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Asymptotic symmetries

Asymptotic symmetries = boundary condition preserving
transformations modulo proper gauge transformations

I AdS/CFT
I basic ingredient of AdS/CFT tests based on symmetries
I captures universal UV features of QFTs (conformal symmetries)
I Brown–Henneaux precursor for AdS3/CFT2

I Flat space
I basic ingredient of flat space holography tests based on symmetries
I captures universal IR features of QFTs (Ward id’s ↔ soft theorems)
I Barnich–Compére precursor for FS3/CCFT2

I Holography beyond AdS/CFT
I asymptotic holography beyond AdS/CFT?
I near horizon holography?
I asymptotic symmetries important input for structure of dual QFT
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I Barnich–Compére precursor for FS3/CCFT2

I Holography beyond AdS/CFT
I asymptotic holography beyond AdS/CFT?
I near horizon holography?
I asymptotic symmetries important input for structure of dual QFT

Daniel Grumiller — BMS2 Motivation 4/28



Asymptotic symmetries

Asymptotic symmetries = boundary condition preserving
transformations modulo proper gauge transformations

I AdS/CFT
I basic ingredient of AdS/CFT tests based on symmetries
I captures universal UV features of QFTs (conformal symmetries)
I Brown–Henneaux precursor for AdS3/CFT2

I Flat space
I basic ingredient of flat space holography tests based on symmetries
I captures universal IR features of QFTs (Ward id’s ↔ soft theorems)
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BMS4

Brief history:

I general relativity in limit of low curvature
?
= special relativity

I if yes, expect Poincaré as asymptotic symmetries

I Bondi, van der Burgh, Metzner and Sachs ’62 (BMS):
no, get infinite extension of Poincaré by super-translations P (x)

I (extended) BMS4 algebra (Ja(x): diffS2 or restriction thereof)

{Ja(x), Jb(x
′)} =

(
Ja(x

′)∂b − Jb(x)∂′a
)
δ(x− x′)

{Ja(x), P (x′)} =
(s

2
P (x′)∂a − P (x)∂′a

)
δ(x− x′)

{P (x), P (x′)} = 0

s: spin of super-translations (in original BMS4: s = 1)

I get same algebra as near horizon symmetries (in any dimension ≥ 3)
Donnay, Giribet, González, Pino ’15 s = 0 (‘scalar super-translations’)
DG, Perez, Troncoso, Sheikh-Jabbari, Zwikel ’19 arbitrary s
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BMS3

I Barnich, Gomberoff, González ’12 BMS3 from CFT2 by contraction

I Change the Virasoro basis Ln, L̄n

Ln = Ln − L̄−n Mn =
1

`

(
Ln + L̄−n

)
I In this new basis Virasoro algebras reads

[Ln, Lm] = (n−m)Ln+m +
cL
12

(
n3 − n

)
δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(
n3 − n

)
δn+m, 0

[Mn, Mm] = O(1/`2)

with central charges cL = c− c̄ and cM = 1
`

(
c+ c̄

)
I Contraction means `→∞ and yields BMS3 (Mn: super-translations)
I Example: Einstein gravity

c = c̄ =
3`

2G
⇒ cL = 0 cM =

3

G
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Motivation for BMS2

I because it is there (maybe)

I BMS2 useful for toy models of flat space holography
I BMS2 perhaps useful for near horizon holography
I construct SYK-like models with asymptotically flat gravity side
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Motivation for BMS2

I because it is there (maybe)
I BMS2 useful for toy models of flat space holography
I BMS2 perhaps useful for near horizon holography
I construct SYK-like models with asymptotically flat gravity side

slide from Stanford’s talk at Strings 2017
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Difficulties with BMS2

I general point in 2d: co-dimension 2 structureless

sort of ok in AdS2, so maybe ‘sort of’ ok for BMS2 as well

I AdS2 algebra is half of AdS3 algebra
same cannot be true for BMS2/BMS3 relation

just means we have no quick way of cheating towards BMS2

I super-rotations can only be in time direction

ok at least in Euclidean theory

I super-translations can only be radial super-translations

ok, why not?

