BMS_{2}
 Black holes - BMS \& Integrability

Daniel Grumiller

Institute for Theoretical Physics
TU Wien
Black holes - BPS, BMS \& Integrability, IST Lisbon September 2020

Outline

Motivation

Kinematics

Dynamics

Relation to SYK/JT

Outlook

Outline

Motivation

Kinematics

Dynamics

Relation to SYK/JT

Outlook

Asymptotic symmetries

Asymptotic symmetries $=$ boundary condition preserving transformations modulo proper gauge transformations

Asymptotic symmetries

Asymptotic symmetries $=$ boundary condition preserving transformations modulo proper gauge transformations

- AdS/CFT
- basic ingredient of AdS/CFT tests based on symmetries
- captures universal UV features of QFTs (conformal symmetries)
- Brown-Henneaux precursor for $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Asymptotic symmetries

Asymptotic symmetries $=$ boundary condition preserving transformations modulo proper gauge transformations

- AdS/CFT
- basic ingredient of AdS/CFT tests based on symmetries
- captures universal UV features of QFTs (conformal symmetries)
- Brown-Henneaux precursor for $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Flat space
- basic ingredient of flat space holography tests based on symmetries
- captures universal IR features of QFTs (Ward id's \leftrightarrow soft theorems)
- Barnich-Compére precursor for $\mathrm{FS}_{3} / \mathrm{CCFT}_{2}$

Asymptotic symmetries

Asymptotic symmetries $=$ boundary condition preserving transformations modulo proper gauge transformations

- AdS/CFT
- basic ingredient of AdS/CFT tests based on symmetries
- captures universal UV features of QFTs (conformal symmetries)
- Brown-Henneaux precursor for $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Flat space
- basic ingredient of flat space holography tests based on symmetries
- captures universal IR features of QFTs (Ward id's \leftrightarrow soft theorems)
- Barnich-Compére precursor for $\mathrm{FS}_{3} / \mathrm{CCFT}_{2}$
- Holography beyond AdS/CFT
- asymptotic holography beyond AdS/CFT?
- near horizon holography?
- asymptotic symmetries important input for structure of dual QFT

BMS_{4}

Brief history:

- general relativity in limit of low curvature $\stackrel{?}{=}$ special relativity

BMS_{4}

Brief history:

- general relativity in limit of low curvature $\stackrel{?}{=}$ special relativity
- if yes, expect Poincaré as asymptotic symmetries

BMS_{4}

Brief history:

- general relativity in limit of low curvature \neq special relativity
- if yes, expect Poincaré as asymptotic symmetries
- Bondi, van der Burgh, Metzner and Sachs '62 (BMS): no, get infinite extension of Poincaré by super-translations $P(x)$
x : angular coordinates

BMS_{4}

Brief history:

- general relativity in limit of low curvature \neq special relativity
- if yes, expect Poincaré as asymptotic symmetries
- Bondi, van der Burgh, Metzner and Sachs '62 (BMS): no, get infinite extension of Poincaré by super-translations $P(x)$
- (extended) BMS_{4} algebra $\left(J_{a}(x)\right.$: diff S^{2} or restriction thereof)

$$
\begin{aligned}
\left\{J_{a}(x), J_{b}\left(x^{\prime}\right)\right\} & =\left(J_{a}\left(x^{\prime}\right) \partial_{b}-J_{b}(x) \partial_{a}^{\prime}\right) \delta\left(x-x^{\prime}\right) \\
\left\{J_{a}(x), P\left(x^{\prime}\right)\right\} & =\left(\frac{s}{2} P\left(x^{\prime}\right) \partial_{a}-P(x) \partial_{a}^{\prime}\right) \delta\left(x-x^{\prime}\right) \\
\left\{P(x), P\left(x^{\prime}\right)\right\} & =0
\end{aligned}
$$

s : spin of super-translations (in original $\mathrm{BMS}_{4}: s=1$)

BMS_{4}

Brief history:

- general relativity in limit of low curvature \neq special relativity
- if yes, expect Poincaré as asymptotic symmetries
- Bondi, van der Burgh, Metzner and Sachs '62 (BMS): no, get infinite extension of Poincaré by super-translations $P(x)$
- (extended) BMS_{4} algebra $\left(J_{a}(x)\right.$: diff S^{2} or restriction thereof)

$$
\begin{aligned}
\left\{J_{a}(x), J_{b}\left(x^{\prime}\right)\right\} & =\left(J_{a}\left(x^{\prime}\right) \partial_{b}-J_{b}(x) \partial_{a}^{\prime}\right) \delta\left(x-x^{\prime}\right) \\
\left\{J_{a}(x), P\left(x^{\prime}\right)\right\} & =\left(\frac{s}{2} P\left(x^{\prime}\right) \partial_{a}-P(x) \partial_{a}^{\prime}\right) \delta\left(x-x^{\prime}\right) \\
\left\{P(x), P\left(x^{\prime}\right)\right\} & =0
\end{aligned}
$$

s : spin of super-translations (in original $\mathrm{BMS}_{4}: s=1$)

- get same algebra as near horizon symmetries (in any dimension ≥ 3) Donnay, Giribet, González, Pino '15 $s=0$ ('scalar super-translations') DG, Perez, Troncoso, Sheikh-Jabbari, Zwikel '19 arbitrary s

BMS_{3}

- Barnich, Gomberoff, González '12 BMS_{3} from CFT_{2} by contraction

BMS_{3}

- Barnich, Gomberoff, González '12 BMS_{3} from CFT_{2} by contraction
- Change the Virasoro basis $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

BMS_{3}

- Barnich, Gomberoff, González '12 BMS_{3} from CFT_{2} by contraction
- Change the Virasoro basis $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- In this new basis Virasoro algebras reads

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =\mathcal{O}\left(1 / \ell^{2}\right)
\end{aligned}
$$

with central charges $c_{L}=c-\bar{c}$ and $c_{M}=\frac{1}{\ell}(c+\bar{c})$

BMS_{3}

- Barnich, Gomberoff, González '12 BMS_{3} from CFT_{2} by contraction
- Change the Virasoro basis $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- In this new basis Virasoro algebras reads

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =\mathcal{O}\left(1 / \ell^{2}\right)
\end{aligned}
$$

with central charges $c_{L}=c-\bar{c}$ and $c_{M}=\frac{1}{\ell}(c+\bar{c})$

- Contraction means $\ell \rightarrow \infty$ and yields BMS_{3} (M_{n} : super-translations)

BMS_{3}

- Barnich, Gomberoff, González '12 BMS_{3} from CFT_{2} by contraction
- Change the Virasoro basis $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- In this new basis Virasoro algebras reads

