhl XK =500+

» Dilaton X defined by its coupling to curvature R

» Kinetic term (V.X)? contains coupling function U (X)

» Self-interaction potential V(X)) leads to non-trivial geometries

» Gibbons—Hawking—York boundary term for Dirichlet boundary problem
» Hamilton—Jacobi counterterm contains superpotential S(X)

X
S(X)? = e STV / V(y)el U az gy

and guarantees well-defined variational principle 61 = 0 with fineprint
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action

/ d*z+/|g| [XR - U(X)(VX)? - V(X)]

~ 167 Gy
I0m) = / A?z+/|g| f(X)FM F,, F, = 0,A, — 0,4,

» Dilaton X defined by its coupling to curvature R

» Kinetic term (V.X)? contains coupling function U (X)

» Self-interaction potential V(X)) leads to non-trivial geometries

» Gibbons—Hawking—York boundary term for Dirichlet boundary problem
» Hamilton—Jacobi counterterm contains superpotential S(X)

X
S(X)? = e STV / V(y)el U az gy

and guarantees well-defined variational principle 61 = 0 with fineprint
P Interesting option: couple 2d dilaton gravity to matter
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Selected list of models (see review hep-th/0604049)
Black holes in (A)dS2, asymptotically flat or arbitrary spaces (Wheeler property)

| Model I U(X) V(X) \
1. Schwarzschild (1916) —5x %
2. Jackiw-Teitelboim (1984) 0 AX
3. Witten Black Hole (1991) -+ —20°X
4. CGHS (1992) 0 —2A
5. (A)dS> ground state (1994) —% BX
6. Rindler ground state (1996) -% BX“
7. Black Hole attractor (2003) 0 BXx™!
8. Spherically reduced gravity (N > 3) _(NN—_Q?X N2 X (N=0)/(N=2)
9. All above: ab-family (1997) —2 BX*tt
10. Liouville gravity a be™™
11. Reissner-Nordstrom (1916) -5 -2\ 4 %2
12. Schwarzschild-(A)dS — 5% -2 —iX
13. Katanaev-Volovich (1986) a BX?—A
14. BTZ/Achucarro-Ortiz (1993) 0 &L _ L AX
15. KK reduced CS (2003) 0 1X(c—X?)
16. KK red. conf. flat (2006) —1 tanh (X/2) Asinh X
17. 2D type OA string Black Hole —% —20°X + %
18. exact string Black Hole (2005) lengthy lengthy

Daniel Grumiller — BMS»

Dynamics

16/28


https://arxiv.org/abs/hep-th/0604049

Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
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Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
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Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)

» for our purposes: linear, non-abelian gauge theory sufficient
» non-abelian BF action

Lo (B, Al :n/<B, F) F=dA+AAA

» connection 1-form chosen as
A=wJ+e*P,+AZ

w: (dualized) spin-connection, e®: zweibein, A: Maxwell connection
» scalar field chosen as

B=XZ+X%'P,+Y J

X: dilaton, X®, Y auxiliary fields
» still need to choose gauge algebra and bilinear form
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Cangemi—Jackiw version of Callan—-Giddings—Harvey—Strominger

» Choose Maxwell algebra

[Pa, Po] = €ap Z [Pa, J] =" Py
with bilinear form
<J, Z>:_1 <Paa Pb>:77ab
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Cangemi—Jackiw version of Callan—-Giddings—Harvey—Strominger

» Choose Maxwell algebra
[Pu, Py) = € Z [Py, J] = e" Py
with bilinear form
(J; Z) = -1 (Pa; Py) = nab

> corresponding action (after integrating our X* and w)

I[X, Y, g, Ay = g /M d%z\/Jg] (XR —2Y +2Y "9, A,)
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Cangemi—Jackiw version of Callan—-Giddings—Harvey—Strominger
» Choose Maxwell algebra
[P., Py) = e Z [Py, J] =€’ Py
with bilinear form
(J, 2) = -1 (Pa; Py) = nab

> corresponding action (after integrating our X* and w)

I[X,Y, gy, Ay] = = /M d%z\/Jg] (XR —2Y +2Y "9, A,)

2
> EOM
R=0 = Ricci-flat
0,4, =1
V.V X — g V?X = g, Y
Y = A = const.