Ignore difficulties and proceed∗

∗ van Nieuwenhuizen: task of theoretical physicists is to break no-go theorems
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Asymptotically Ricci-flat metrics

I Gauge-fix to Eddington–Finkelstein coordinates

ds2 = −2 dudr +K(u, r) du2

Not obvious that this is possible with proper gauge trafos!

Same remark applies to any gauge fixing, e.g. in AdS3

I Demand Ricci-flatness

K(u, r) = 2P(u) r + 2T (u)

I Allow most general fluctuations δP 6= 0 6= δT
I Whatever the gravity theory is going to be, require the following

boundary conditions for metric

ds2 = −2 dudr +
(
O(r) +O(1)︸ ︷︷ ︸
state-dependent

+o(1)
)

du2

Determine next asymptotic Killing vectors
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Asymptotic Killing vectors

I Class of metrics

ds2 = −2 dudr + 2
(
P(u) r + T (u)

)
du2

preserved by asymptotic Killing vectors

ξ(ε, η) = ε(u)∂u −
(
ε′(u)r + η(u)

)
∂r

I ε(u) generates ‘super-rotations’
I η(u) generates radial ‘super-translations’
I Metric functions transform non-trivially

LξP = εP ′ + ε′P + ε′′

LξT = εT ′ + 2ε′T + η′ − ηP
I Looks promising!

P like u(1) current
T like Virasoro generator
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BMS2 algebra

I Lie-bracket algebra of asymptotic Killing vectors[
ξ(ε1, η1), ξ(ε2, η2)

]
= ξ
(
ε1ε
′
2 − ε2ε′1, (ε1η2 − ε2η1)′

)

I Algebra for Laurent modes Ln = ξ(−un+1, 0), Mn = ξ(0, un−1)

[Ln, Lm] = (n−m)Ln+m

[Ln, Mm] = (−n−m)Mn+m

[Mn, Mm] = 0

I Witt subalgebra generated by Ln
spin-0 super-translations generated by Mn

Call this algebra BMS2

Can (and will) have non-trivial central extensions
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Global aspects

I Redefine function generating super-translations, η = σ′

I Redefine corresponding generators Jn = ξ(0, σ = un)

[Ln, Lm] = (n−m)Ln+m

[Ln, Jm] = −mJn+m

[Jn, Jm] = 0

I Warped Witt algebra (Jn: spin-1 current)

I Relation to old super-translation generators (Mn: spin-0 current)

Jn = nMn n 6= 0

I Almost basis change, but J0 mapped to zero and nothing maps to M0

I Later: M0 interpretable as winding mode of Maxwell field

Dismiss winding mode and focus on warped Witt algebra
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Dilaton gravity in two dimensions (review hep-th/0204253)

I Candidate for gravity theory realizing our bc’s:
Einstein–dilaton–Maxwell in 2d (see e.g. DG, McNees, Salzer ’14)

I Second order action

I =
1

16πG2

∫
M

d2x
√
|g|
[
XR− U(X)(∇X)2 − V (X)

]
I(m)

I Dilaton X defined by its coupling to curvature R
I Kinetic term (∇X)2 contains coupling function U(X)
I Self-interaction potential V (X) leads to non-trivial geometries
I Gibbons–Hawking–York boundary term for Dirichlet boundary problem
I Hamilton–Jacobi counterterm contains superpotential S(X)

S(X)2 = e−
∫X U(y) dy

∫ X

V (y)e
∫ y U(z) dz dy

and guarantees well-defined variational principle δI = 0 with fineprint

I Interesting option: couple 2d dilaton gravity to matter
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Selected list of models (see review hep-th/0604049)

Black holes in (A)dS2, asymptotically flat or arbitrary spaces (Wheeler property)

Model U(X) V (X)

1. Schwarzschild (1916) − 1
2X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX
3. Witten Black Hole (1991) − 1

X
−2b2X

4. CGHS (1992) 0 −2Λ
5. (A)dS2 ground state (1994) − a

X
BX

6. Rindler ground state (1996) − a
X

BXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3
(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − a
X

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordström (1916) − 1
2X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 1
2X