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =\mathcal{O}\left(1 / \ell^{2}\right)
\end{aligned}
$$

with central charges $c_{L}=c-\bar{c}$ and $c_{M}=\frac{1}{\ell}(c+\bar{c})$

- Contraction means $\ell \rightarrow \infty$ and yields BMS_{3} (M_{n} : super-translations)
- Example: Einstein gravity

$$
c=\bar{c}=\frac{3 \ell}{2 G} \quad \Rightarrow \quad c_{L}=0 \quad c_{M}=\frac{3}{G}
$$

Motivation for BMS_{2}

- because it is there (maybe)

Motivation for BMS_{2}

- because it is there (maybe)
- BMS_{2} useful for toy models of flat space holography

Motivation for BMS_{2}

- because it is there (maybe)
- BMS_{2} useful for toy models of flat space holography
- BMS_{2} perhaps useful for near horizon holography

Motivation for BMS_{2}

- because it is there (maybe)
- BMS_{2} useful for toy models of flat space holography
- BMS_{2} perhaps useful for near horizon holography
- construct SYK-like models with asymptotically flat gravity side

The SYK model is a strongly interacting quantum system that is solvable at large N.

slide from Stanford's talk at Strings 2017

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless sort of ok in AdS_{2}, so maybe 'sort of' ok for BMS_{2} as well

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless sort of ok in AdS_{2}, so maybe 'sort of' ok for BMS_{2} as well
- AdS_{2} algebra is half of AdS_{3} algebra
same cannot be true for $\mathrm{BMS}_{2} / \mathrm{BMS}_{3}$ relation

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless sort of ok in AdS_{2}, so maybe 'sort of' ok for BMS_{2} as well
- AdS_{2} algebra is half of AdS_{3} algebra same cannot be true for $\mathrm{BMS}_{2} / \mathrm{BMS}_{3}$ relation just means we have no quick way of cheating towards BMS_{2}

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless sort of ok in AdS_{2}, so maybe 'sort of' ok for BMS_{2} as well
- AdS_{2} algebra is half of AdS_{3} algebra same cannot be true for $\mathrm{BMS}_{2} / \mathrm{BMS}_{3}$ relation
just means we have no quick way of cheating towards BMS_{2}
- super-rotations can only be in time direction

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless sort of ok in AdS_{2}, so maybe 'sort of' ok for BMS_{2} as well
- AdS_{2} algebra is half of AdS_{3} algebra same cannot be true for $\mathrm{BMS}_{2} / \mathrm{BMS}_{3}$ relation just means we have no quick way of cheating towards BMS_{2}
- super-rotations can only be in time direction ok at least in Euclidean theory

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless sort of ok in AdS_{2}, so maybe 'sort of' ok for BMS_{2} as well
- AdS_{2} algebra is half of AdS_{3} algebra same cannot be true for $\mathrm{BMS}_{2} / \mathrm{BMS}_{3}$ relation
just means we have no quick way of cheating towards BMS_{2}
- super-rotations can only be in time direction ok at least in Euclidean theory
- super-translations can only be radial super-translations

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless sort of ok in AdS_{2}, so maybe 'sort of' ok for BMS_{2} as well
- AdS_{2} algebra is half of AdS_{3} algebra same cannot be true for $\mathrm{BMS}_{2} / \mathrm{BMS}_{3}$ relation
just means we have no quick way of cheating towards BMS_{2}
- super-rotations can only be in time direction
ok at least in Euclidean theory
- super-translations can only be radial super-translations ok, why not?

Difficulties with BMS_{2}

- general point in 2d: co-dimension 2 structureless sort of ok in AdS_{2}, so maybe 'sort of' ok for BMS_{2} as well
- AdS_{2} algebra is half of AdS_{3} algebra same cannot be true for $\mathrm{BMS}_{2} / \mathrm{BMS}_{3}$ relation
just means we have no quick way of cheating towards BMS_{2}
- super-rotations can only be in time direction
ok at least in Euclidean theory
- super-translations can only be radial super-translations ok, why not?

Ignore difficulties and proceed*

* van Nieuwenhuizen: task of theoretical physicists is to break no-go theorems

Outline

Motivation

Kinematics

Dynamics

Relation to SYK/JT

Asymptotically Ricci-flat metrics

- Gauge-fix to Eddington-Finkelstein coordinates

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+K(u, r) \mathrm{d} u^{2}
$$

Not obvious that this is possible with proper gauge trafos! Same remark applies to any gauge fixing, e.g. in AdS_{3}

Asymptotically Ricci-flat metrics

- Gauge-fix to Eddington-Finkelstein coordinates

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+K(u, r) \mathrm{d} u^{2}
$$

- Demand Ricci-flatness

$$
K(u, r)=2 \mathcal{P}(u) r+2 \mathcal{T}(u)
$$

Note: for constant \mathcal{P} and \mathcal{T} Killing horizon

$$
r_{h}=-\frac{\mathcal{T}}{\mathcal{P}}
$$

Assume in most of talk constant \mathcal{P} and \mathcal{T}

Asymptotically Ricci-flat metrics

- Gauge-fix to Eddington-Finkelstein coordinates

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+K(u, r) \mathrm{d} u^{2}
$$

- Demand Ricci-flatness

$$
K(u, r)=2 \mathcal{P}(u) r+2 \mathcal{T}(u)
$$

- Allow most general fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$

Asymptotically Ricci-flat metrics

- Gauge-fix to Eddington-Finkelstein coordinates

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+K(u, r) \mathrm{d} u^{2}
$$

- Demand Ricci-flatness

$$
K(u, r)=2 \mathcal{P}(u) r+2 \mathcal{T}(u)
$$

- Allow most general fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$
- Whatever the gravity theory is going to be, require the following boundary conditions for metric

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+(\underbrace{\mathcal{O}(r)+\mathcal{O}(1)}_{\text {state-dependent }}+o(1)) \mathrm{d} u^{2}
$$

Asymptotically Ricci-flat metrics

- Gauge-fix to Eddington-Finkelstein coordinates

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+K(u, r) \mathrm{d} u^{2}
$$

- Demand Ricci-flatness

$$
K(u, r)=2 \mathcal{P}(u) r+2 \mathcal{T}(u)
$$

- Allow most general fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$
- Whatever the gravity theory is going to be, require the following boundary conditions for metric

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+(\underbrace{\mathcal{O}(r)+\mathcal{O}(1)}_{\text {state-dependent }}+o(1)) \mathrm{d} u^{2}
$$

Determine next asymptotic Killing vectors

Asymptotic Killing vectors

- Class of metrics

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

Asymptotic Killing vectors

- Class of metrics

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

- $\epsilon(u)$ generates 'super-rotations'

Asymptotic Killing vectors

- Class of metrics

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

- $\epsilon(u)$ generates 'super-rotations'
- $\eta(u)$ generates radial 'super-translations'