Daniel Grumiller — BMSy Dynamics 18/28



Cangemi—Jackiw version of Callan—-Giddings—Harvey—Strominger
» Choose Maxwell algebra
[Pu, Py) = € Z [Py, J] = e" Py
with bilinear form
(J, 2) = -1 (Pa, Py) = Nab

> corresponding action (after integrating our X* and w)

I[X,Y, gy, Ay] = = /M d%z\/Jg] (XR —2Y +2Y "9, A,)

2
> EOM
R=0 = Ricci-flat
0,4, =1
V.V X — g V?X = g, Y
Y = A = const.

» translate our bc's into BF-formulation
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Boundary conditions in BF formulation

» Ansatz (worked nicely for Jackiw—Teitelboim; inspired by 3d)
A=b"1(d+a)b B=0b""zb
with group element b = exp(—r P;) and
a= (T(wPy+ P-+Pu)J) du
r=at(u)Py +21(0)P_ +YJ +x0(u)Z
where 6T # 0 # 0P

Daniel Grumiller — BMSy Dynamics 19/28



Boundary conditions in BF formulation

> Ansatz (worked nicely for Jackiw—Teitelboim; inspired by 3d)
A=b"1(d+a)b B=0b""zb
with group element b = exp(—r P;) and
a= (T(w)Py+ P-+P(u)J) du
r=x (u)Py +z1(0)P- +YJ +x0(u)Z
where 67 # 0 # 0P

P yields metric shown before, dilaton
X =z1(u)r + zo(u)
and Maxwell field A = r du

get BMSy asymptotic symmetries!
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> Ansatz (worked nicely for Jackiw—Teitelboim; inspired by 3d)
A=b"1(d+a)b B=0b""zb
with group element b = exp(—r P;) and
a= (T(w)Py+ P-+P(u)J) du
r=x (u)Py +z1(0)P- +YJ +x0(u)Z
where 67 # 0 # 0P
P yields metric shown before, dilaton
X =z1(u)r + zo(u)
and Maxwell field A = r du
» Maxwell field preserved by combined diffeos and gauge trafos
0Ay, = E10 A+ A0, +0,0 E(e, ) = €(u)u— (€ (w)r+n(u)) O,

provided n = o’
either 77 has no 0-mode or o not single-valued (winding modes)
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Boundary conditions in BF formulation

» Ansatz (worked nicely for Jackiw—Teitelboim; inspired by 3d)
A=b"1(d+a)b B=0b""zb
with group element b = exp(—r P;) and
a= (T(wPy+ P-+Pu)J) du
r=at(u)Py +21(0)P_ +YJ +x0(u)Z
where 6T # 0 # 0P

P vyields metric shown before, dilaton
X =z (u)r + zo(u)
and Maxwell field A = r du
» Maxwell field preserved by combined diffeos and gauge trafos
0A, = 10, AL +A,0,6"+0,0 E(e, ) = e(u)ﬁu—(e'(u)r+n(u))&n

provided n = o’
» focus on case d, § A =0 (no winding modes) = warped Witt algebra
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Twisted warped boundary action (see also Afshar '19)
» Variation of Euclidean BF action (¢t = iu)

0Ilgr = bulk-EOM — m%dt (x, dag)
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Twisted warped boundary action (see also Afshar '19)
» Variation of Euclidean BF action (¢t = iu)
dIgr = bulk-EOM — K%dt (x, day)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzélez, DG, Salzer '18
» defining 1/x1 ~ O,f and zo/x1 ~ O.g result is

B
) "

L[h, gl =k / dr (7'/7//2 —d (7173/7,/ + IL))

h'
0

with 7 := f(t), h(7) := —f~1(7) and 7 ~ 7+ 3 (prime means d/ dr)
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Twisted warped boundary action (see also Afshar '19)
» Variation of Euclidean BF action (¢t = iu)
dIgr = bulk-EOM — m%dt (x, day)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzélez, DG, Salzer '18
» defining 1/x1 ~ O,f and zg/x1 ~ O result is
3
g . h//
Lulh, 9] = & / dr (Th/z . _c/(szh/ + 7))
. )
0
twisted warped action is flat space analogue of Schwarzian action!