−λ2 − `X
13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X
− J

4X3 − ΛX
15. KK reduced CS (2003) 0 1

2
X(c−X2)

16. KK red. conf. flat (2006) − 1
2

tanh (X/2) A sinhX

17. 2D type 0A string Black Hole − 1
X

−2b2X + b2q2

8π

18. exact string Black Hole (2005) lengthy lengthy
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Gauge theoretic formulation as Poisson-sigma model (PSM)

I 2d analogue of Chern–Simons formulation of 3d gravity: PSM
Ikeda ’93; Schaller, Strobl ’94 (non-linear gauge theory)

I for our purposes: linear, non-abelian gauge theory sufficient
I non-abelian BF action

IBF[B, A] = κ

∫
〈B, F 〉 F = dA+A ∧A

I connection 1-form chosen as

A = ω J + eaPa +AZ

ω: (dualized) spin-connection, ea: zweibein, A: Maxwell connection
I scalar field chosen as

B = X Z +Xaεa
bPb + Y J

X: dilaton, Xa, Y : auxiliary fields
I still need to choose gauge algebra and bilinear form
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Cangemi–Jackiw version of Callan–Giddings–Harvey–Strominger

I Choose Maxwell algebra

[Pa, Pb] = εab Z [Pa, J ] = εa
b Pb

with bilinear form

〈J, Z〉 = −1 〈Pa, Pb〉 = ηab

I corresponding action (after integrating our Xa and ω)

I[X, Y, gµν , Aµ] =
κ

2

∫
M

d2x
√
|g|
(
XR− 2Y + 2Y εµν∂µAν

)
I EOM

R = 0 ⇒ Ricci-flat

εµν∂µAν = 1

∇µ∇νX − gµν∇2X = gµνY

Y = Λ = const.

I translate our bc’s into BF-formulation
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Boundary conditions in BF formulation

I Ansatz (worked nicely for Jackiw–Teitelboim; inspired by 3d)

A = b−1
(

d+a
)
b B = b−1xb

with group element b = exp(−r P+) and

a =
(
T (u)P+ + P− + P(u)J

)
du

x = x+(u)P+ + x1(u)P− + Y J + x0(u)Z

where δT 6= 0 6= δP

I yields metric shown before, dilaton

X = x1(u) r + x0(u)

and Maxwell field A = r du
I Maxwell field preserved by combined diffeos and gauge trafos

δAν = ξµ∂µAν+Aµ∂νξ
µ+∂νσ ξ(ε, η) = ε(u)∂u−

(
ε′(u)r+η(u)

)
∂r

provided η = σ′

I focus on case δσ
∮
A = 0 (no winding modes) ⇒ warped Witt algebra
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∮
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Twisted warped boundary action (see also Afshar ’19)

I Variation of Euclidean BF action (t = iu)

δIBF = bulk-EOM− κ
∮

dt 〈x, δat〉

I Goal: cancel boundary term by adding boundary action Itw
I follow JT story in BF formulation González, DG, Salzer ’18
I defining 1/x1 ∼ ∂tf and x0/x1 ∼ ∂tg result is

Itw[h, g] = κ

β∫
0

dτ
(
T h′ 2 − g′

(
iPh′ + h′′

h′

))
I asymptotic symmetries: h, g boundary scalars under diffeos and g

phase under u(1) trafos

Twisted warped action resembles effective action for complex SYK
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Hamiltonian formulation

I twisted warped Hamiltonian action

Itw = −κ
β∫

0

dt
(
piq̇i − p1p2 − eq1p3

)
i = 1, 2, 3

where q3 = exp(iPh) and q2 = g + ihT /P (rest: auxiliary fields)

I similar to Schwarzian Hamiltonian action

Isch = −κ
β∫

0

dt
(
piq̇i − p21 − eq1p3

)
I solutions

q3 = h0 + h1e
iτ/τ0 q2 = g0 − ig1 τ + g2 e

iτ/τ0

five integration constants g0, g1, g2, h0, h1; periodicity τ0 = β/(2π)
I on-shell action Itw|EOM = −2πκg1
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Thermodynamics

I Assuming g1 independent from temperature get entropy

S = −Itw|EOM = 2πκg1

I Using result for dilaton g1 = X
∣∣
horizon

yields

S = 2πκX
∣∣
horizon

standard result (Wald entropy applied to 2d dilaton gravity)
I assumption above derivable from regularity condition