Asymptotic Killing vectors

- Class of metrics

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

- $\epsilon(u)$ generates 'super-rotations'
- $\eta(u)$ generates radial 'super-translations'
- Metric functions transform non-trivially

$$
\begin{aligned}
& \mathcal{L}_{\xi} \mathcal{P}=\epsilon \mathcal{P}^{\prime}+\epsilon^{\prime} \mathcal{P}+\epsilon^{\prime \prime} \\
& \mathcal{L}_{\xi} \mathcal{T}=\epsilon \mathcal{T}^{\prime}+2 \epsilon^{\prime} \mathcal{T}+\eta^{\prime}-\eta \mathcal{P}
\end{aligned}
$$

Asymptotic Killing vectors

- Class of metrics

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

- $\epsilon(u)$ generates 'super-rotations'
- $\eta(u)$ generates radial 'super-translations'
- Metric functions transform non-trivially

$$
\begin{aligned}
& \mathcal{L}_{\xi} \mathcal{P}=\epsilon \mathcal{P}^{\prime}+\epsilon^{\prime} \mathcal{P}+\epsilon^{\prime \prime} \\
& \mathcal{L}_{\xi} \mathcal{T}=\epsilon \mathcal{T}^{\prime}+2 \epsilon^{\prime} \mathcal{T}+\eta^{\prime}-\eta \mathcal{P}
\end{aligned}
$$

- Looks promising!

$$
\begin{aligned}
& \mathcal{P} \text { like } u(1) \text { current } \\
& \mathcal{T} \text { like Virasoro generator }
\end{aligned}
$$

BMS_{2} algebra

- Lie-bracket algebra of asymptotic Killing vectors

$$
\left[\xi\left(\epsilon_{1}, \eta_{1}\right), \xi\left(\epsilon_{2}, \eta_{2}\right)\right]=\xi\left(\epsilon_{1} \epsilon_{2}^{\prime}-\epsilon_{2} \epsilon_{1}^{\prime},\left(\epsilon_{1} \eta_{2}-\epsilon_{2} \eta_{1}\right)^{\prime}\right)
$$

BMS_{2} algebra

- Lie-bracket algebra of asymptotic Killing vectors

$$
\left[\xi\left(\epsilon_{1}, \eta_{1}\right), \xi\left(\epsilon_{2}, \eta_{2}\right)\right]=\xi\left(\epsilon_{1} \epsilon_{2}^{\prime}-\epsilon_{2} \epsilon_{1}^{\prime},\left(\epsilon_{1} \eta_{2}-\epsilon_{2} \eta_{1}\right)^{\prime}\right)
$$

- Algebra for Laurent modes $L_{n}=\xi\left(-u^{n+1}, 0\right), M_{n}=\xi\left(0, u^{n-1}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right] } & =(-n-m) M_{n+m} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

BMS_{2} algebra

- Lie-bracket algebra of asymptotic Killing vectors

$$
\left[\xi\left(\epsilon_{1}, \eta_{1}\right), \xi\left(\epsilon_{2}, \eta_{2}\right)\right]=\xi\left(\epsilon_{1} \epsilon_{2}^{\prime}-\epsilon_{2} \epsilon_{1}^{\prime},\left(\epsilon_{1} \eta_{2}-\epsilon_{2} \eta_{1}\right)^{\prime}\right)
$$

- Algebra for Laurent modes $L_{n}=\xi\left(-u^{n+1}, 0\right), M_{n}=\xi\left(0, u^{n-1}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right] } & =(-n-m) M_{n+m} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- Witt subalgebra generated by L_{n} spin-0 super-translations generated by M_{n}

BMS_{2} algebra

- Lie-bracket algebra of asymptotic Killing vectors

$$
\left[\xi\left(\epsilon_{1}, \eta_{1}\right), \xi\left(\epsilon_{2}, \eta_{2}\right)\right]=\xi\left(\epsilon_{1} \epsilon_{2}^{\prime}-\epsilon_{2} \epsilon_{1}^{\prime},\left(\epsilon_{1} \eta_{2}-\epsilon_{2} \eta_{1}\right)^{\prime}\right)
$$

- Algebra for Laurent modes $L_{n}=\xi\left(-u^{n+1}, 0\right), M_{n}=\xi\left(0, u^{n-1}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right] } & =(-n-m) M_{n+m} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- Witt subalgebra generated by L_{n} spin-0 super-translations generated by M_{n}

Call this algebra BMS_{2}
Can (and will) have non-trivial central extensions

Global aspects

- Redefine function generating super-translations, $\eta=\sigma^{\prime}$

Global aspects

- Redefine function generating super-translations, $\eta=\sigma^{\prime}$
- Redefine corresponding generators $J_{n}=\xi\left(0, \sigma=u^{n}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

Global aspects

- Redefine function generating super-translations, $\eta=\sigma^{\prime}$
- Redefine corresponding generators $J_{n}=\xi\left(0, \sigma=u^{n}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

- Warped Witt algebra (J_{n} : spin-1 current)

Global aspects

- Redefine function generating super-translations, $\eta=\sigma^{\prime}$
- Redefine corresponding generators $J_{n}=\xi\left(0, \sigma=u^{n}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

- Warped Witt algebra (J_{n} : spin-1 current)
- Relation to old super-translation generators (M_{n} : spin-0 current)

$$
J_{n}=n M_{n} \quad n \neq 0
$$

Global aspects

- Redefine function generating super-translations, $\eta=\sigma^{\prime}$
- Redefine corresponding generators $J_{n}=\xi\left(0, \sigma=u^{n}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

- Warped Witt algebra (J_{n} : spin-1 current)
- Relation to old super-translation generators (M_{n} : spin-0 current)

$$
J_{n}=n M_{n} \quad n \neq 0
$$

- Almost basis change, but J_{0} mapped to zero and nothing maps to M_{0}

Global aspects

- Redefine function generating super-translations, $\eta=\sigma^{\prime}$
- Redefine corresponding generators $J_{n}=\xi\left(0, \sigma=u^{n}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

- Warped Witt algebra (J_{n} : spin-1 current)
- Relation to old super-translation generators (M_{n} : spin-0 current)

$$
J_{n}=n M_{n} \quad n \neq 0
$$

- Almost basis change, but J_{0} mapped to zero and nothing maps to M_{0}
- Later: M_{0} interpretable as winding mode of Maxwell field

Global aspects

- Redefine function generating super-translations, $\eta=\sigma^{\prime}$
- Redefine corresponding generators $J_{n}=\xi\left(0, \sigma=u^{n}\right)$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

- Warped Witt algebra (J_{n} : spin-1 current)
- Relation to old super-translation generators (M_{n} : spin-0 current)

$$
J_{n}=n M_{n} \quad n \neq 0
$$

- Almost basis change, but J_{0} mapped to zero and nothing maps to M_{0}
- Later: M_{0} interpretable as winding mode of Maxwell field