» Schwarzian action: group action for Virasoro coadjoint orbits
P twisted warped action: group action for twisted warped coadjoint orbits

[an LM} = (n - m) Ln+m
[Lna Jm} =—-m Jn-‘rm_i/’" (nQ - n) 67’L+7’II,¢U
[Jn, Jm] =0
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Twisted warped boundary action (see also Afshar '19)
» Variation of Euclidean BF action (¢t = iu)
0Ilgr = bulk-EOM — m%dt (x, dag)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzélez, DG, Salzer '18
» defining 1/x1 ~ 0, f and xo/x1 ~ Oyg result is

16}

' 1
I.[h, gl =& / (17(7-;]//2 _d (737?}1,’ . %))
; [/
0

P> asymptotic symmetries: h, g boundary scalars under diffeos and g
phase under u(1) trafos
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Twisted warped boundary action (see also Afshar '19)
» Variation of Euclidean BF action (¢t = iu)
0Ilgr = bulk-EOM — m%dt (x, dag)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzélez, DG, Salzer '18
» defining 1/x1 ~ 0, f and xo/x1 ~ Oyg result is

16}

' 1
I.[h, gl =& / (17(7-;]//2 _d (737?}1,’ . %))
; [/
0

P> asymptotic symmetries: h, g boundary scalars under diffeos and g
phase under u(1) trafos

[ Twisted warped action resembles effective action for complex SYK

|
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Outline

Relation to SYK/JT
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Hamiltonian formulation

» twisted warped Hamiltonian action
B
I, = —/f/dt (pigi — prp2 —eTp3)  i=1,2,3
0
where g3 = exp(iPh) and g2 = g + ihT /P (rest: auxiliary fields)
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Hamiltonian formulation

» twisted warped Hamiltonian action
B
I, = —/f/dt (pigi — prp2 — e ps3) 1=1,2,3
0
where g3 = exp(iPh) and g2 = g + ihT /P (rest: auxiliary fields)
» similar to Schwarzian Hamiltonian action
B
L = —H/dt (pidi — pT — "' p3)
0
» solutions

iT/T0

g3 = ho + hye'™/™ G2=go— i1 T+ g2e

five integration constants go, g1, 92, ho, h1; periodicity 7o = 5/(27)
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Hamiltonian formulation

» twisted warped Hamiltonian action
B
I, = —/f/dt (pigi — prp2 — e ps3) 1=1,2,3
0
where g3 = exp(iPh) and g2 = g + ihT /P (rest: auxiliary fields)
» similar to Schwarzian Hamiltonian action
B
L = —H/dt (pidi — pT — "' p3)
0
» solutions

iT/T0

g3 = ho + hye'™/™ G2=go— i1 T+ g2e

five integration constants go, g1, 92, ho, h1; periodicity 7o = 5/(27)
» on-shell action I, |zom = —27Kg1

Daniel Grumiller — BMSo Relation to SYK/JT 22/28



Thermodynamics

> Assuming g1 independent from temperature get entropy

S = _Itw‘EOM = 2TKg1

Daniel Grumiller — BMSo Relation to SYK/JT 23/28



Thermodynamics

> Assuming g1 independent from temperature get entropy
S = _Itw‘EOM = 2mKg1

» Using result for dilaton g; = X

yields

horizon

S =2rk X

horizon

standard result (Wald entropy applied to 2d dilaton gravity)
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> Assuming g1 independent from temperature get entropy

S = _Itw‘EOM = 2mKg1

» Using result for dilaton g1 = X yields

horizon

S =2rk X

horizon

standard result (Wald entropy applied to 2d dilaton gravity)
P assumption above derivable from regularity condition