P = 2πT T arbitrary

I on-shell P = Y is u(1) charge, while T is mass
I peculiarity: inverse specific vanishes (well-known property of CGHS)

C−1 =
1

T

dT

dS

∣∣∣
δP=0

= 0

I useful property for scaling limit from complex SYK
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky ’19)

I Effective action governing collective low T modes of complex SYK

IcSYK[h, g] =
NK

2

β∫
0

dτ
(
g′+

2πiE
β

h′
)2−Nγ

4π2

β∫
0

dτ
{

tan
(π
β
h
)

; τ
}

I according to our thermodynamics need limit Nγ →∞
(infinite specific heat)

I turns out additionally need limit K → 0
(vanishing zero temperature compressibility)

I inserting these limits into IcSYK[h, g] yields twisted warped action

lim
Nγ→∞,K→0

IcSYK[h, g] = Itw[h, g] = κ

β∫
0

dτ
(
T h′ 2− g′

(
iPh′+ h′′

h′

))
with κ2 ∼ NaγK kept finite
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Asymptotic symmetries

I can see same singular limit at level of asymptotic symmetry algebras

I twisted warped Virasoro algebra (warped Witt with all cocycles)

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m, 0

[Ln, Jm] = −mJn+m − iκ
(
n2 − n

)
δn+m, 0

[Jn, Jm] =
K̂

2
n δn+m, 0

c: Virasoro central charge; κ: twist; K̂: level of u(1) current
I complex SYK: warped Virasoro algebra (c 6= 0 6= K̂; κ = 0)
I our model: twisted warped algebra (c = 0 = K̂; κ 6= 0)
I map first between twisted warped Virasoro and warped Virasoro

c→ c− 24κ2

K̂

by change of basis Ln → Ln + i2κ
K̂
nJn and shift of 0-modes

I then take limit K̂ → 0, c→∞ keeping fixed κ =

√
− cK̂

24
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c: Virasoro central charge; κ: twist; K̂: level of u(1) current
I complex SYK: warped Virasoro algebra (c 6= 0 6= K̂; κ = 0)
I our model: twisted warped algebra (c = 0 = K̂; κ 6= 0)
I map first between twisted warped Virasoro and warped Virasoro

c→ c− 24κ2

K̂

by change of basis Ln → Ln + i2κ
K̂
nJn and shift of 0-modes

I then take limit K̂ → 0, c→∞ keeping fixed κ =

√
− cK̂

24
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Conclusions
For more details see Afshar, González, DG, Vassilevich 1911.05739

I CGHS a la Cangemi–Jackiw bulk model for flat space holography

I[X, Y, gµν , Aµ] =
κ

2

∫
M

d2x
√
|g|
(
XR− 2Y + 2Y εµν∂µAν

)

I asymptotically flat boundary conditions yield BMS2

I boundary action is twisted warped action

Itw[h, g] = κ

β∫
0

dτ
(
T h′ 2 − g′

(
iPh′ + h′′

h′

))
I follows as singular limit from complex SYK

(large specific heat, small compressibility)

I asymptotic symmetries also from singular limit of warped Virasoro

I could be useful toy model for flat space holography
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I CGHS a la Cangemi–Jackiw bulk model for flat space holography

I[X, Y, gµν , Aµ] =
κ

2

∫
M

d2x
√
|g|
(
XR− 2Y + 2Y εµν∂µAν

)
I asymptotically flat boundary conditions yield BMS2

I boundary action is twisted warped action

Itw[h, g] = κ

β∫
0

dτ
(
T h′ 2 − g′

(
iPh′ + h′′

h′

))

I follows as singular limit from complex SYK
(large specific heat, small compressibility)

I asymptotic symmetries also from singular limit of warped Virasoro

I could be useful toy model for flat space holography

Daniel Grumiller — BMS2 Relation to SYK/JT 26/28

https://arxiv.org/pdf/1911.05739.pdf


Conclusions
For more details see Afshar, González, DG, Vassilevich 1911.05739
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Future developments

I Flat space holography in 2d

I Cardyology

I Chaos bound saturation

I Experimental realization

Thanks for your attention!
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