Dismiss winding mode and focus on warped Witt algebra

Outline

Motivation

Kinematics

Dynamics

Relation to SYK/JT

Outlook

Dilaton gravity in two dimensions (review hep-th/0204253)

- Candidate for gravity theory realizing our bc's: Einstein-dilaton-Maxwell in 2d (see e.g. DG, McNees, Salzer '14)

Dilaton gravity in two dimensions (review hep-th/0204253)

- Candidate for gravity theory realizing our bc's: Einstein-dilaton-Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
- Second order action

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

Dilaton gravity in two dimensions (review hep-th/0204253)

- Candidate for gravity theory realizing our bc's: Einstein-dilaton-Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
- Second order action

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R

Dilaton gravity in two dimensions (review hep-th/0204253)

- Candidate for gravity theory realizing our bc's: Einstein-dilaton-Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
- Second order action

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$

Dilaton gravity in two dimensions (review hep-th/0204253)

- Candidate for gravity theory realizing our bc's: Einstein-dilaton-Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
- Second order action

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$
- Self-interaction potential $V(X)$ leads to non-trivial geometries

Dilaton gravity in two dimensions (review hep-th/0204253)

- Candidate for gravity theory realizing our bc's: Einstein-dilaton-Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
- Second order action

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$
- Self-interaction potential $V(X)$ leads to non-trivial geometries
- Gibbons-Hawking-York boundary term for Dirichlet boundary problem

Dilaton gravity in two dimensions (review hep-th/0204253)

- Candidate for gravity theory realizing our bc's:

Einstein-dilaton-Maxwell in 2d (see e.g. DG, McNees, Salzer '14)

- Second order action

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$
- Self-interaction potential $V(X)$ leads to non-trivial geometries
- Gibbons-Hawking-York boundary term for Dirichlet boundary problem
- Hamilton-Jacobi counterterm contains superpotential $S(X)$

$$
S(X)^{2}=e^{-\int^{X} U(y) \mathrm{d} y} \int^{X} V(y) e^{\int^{y} U(z) \mathrm{d} z} \mathrm{~d} y
$$

and guarantees well-defined variational principle $\delta I=0$ with fineprint

Dilaton gravity in two dimensions (review hep-th/0204253)

- Candidate for gravity theory realizing our bc's:

Einstein-dilaton-Maxwell in 2d (see e.g. DG, McNees, Salzer '14)

- Second order action

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
I^{(m)} & =\int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|} f(X) F^{\mu \nu} F_{\mu \nu} \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$
- Self-interaction potential $V(X)$ leads to non-trivial geometries
- Gibbons-Hawking-York boundary term for Dirichlet boundary problem
- Hamilton-Jacobi counterterm contains superpotential $S(X)$

$$
S(X)^{2}=e^{-\int^{X} U(y) \mathrm{d} y} \int^{X} V(y) e^{\int^{y} U(z) \mathrm{d} z} \mathrm{~d} y
$$

and guarantees well-defined variational principle $\delta I=0$ with fineprint

- Interesting option: couple 2d dilaton gravity to matter

Selected list of models (see review hep-th/0604049)
Black holes in $(A) \mathrm{dS}_{2}$, asymptotically flat or arbitrary spaces (Wheeler property)

Model	$U(X)$	$V(X)$
1. Schwarzschild (1916)	$-\frac{1}{2 X}$	$-\lambda^{2}$
2. Jackiw-Teitelboim (1984)	0	ΛX
3. Witten Black Hole (1991)	$-\frac{1}{X}$	$-2 b^{2} X$
4. CGHS (1992)	0	-2Λ
5. (A)dS2 ground state (1994)	$-\frac{a}{X}$	$B X$
6. Rindler ground state (1996)	$-\frac{a}{X}$	$B X^{a}$
7. Black Hole attractor (2003)	0	$B X^{-1}$
8. Spherically reduced gravity $(N>3)$	$-\frac{N-3}{(N-2) X}$	$-\lambda^{2} X^{(N-4) /(N-2)}$
9. All above: ab-family (1997)	$-\frac{a}{X}$	$B X^{a+b}$
10. Liouville gravity	a	$b e^{\alpha X}$
11. Reissner-Nordström (1916)	$-\frac{1}{2 X}$	$-\lambda^{2}+\frac{Q^{2}}{X}$
12. Schwarzschild-(A)dS	$-\frac{1}{2 X}$	$-\lambda^{2}-\ell X$
13. Katanaev-Volovich (1986)	α	$\beta X^{2}-\Lambda$
14. BTZ/Achucarro-Ortiz (1993)	0	$\frac{Q^{2}}{X}-\frac{J}{4 X^{3}}-\Lambda X$
15. KK reduced CS (2003)	0	$\frac{1}{2} X\left(c-X^{2}\right)$
16. KK red. conf. flat (2006)	$-\frac{1}{2} \tanh (X / 2)$	$A \sinh X$
17. 2D type OA string Black Hole	$-\frac{1}{X}$	$-2 b^{2} X+\frac{b^{2} q^{2}}{8 \pi}$
18. exact string Black Hole (2005)	lengthy	lengthy

Gauge theoretic formulation as Poisson-sigma model (PSM)

- 2d analogue of Chern-Simons formulation of 3d gravity: PSM Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)

Gauge theoretic formulation as Poisson-sigma model (PSM)

- 2d analogue of Chern-Simons formulation of 3d gravity: PSM Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- for our purposes: linear, non-abelian gauge theory sufficient

Gauge theoretic formulation as Poisson-sigma model (PSM)

- 2d analogue of Chern-Simons formulation of 3d gravity: PSM Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- for our purposes: linear, non-abelian gauge theory sufficient
- non-abelian BF action

$$
I_{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

Gauge theoretic formulation as Poisson-sigma model (PSM)

- 2d analogue of Chern-Simons formulation of 3d gravity: PSM Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- for our purposes: linear, non-abelian gauge theory sufficient
- non-abelian BF action

$$
I_{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

- connection 1-form chosen as

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

ω : (dualized) spin-connection, e^{a} : zweibein, A : Maxwell connection

Gauge theoretic formulation as Poisson-sigma model (PSM)

- 2d analogue of Chern-Simons formulation of 3d gravity: PSM Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- for our purposes: linear, non-abelian gauge theory sufficient
- non-abelian BF action

$$
I_{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

- connection 1-form chosen as

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

ω : (dualized) spin-connection, e^{a} : zweibein, A : Maxwell connection

- scalar field chosen as

$$
B=X Z+X^{a} \epsilon_{a}^{b} P_{b}+Y J
$$

X : dilaton, X^{a}, Y : auxiliary fields

Gauge theoretic formulation as Poisson-sigma model (PSM)