P =2nT T arbitrary
» on-shell P =Y is u(1) charge, while 7 is mass
> peculiarity: inverse specific vanishes (well-known property of CGHS)

1 dT _
T T dSlsp=0
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Thermodynamics

> Assuming g1 independent from temperature get entropy

S = _Itw‘EOM = 2mKg1

» Using result for dilaton g1 = X yields

horizon

S =2rk X

horizon

standard result (Wald entropy applied to 2d dilaton gravity)
P assumption above derivable from regularity condition

P =2nT T arbitrary
» on-shell P =Y is u(1) charge, while 7 is mass
> peculiarity: inverse specific vanishes (well-known property of CGHS)

1 1dT _
- T dSlsp=0
» useful property for scaling limit from complex SYK
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

> Effective action governing collective low T" modes of complex SYK

B . B
Lsyk([h, 9] = ¥ /dT (g/—i-Qﬂ-BZE h/)2—% /dT{tan (%h); T}
0 0
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

> Effective action governing collective low T" modes of complex SYK

B
_NK gt 27m<5’ 2 Ny .
Lsvklh, 9] / h ) 12 O/dT{tan (Eh), 7'}
{fir}:=f"/f — §(f”/f) Schwarzian derivative

N (large) number of complex fermions

N~ specific heat at fixed charge

K zero temperature compressibility

& spectral asymmetry parameter

h(7) time-reparametrization field (quasi-periodic, h(r + ) = h(r) + B)
g(7) phase field (periodic in absence of winding)
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

> Effective action governing collective low T" modes of complex SYK

B
_NK gt 27m<5’ 2 Ny .
Lsvklh, 9] / h ) 12 O/dT{tan (Eh), 7'}
{fir}:=f"/f — §(f”/f) Schwarzian derivative

N (large) number of complex fermions
N~ specific heat at fixed charge
K zero temperature compressibility
& spectral asymmetry parameter
h(7) time-reparametrization field (quasi-periodic, h(r + ) = h(r) + B)
g(7) phase field (periodic in absence of winding)
P according to our thermodynamics need limit Ny — oo
(infinite specific heat)
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B . B
Lsyk([h, 9] = ¥ /dT (g/+2ﬂ;g h/)2—% /dT{tan (%h); T}
0 0

» according to our thermodynamics need limit Ny — oo
(infinite specific heat)
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(vanishing zero temperature compressibility)
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

> Effective action governing collective low T" modes of complex SYK

8 , 8
Lowlh, g = "2 / dr (g'ﬁgg Wyt / ar {van (5n): 7}
0

0

» according to our thermodynamics need limit Ny — oo
(infinite specific heat)

» turns out additionally need limit K — 0
(vanishing zero temperature compressibility)

> inserting these limits into I.syk[h, g| yields twisted warped action

B
lim IcSYK[h7 g] = Itw[hv g] = H/dT(ThIQ (th/ }lLL’ ))

N~y—00,K—0
0

with k2 ~ Ny K kept finite
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Asymptotic symmetries

P can see same singular limit at level of asymptotic symmetry algebras
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Asymptotic symmetries

P can see same singular limit at level of asymptotic symmetry algebras
> twisted warped Virasoro algebra (warped Witt with all cocycles)
c
[Ln, Lm] = (’I’l - m) Ln+m + E (n3 — n) 6n+m,0
[Ln, Jm) = —m Jppm — ik (n2 — n) Ontm, 0

K
[Jna Jm] = 5n5n+m,0

¢: Virasoro central charge; x: twist; K: level of u(1) current
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Asymptotic symmetries

P can see same singular limit at level of asymptotic symmetry algebras
> twisted warped Virasoro algebra (warped Witt with all cocycles)
c
{Ln, Lm] = (’I’l — m) Ln+m + — (TL3 - ’I’l) 6n+m70

12

[Ln, Jm) = —m Jppm — ik (n2 — 1) 8ntm,0

K
[Jna Jm] = 5n5n+m,0

¢: Virasoro central charge; x: twist; K: level of u(1) current
» complex SYK: warped Virasoro algebra (¢ # 0 # K; k = 0)
» our model: twisted warped algebra (¢ =0 = K; k # 0)
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Asymptotic symmetries