- 2d analogue of Chern-Simons formulation of 3d gravity: PSM Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- for our purposes: linear, non-abelian gauge theory sufficient
- non-abelian BF action

$$
I_{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

- connection 1-form chosen as

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

ω : (dualized) spin-connection, e^{a} : zweibein, A : Maxwell connection

- scalar field chosen as

$$
B=X Z+X^{a} \epsilon_{a}{ }^{b} P_{b}+Y J
$$

X : dilaton, X^{a}, Y : auxiliary fields

- still need to choose gauge algebra and bilinear form

Cangemi-Jackiw version of Callan-Giddings-Harvey-Strominger

- Choose Maxwell algebra

$$
\left[P_{a}, P_{b}\right]=\epsilon_{a b} Z \quad\left[P_{a}, J\right]=\epsilon_{a}^{b} P_{b}
$$

with bilinear form

$$
\langle J, Z\rangle=-1 \quad\left\langle P_{a}, P_{b}\right\rangle=\eta_{a b}
$$

Cangemi-Jackiw version of Callan-Giddings-Harvey-Strominger

- Choose Maxwell algebra

$$
\left[P_{a}, P_{b}\right]=\epsilon_{a b} Z \quad\left[P_{a}, J\right]=\epsilon_{a}^{b} P_{b}
$$

with bilinear form

$$
\langle J, Z\rangle=-1 \quad\left\langle P_{a}, P_{b}\right\rangle=\eta_{a b}
$$

- corresponding action (after integrating our X^{a} and ω)

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

Cangemi-Jackiw version of Callan-Giddings-Harvey-Strominger

- Choose Maxwell algebra

$$
\left[P_{a}, P_{b}\right]=\epsilon_{a b} Z \quad\left[P_{a}, J\right]=\epsilon_{a}^{b} P_{b}
$$

with bilinear form

$$
\langle J, Z\rangle=-1 \quad\left\langle P_{a}, P_{b}\right\rangle=\eta_{a b}
$$

- corresponding action (after integrating our X^{a} and ω)

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- EOM

$$
\begin{aligned}
R & =0 \quad \Rightarrow \quad \text { Ricci-flat } \\
\epsilon^{\mu \nu} \partial_{\mu} A_{\nu} & =1 \\
\nabla_{\mu} \nabla_{\nu} X-g_{\mu \nu} \nabla^{2} X & =g_{\mu \nu} Y \\
Y & =\Lambda=\text { const. }
\end{aligned}
$$

Cangemi-Jackiw version of Callan-Giddings-Harvey-Strominger

- Choose Maxwell algebra

$$
\left[P_{a}, P_{b}\right]=\epsilon_{a b} Z \quad\left[P_{a}, J\right]=\epsilon_{a}^{b} P_{b}
$$

with bilinear form

$$
\langle J, Z\rangle=-1 \quad\left\langle P_{a}, P_{b}\right\rangle=\eta_{a b}
$$

- corresponding action (after integrating our X^{a} and ω)

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- EOM

$$
\begin{aligned}
R & =0 \quad \Rightarrow \quad \text { Ricci-flat } \\
\epsilon^{\mu \nu} \partial_{\mu} A_{\nu} & =1 \\
\nabla_{\mu} \nabla_{\nu} X-g_{\mu \nu} \nabla^{2} X & =g_{\mu \nu} Y \\
Y & =\Lambda=\text { const. }
\end{aligned}
$$

- translate our bc's into BF-formulation

Boundary conditions in BF formulation

- Ansatz (worked nicely for Jackiw-Teitelboim; inspired by 3d)

$$
\mathcal{A}=b^{-1}(\mathrm{~d}+a) b \quad B=b^{-1} x b
$$

with group element $b=\exp \left(-r P_{+}\right)$and

$$
\begin{aligned}
& a=\left(\mathcal{T}(u) P_{+}+P_{-}+\mathcal{P}(u) J\right) \mathrm{d} u \\
& x=x^{+}(u) P_{+}+x_{1}(u) P_{-}+Y J+x_{0}(u) Z
\end{aligned}
$$

where $\delta \mathcal{T} \neq 0 \neq \delta \mathcal{P}$

Boundary conditions in BF formulation

- Ansatz (worked nicely for Jackiw-Teitelboim; inspired by 3d)

$$
\mathcal{A}=b^{-1}(\mathrm{~d}+a) b \quad B=b^{-1} x b
$$

with group element $b=\exp \left(-r P_{+}\right)$and

$$
\begin{aligned}
& a=\left(\mathcal{T}(u) P_{+}+P_{-}+\mathcal{P}(u) J\right) \mathrm{d} u \\
& x=x^{+}(u) P_{+}+x_{1}(u) P_{-}+Y J+x_{0}(u) Z
\end{aligned}
$$

where $\delta \mathcal{T} \neq 0 \neq \delta \mathcal{P}$

- yields metric shown before, dilaton

$$
X=x_{1}(u) r+x_{0}(u)
$$

and Maxwell field $A=r \mathrm{~d} u$
get BMS_{2} asymptotic symmetries!

Boundary conditions in BF formulation

- Ansatz (worked nicely for Jackiw-Teitelboim; inspired by 3d)

$$
\mathcal{A}=b^{-1}(\mathrm{~d}+a) b \quad B=b^{-1} x b
$$

with group element $b=\exp \left(-r P_{+}\right)$and

$$
\begin{aligned}
& a=\left(\mathcal{T}(u) P_{+}+P_{-}+\mathcal{P}(u) J\right) \mathrm{d} u \\
& x=x^{+}(u) P_{+}+x_{1}(u) P_{-}+Y J+x_{0}(u) Z
\end{aligned}
$$

where $\delta \mathcal{T} \neq 0 \neq \delta \mathcal{P}$

- yields metric shown before, dilaton

$$
X=x_{1}(u) r+x_{0}(u)
$$

and Maxwell field $A=r \mathrm{~d} u$

- Maxwell field preserved by combined diffeos and gauge trafos
$\delta A_{\nu}=\xi^{\mu} \partial_{\mu} A_{\nu}+A_{\mu} \partial_{\nu} \xi^{\mu}+\partial_{\nu} \sigma \quad \xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}$
provided $\eta=\sigma^{\prime}$
either η has no 0 -mode or σ not single-valued (winding modes)

Boundary conditions in BF formulation

- Ansatz (worked nicely for Jackiw-Teitelboim; inspired by 3d)

$$
\mathcal{A}=b^{-1}(\mathrm{~d}+a) b \quad B=b^{-1} x b
$$

with group element $b=\exp \left(-r P_{+}\right)$and

$$
\begin{aligned}
& a=\left(\mathcal{T}(u) P_{+}+P_{-}+\mathcal{P}(u) J\right) \mathrm{d} u \\
& x=x^{+}(u) P_{+}+x_{1}(u) P_{-}+Y J+x_{0}(u) Z
\end{aligned}
$$

where $\delta \mathcal{T} \neq 0 \neq \delta \mathcal{P}$

- yields metric shown before, dilaton

$$
X=x_{1}(u) r+x_{0}(u)
$$

and Maxwell field $A=r \mathrm{~d} u$

- Maxwell field preserved by combined diffeos and gauge trafos

$$
\delta A_{\nu}=\xi^{\mu} \partial_{\mu} A_{\nu}+A_{\mu} \partial_{\nu} \xi^{\mu}+\partial_{\nu} \sigma \quad \xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

provided $\eta=\sigma^{\prime}$

- focus on case $\delta_{\sigma} \oint A=0$ (no winding modes) \Rightarrow warped Witt algebra

Twisted warped boundary action (see also Afshar '19)

- Variation of Euclidean BF action ($t=i u$)

$$
\delta I_{\mathrm{BF}}=\text { bulk-EOM }-\kappa \oint \mathrm{d} t\left\langle x, \delta a_{t}\right\rangle
$$

Twisted warped boundary action (see also Afshar '19)

- Variation of Euclidean BF action ($t=i u$)

$$
\delta I_{\mathrm{BF}}=\text { bulk-EOM }-\kappa \oint \mathrm{d} t\left\langle x, \delta a_{t}\right\rangle
$$

- Goal: cancel boundary term by adding boundary action $I_{\text {tw }}$

Twisted warped boundary action (see also Afshar '19)

- Variation of Euclidean BF action ($t=i u$)

$$
\delta I_{\mathrm{BF}}=\text { bulk-EOM }-\kappa \oint \mathrm{d} t\left\langle x, \delta a_{t}\right\rangle
$$

- Goal: cancel boundary term by adding boundary action $I_{\text {tw }}$
- follow JT story in BF formulation González, DG, Salzer '18

Twisted warped boundary action (see also Afshar '19)

- Variation of Euclidean BF action $(t=i u)$

$$
\delta I_{\mathrm{BF}}=\text { bulk-EOM }-\kappa \oint \mathrm{d} t\left\langle x, \delta a_{t}\right\rangle
$$

- Goal: cancel boundary term by adding boundary action $I_{\text {tw }}$
- follow JT story in BF formulation González, DG, Salzer '18
- defining $1 / x_{1} \sim \partial_{t} f$ and $x_{0} / x_{1} \sim \partial_{t} g$ result is

$$
I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)
$$

with $\tau:=f(t), h(\tau):=-f^{-1}(\tau)$ and $\tau \sim \tau+\beta$ (prime means $\left.\mathrm{d} / \mathrm{d} \tau\right)$

Twisted warped boundary action (see also Afshar '19)

- Variation of Euclidean BF action $(t=i u)$

$$
\delta I_{\mathrm{BF}}=\text { bulk-EOM }-\kappa \oint \mathrm{d} t\left\langle x, \delta a_{t}\right\rangle
$$

- Goal: cancel boundary term by adding boundary action $I_{\text {tw }}$
- follow JT story in BF formulation González, DG, Salzer '18
- defining $1 / x_{1} \sim \partial_{t} f$ and $x_{0} / x_{1} \sim \partial_{t} g$ result is

$$
I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)
$$

twisted warped action is flat space analogue of Schwarzian action!

- Schwarzian action: group action for Virasoro coadjoint orbits
- twisted warped action: group action for twisted warped coadjoint orbits

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

Twisted warped boundary action (see also Afshar '19)

- Variation of Euclidean BF action ($t=i u$)

$$
\delta I_{\mathrm{BF}}=\text { bulk-EOM }-\kappa \oint \mathrm{d} t\left\langle x, \delta a_{t}\right\rangle
$$

- Goal: cancel boundary term by adding boundary action $I_{\text {tw }}$
- follow JT story in BF formulation González, DG, Salzer '18
- defining $1 / x_{1} \sim \partial_{t} f$ and $x_{0} / x_{1} \sim \partial_{t} g$ result is

$$
I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)
$$

- asymptotic symmetries: h, g boundary scalars under diffeos and g phase under $u(1)$ trafos

Twisted warped boundary action (see also Afshar '19)

- Variation of Euclidean BF action ($t=i u$)

$$
\delta I_{\mathrm{BF}}=\text { bulk-EOM }-\kappa \oint \mathrm{d} t\left\langle x, \delta a_{t}\right\rangle
$$

- Goal: cancel boundary term by adding boundary action $I_{\text {tw }}$
- follow JT story in BF formulation González, DG, Salzer '18
- defining $1 / x_{1} \sim \partial_{t} f$ and $x_{0} / x_{1} \sim \partial_{t} g$ result is

$$
I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)
$$

- asymptotic symmetries: h, g boundary scalars under diffeos and g phase under $u(1)$ trafos

Twisted warped action resembles effective action for complex SYK

Outline

Motivation

Kinematics

Dynamics

Relation to SYK/JT

Outlook

Hamiltonian formulation

- twisted warped Hamiltonian action

$$
I_{\mathrm{tw}}=-\kappa \int_{0}^{\beta} \mathrm{d} t\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right) \quad i=1,2,3
$$

where $q_{3}=\exp (i \mathcal{P} h)$ and $q_{2}=g+i h \mathcal{T} / \mathcal{P}$ (rest: auxiliary fields)

Hamiltonian formulation

- twisted warped Hamiltonian action

$$
I_{\mathrm{tw}}=-\kappa \int_{0}^{\beta} \mathrm{d} t\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right) \quad i=1,2,3
$$

where $q_{3}=\exp (i \mathcal{P} h)$ and $q_{2}=g+i h \mathcal{T} / \mathcal{P}$ (rest: auxiliary fields)

- similar to Schwarzian Hamiltonian action

$$
I_{\text {sch }}=-\kappa \int_{0}^{\beta} \mathrm{d} t\left(p_{i} \dot{q}_{i}-p_{1}^{2}-e^{q_{1}} p_{3}\right)
$$

Hamiltonian formulation

- twisted warped Hamiltonian action

$$
I_{\mathrm{tw}}=-\kappa \int_{0}^{\beta} \mathrm{d} t\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right) \quad i=1,2,3
$$

where $q_{3}=\exp (i \mathcal{P} h)$ and $q_{2}=g+i h \mathcal{T} / \mathcal{P}$ (rest: auxiliary fields)

- similar to Schwarzian Hamiltonian action

$$
I_{\mathrm{sch}}=-\kappa \int_{0}^{\beta} \mathrm{d} t\left(p_{i} \dot{q}_{i}-p_{1}^{2}-e^{q_{1}} p_{3}\right)
$$

solutions

$$
q_{3}=h_{0}+h_{1} e^{i \tau / \tau_{0}} \quad q_{2}=g_{0}-i g_{1} \tau+g_{2} e^{i \tau / \tau_{0}}
$$

five integration constants $g_{0}, g_{1}, g_{2}, h_{0}, h_{1} ;$ periodicity $\tau_{0}=\beta /(2 \pi)$