>
4

v

can see same singular limit at level of asymptotic symmetry algebras
twisted warped Virasoro algebra (warped Witt with all cocycles)
c
[Ln, Lm] = (’I’l — m) Ln+m + — (TL3 - ’I’l) 6n+m70

12

[Ln, Jm) = —m Jppm — ik (n2 — 1) 8ntm,0

K
[Jna Jm] = 5n5n+m,0

¢: Virasoro central charge; x: twist; K: level of u(1) current
complex SYK: warped Virasoro algebra (¢ # 0 # K; k = 0)

our model: twisted warped algebra (c =0 = K; k # 0)
map first between twisted warped Virasoro and warped Virasoro
242
c—c— —

by change of basis L,, — L, + z%"‘ n J, and shift of 0-modes
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Asymptotic symmetries

>
4

v

>

can see same singular limit at level of asymptotic symmetry algebras
twisted warped Virasoro algebra (warped Witt with all cocycles)
c
[Ln, Lm] = (’I’l — m) Ln+m + — (TL3 - ’I’l) 6n+m70

12

[Ln, Jm) = —m Jppm — ik (n2 — 1) 8ntm,0

K
[Jna Jm] = 5n5n+m,0

¢: Virasoro central charge; x: twist; K: level of u(1) current
complex SYK: warped Virasoro algebra (¢ # 0 # K; k = 0)

our model: twisted warped algebra (c =0 = K; k # 0)
map first between twisted warped Virasoro and warped Virasoro
242
c—c— —

by change of basis L,, — L, + z%"‘ n J, and shift of 0-modes

. . o . . o K
then take limit K — 0, ¢ — oo keeping fixed k = \/%
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Conclusions
For more details see Afshar, Gonzalez, DG, Vassilevich 1911.05739

e N

» CGHS a la Cangemi—Jackiw bulk model for flat space holography

I[X,Y, g, 4] = g /M d2e/[g] (XR — 2V +2Y e 0, A,
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e N

» CGHS a la Cangemi—Jackiw bulk model for flat space holography

K
IX,Y, g, Ay = 3 /M d*z+/|g| (XR — 2Y +2Y "0, A,)
» asymptotically flat boundary conditions yield BMS,

» boundary action is twisted warped action

B

Iolh, g] = n/dT(Th’Q — g (P + Zl,’))
0

\. J
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» CGHS a la Cangemi—Jackiw bulk model for flat space holography

K
I[X, Y, Gy Al = 5 /M d*z+/|g| (XR - 2Y +2Y €9, A,)
» asymptotically flat boundary conditions yield BMS,
» boundary action is twisted warped action
B
h”
Iolh, g] = n/dT(Th’Q _ (iPh’ + ﬁ))
0

» follows as singular limit from complex SYK
(large specific heat, small compressibility)
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K
IX,Y, g, Ay = 3 /M d*z+/|g| (XR — 2Y +2Y "0, A,)
» asymptotically flat boundary conditions yield BMS,

» boundary action is twisted warped action

B
Iolh, g] = n/dT(Th’Q — g (P + Zl,’))
0

» follows as singular limit from complex SYK
(large specific heat, small compressibility)

» asymptotic symmetries also from singular limit of warped Virasoro
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» CGHS a la Cangemi—Jackiw bulk model for flat space holography

K
IX,Y, g, Ay = 3 /M d*z+/|g| (XR — 2Y +2Y "0, A,)
» asymptotically flat boundary conditions yield BMS,

» boundary action is twisted warped action

B
h”
Iolh, g] = n/dT(Th’Q . (iPh’ + ﬁ))
0
» follows as singular limit from complex SYK
(large specific heat, small compressibility)
» asymptotic symmetries also from singular limit of warped Virasoro

» could be useful toy model for flat space holography
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Future developments

» Flat space holography in 2d
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Future developments
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» Chaos bound saturation

» Experimental realization

[ Thanks for your attention! ]
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