Hamiltonian formulation

- twisted warped Hamiltonian action

$$
I_{\mathrm{tw}}=-\kappa \int_{0}^{\beta} \mathrm{d} t\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right) \quad i=1,2,3
$$

where $q_{3}=\exp (i \mathcal{P} h)$ and $q_{2}=g+i h \mathcal{T} / \mathcal{P}$ (rest: auxiliary fields)

- similar to Schwarzian Hamiltonian action

$$
I_{\mathrm{sch}}=-\kappa \int_{0}^{\beta} \mathrm{d} t\left(p_{i} \dot{q}_{i}-p_{1}^{2}-e^{q_{1}} p_{3}\right)
$$

- solutions

$$
q_{3}=h_{0}+h_{1} e^{i \tau / \tau_{0}} \quad q_{2}=g_{0}-i g_{1} \tau+g_{2} e^{i \tau / \tau_{0}}
$$

five integration constants $g_{0}, g_{1}, g_{2}, h_{0}, h_{1}$; periodicity $\tau_{0}=\beta /(2 \pi)$

- on-shell action $\left.I_{\text {tw }}\right|_{\text {EOM }}=-2 \pi \kappa g_{1}$

Thermodynamics

- Assuming g_{1} independent from temperature get entropy

$$
S=-\left.I_{\mathrm{tw}}\right|_{\mathrm{EOM}}=2 \pi \kappa g_{1}
$$

Thermodynamics

- Assuming g_{1} independent from temperature get entropy

$$
S=-\left.I_{\mathrm{tw}}\right|_{\mathrm{EOM}}=2 \pi \kappa g_{1}
$$

- Using result for dilaton $g_{1}=\left.X\right|_{\text {horizon }}$ yields

$$
S=\left.2 \pi \kappa X\right|_{\text {horizon }}
$$

standard result (Wald entropy applied to 2d dilaton gravity)

Thermodynamics

- Assuming g_{1} independent from temperature get entropy

$$
S=-\left.I_{\mathrm{tw}}\right|_{\mathrm{EOM}}=2 \pi \kappa g_{1}
$$

- Using result for dilaton $g_{1}=\left.X\right|_{\text {horizon }}$ yields

$$
S=\left.2 \pi \kappa X\right|_{\text {horizon }}
$$

standard result (Wald entropy applied to 2d dilaton gravity)

- assumption above derivable from regularity condition

$$
\mathcal{P}=2 \pi T \quad \mathcal{T} \text { arbitrary }
$$

Thermodynamics

- Assuming g_{1} independent from temperature get entropy

$$
S=-\left.I_{\mathrm{tw}}\right|_{\mathrm{EOM}}=2 \pi \kappa g_{1}
$$

- Using result for dilaton $g_{1}=\left.X\right|_{\text {horizon }}$ yields

$$
S=\left.2 \pi \kappa X\right|_{\text {horizon }}
$$

standard result (Wald entropy applied to 2d dilaton gravity)

- assumption above derivable from regularity condition

$$
\mathcal{P}=2 \pi T \quad \mathcal{T} \text { arbitrary }
$$

- on-shell $\mathcal{P}=Y$ is $u(1)$ charge, while \mathcal{T} is mass

Thermodynamics

- Assuming g_{1} independent from temperature get entropy

$$
S=-\left.I_{\mathrm{tw}}\right|_{\mathrm{EOM}}=2 \pi \kappa g_{1}
$$

- Using result for dilaton $g_{1}=\left.X\right|_{\text {horizon }}$ yields

$$
S=\left.2 \pi \kappa X\right|_{\text {horizon }}
$$

standard result (Wald entropy applied to 2d dilaton gravity)

- assumption above derivable from regularity condition

$$
\mathcal{P}=2 \pi T \quad \mathcal{T} \text { arbitrary }
$$

- on-shell $\mathcal{P}=Y$ is $u(1)$ charge, while \mathcal{T} is mass
- peculiarity: inverse specific vanishes (well-known property of CGHS)

$$
C^{-1}=\left.\frac{1}{T} \frac{\mathrm{~d} T}{\mathrm{~d} S}\right|_{\delta \mathcal{P}=0}=0
$$

Thermodynamics

- Assuming g_{1} independent from temperature get entropy

$$
S=-\left.I_{\mathrm{tw}}\right|_{\mathrm{EOM}}=2 \pi \kappa g_{1}
$$

- Using result for dilaton $g_{1}=\left.X\right|_{\text {horizon }}$ yields

$$
S=\left.2 \pi \kappa X\right|_{\text {horizon }}
$$

standard result (Wald entropy applied to 2d dilaton gravity)

- assumption above derivable from regularity condition

$$
\mathcal{P}=2 \pi T \quad \mathcal{T} \text { arbitrary }
$$

- on-shell $\mathcal{P}=Y$ is $u(1)$ charge, while \mathcal{T} is mass
- peculiarity: inverse specific vanishes (well-known property of CGHS)

$$
C^{-1}=\left.\frac{1}{T} \frac{\mathrm{~d} T}{\mathrm{~d} S}\right|_{\delta \mathcal{P}=0}=0
$$

- useful property for scaling limit from complex SYK

Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

- Effective action governing collective low T modes of complex SYK

$$
I_{\mathrm{cSYK}}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(g^{\prime}+\frac{2 \pi i \mathcal{E}}{\beta} h^{\prime}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}
$$

Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

- Effective action governing collective low T modes of complex SYK $I_{\text {cSYK }}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(g^{\prime}+\frac{2 \pi i \mathcal{E}}{\beta} h^{\prime}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}$
$\{f ; \tau\}:=f^{\prime \prime \prime} / f^{\prime}-\frac{3}{2}\left(f^{\prime \prime} / f^{\prime}\right)^{2}$ Schwarzian derivative N (large) number of complex fermions
$N \gamma$ specific heat at fixed charge
K zero temperature compressibility
\mathcal{E} spectral asymmetry parameter
$h(\tau)$ time-reparametrization field (quasi-periodic, $h(\tau+\beta)=h(\tau)+\beta$)
$g(\tau)$ phase field (periodic in absence of winding)

Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

- Effective action governing collective low T modes of complex SYK $I_{\mathrm{cSYK}}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(g^{\prime}+\frac{2 \pi i \mathcal{E}}{\beta} h^{\prime}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}$
$\{f ; \tau\}:=f^{\prime \prime \prime} / f^{\prime}-\frac{3}{2}\left(f^{\prime \prime} / f^{\prime}\right)^{2}$ Schwarzian derivative N (large) number of complex fermions
$N \gamma$ specific heat at fixed charge
K zero temperature compressibility
\mathcal{E} spectral asymmetry parameter
$h(\tau)$ time-reparametrization field (quasi-periodic, $h(\tau+\beta)=h(\tau)+\beta$)
$g(\tau)$ phase field (periodic in absence of winding)
- according to our thermodynamics need limit $N \gamma \rightarrow \infty$ (infinite specific heat)

Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

- Effective action governing collective low T modes of complex SYK

$$
I_{\mathrm{cSYK}}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(g^{\prime}+\frac{2 \pi i \mathcal{E}}{\beta} h^{\prime}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}
$$

- according to our thermodynamics need limit $N \gamma \rightarrow \infty$ (infinite specific heat)
- turns out additionally need limit $K \rightarrow 0$ (vanishing zero temperature compressibility)

Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

- Effective action governing collective low T modes of complex SYK

$$
I_{\mathrm{cSYK}}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(g^{\prime}+\frac{2 \pi i \mathcal{E}}{\beta} h^{\prime}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}
$$

- according to our thermodynamics need limit $N \gamma \rightarrow \infty$ (infinite specific heat)
- turns out additionally need limit $K \rightarrow 0$ (vanishing zero temperature compressibility)
- inserting these limits into $I_{\text {cSYK }}[h, g]$ yields twisted warped action
$\lim _{N \gamma \rightarrow \infty, K \rightarrow 0} I_{\mathrm{cSYK}}[h, g]=I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)$
with $\kappa^{2} \sim N^{a} \gamma K$ kept finite

Asymptotic symmetries

- can see same singular limit at level of asymptotic symmetry algebras

Asymptotic symmetries

- can see same singular limit at level of asymptotic symmetry algebras
- twisted warped Virasoro algebra (warped Witt with all cocycles)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =\frac{\hat{K}}{2} n \delta_{n+m, 0}
\end{aligned}
$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

Asymptotic symmetries

- can see same singular limit at level of asymptotic symmetry algebras
- twisted warped Virasoro algebra (warped Witt with all cocycles)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =\frac{\hat{K}}{2} n \delta_{n+m, 0}
\end{aligned}
$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

- complex SYK: warped Virasoro algebra $(c \neq 0 \neq \hat{K} ; \kappa=0)$

Asymptotic symmetries

- can see same singular limit at level of asymptotic symmetry algebras
- twisted warped Virasoro algebra (warped Witt with all cocycles)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =\frac{\hat{K}}{2} n \delta_{n+m, 0}
\end{aligned}
$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

- complex SYK: warped Virasoro algebra $(c \neq 0 \neq \hat{K} ; \kappa=0)$
- our model: twisted warped algebra $(c=0=\hat{K} ; \kappa \neq 0)$

Asymptotic symmetries

- can see same singular limit at level of asymptotic symmetry algebras
- twisted warped Virasoro algebra (warped Witt with all cocycles)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =\frac{\hat{K}}{2} n \delta_{n+m, 0}
\end{aligned}
$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

- complex SYK: warped Virasoro algebra $(c \neq 0 \neq \hat{K} ; \kappa=0)$
- our model: twisted warped algebra $(c=0=\hat{K} ; \kappa \neq 0)$
- map first between twisted warped Virasoro and warped Virasoro

$$
c \rightarrow c-\frac{24 \kappa^{2}}{\hat{K}}
$$

by change of basis $L_{n} \rightarrow L_{n}+i \frac{2 \kappa}{\tilde{K}} n J_{n}$ and shift of 0 -modes

Asymptotic symmetries

- can see same singular limit at level of asymptotic symmetry algebras
- twisted warped Virasoro algebra (warped Witt with all cocycles)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =\frac{\hat{K}}{2} n \delta_{n+m, 0}
\end{aligned}
$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

- complex SYK: warped Virasoro algebra $(c \neq 0 \neq \hat{K} ; \kappa=0)$
- our model: twisted warped algebra $(c=0=\hat{K} ; \kappa \neq 0)$
- map first between twisted warped Virasoro and warped Virasoro

$$
c \rightarrow c-\frac{24 \kappa^{2}}{\hat{K}}
$$

by change of basis $L_{n} \rightarrow L_{n}+i \frac{2 \kappa}{\bar{K}} n J_{n}$ and shift of 0 -modes

- then take limit $\hat{K} \rightarrow 0, c \rightarrow \infty$ keeping fixed $\kappa=\sqrt{-\frac{c \hat{K}}{24}}$

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- CGHS a la Cangemi-Jackiw bulk model for flat space holography

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- CGHS a la Cangemi-Jackiw bulk model for flat space holography

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- asymptotically flat boundary conditions yield BMS_{2}

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- CGHS a la Cangemi-Jackiw bulk model for flat space holography

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- asymptotically flat boundary conditions yield BMS_{2}
- boundary action is twisted warped action

$$
I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)
$$

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- CGHS a la Cangemi-Jackiw bulk model for flat space holography

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- asymptotically flat boundary conditions yield BMS_{2}
- boundary action is twisted warped action

$$
I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)
$$

- follows as singular limit from complex SYK (large specific heat, small compressibility)

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- CGHS a la Cangemi-Jackiw bulk model for flat space holography

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- asymptotically flat boundary conditions yield BMS_{2}
- boundary action is twisted warped action

$$
I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)
$$

- follows as singular limit from complex SYK (large specific heat, small compressibility)
- asymptotic symmetries also from singular limit of warped Virasoro

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- CGHS a la Cangemi-Jackiw bulk model for flat space holography

$$
I\left[X, Y, g_{\mu \nu}, A_{\mu}\right]=\frac{\kappa}{2} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left(X R-2 Y+2 Y \epsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- asymptotically flat boundary conditions yield BMS_{2}
- boundary action is twisted warped action

$$
I_{\mathrm{tw}}[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\mathcal{T} h^{\prime 2}-g^{\prime}\left(i \mathcal{P} h^{\prime}+\frac{h^{\prime \prime}}{h^{\prime}}\right)\right)
$$

- follows as singular limit from complex SYK (large specific heat, small compressibility)
- asymptotic symmetries also from singular limit of warped Virasoro
- could be useful toy model for flat space holography

Outline

Motivation

Kinematics

Dynamics

Relation to SYK/JT

Outlook

Future developments

- Flat space holography in 2d

Future developments

- Flat space holography in 2d
- Cardyology

Future developments

- Flat space holography in 2d
- Cardyology
- Chaos bound saturation

Future developments

- Flat space holography in 2d
- Cardyology
- Chaos bound saturation
- Experimental realization

Future developments

- Flat space holography in 2d
- Cardyology
- Chaos bound saturation
- Experimental realization

Thanks for your attention!

orion

