Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
	0000 0000000000	000000000			

K3 Metrics

Max Zimet

Harvard University - Black Hole Initiative

Black Holes: BPS, BMS and Integrability - 9/8/20

<ロ> (四) (四) (日) (日) (日)

Harvard

M. Zimet

Introduction ●○○○○○	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion

Introduction

- ► Calabi-Yau (CY) compactification has played a central role in string theory. Reduced holonomy ⇒ low-energy SUSY
- Type II compactifications preserve 4d N = 2 and are the setting of mirror symmetry
- Heterotic and orientifold compactifications preserve 4d
 N = 1 and provide semi-realistic starting points for string phenomenology
- Setting in which much of our non-perturbative understanding of string theory has been developed

M. Zimet

Introduction 00000	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion

K3

- K3 has played a particularly important role
- SU(2) = Sp(1), so in 4d Calabi-Yau = hyper-Kähler. Only compact examples are K3 and T⁴
- A concrete way to think about K3 is as T^4/Z_2 orbifold.

	H	Har	vard

M. Zimet

Introduction ○○●○○○	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion

Introduction (continued...)

- Since K3 is hyper-Kähler, preserves even more SUSY (e.g. K3×T² has 4d N = 4)
- ► Heterotic (on T⁴) type IIA (on K3) duality plays an essential role in our understanding of how the various perturbative superstring theories are related. Can fiber this duality over a P¹ base to find dual 4d N = 2 theories
- Earliest example of black hole microstate counting in string theory

Harvard

wi. Zimet			
K3 Metrics			

Introduction ○○○●○○	Little string theory and K3	Hyper-Kähler quotient 000000000 000000000	BPS spectra	Another LST	Conclusion

Introduction (continued...)

- Remarkably, all of this was achieved without an explicit form of the metric! Indeed, no smooth (compact, non-toroidal) Ricci-flat Calabi-Yau metric is (was) known!
- Why might this matter to a string theorist? Supposedly, (tree-level) string vacuum from CFT, such as non-linear sigma model with action

$$\frac{i}{8\pi\alpha'}\int (g_{ij}-B_{ij})\partial x^i\bar{\partial}x^j\,d^2z-2\pi\int\Phi R^{(2)}\,d^2z+\ldots$$

Harvard

(where the ... involve fermions). But, in reality since we don't have the metric, this formulation is rather useless.

M. Zimet

Introduction ○○○○●○	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion

K3 Non-Linear Sigma Models

- This question is particularly well-motivated for K3 (as opposed to other Calabi-Yaus) because the β function of the non-linear sigma model is exactly 0 – not just to leading order in α'
- As an example of our ignorance, even for K3 the worldsheet partition function is not known at almost all points in moduli space.

Harvard

M. Zimet		
K3 Metrics		

Introduction ○○○○○●	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ০০০০০০০০০ ০০০০০০০০০০০০০০০০০০০০০০০০০০	BPS spectra	Another LST	Conclusion

Explicit K3 metrics

Based on recent work (1810.10540, 2006.02435, 2009.xxxx) with

イロト イヨト イヨト イヨト

Harvard

Shamit Kachru, Arnav Tripathy

Indeed, we have not one, but two constructions!

M. Zimet			
K3 Metrics			

Introduction	Little string theory and K3 ●○○○ ○○○○○○○○○○	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion

Little string theory

- Heterotic small instanton 5-branes have a decoupling limit
- From supergravity perspective, this works because the corresponding soliton is so singular. In particular, an infinite throat with diverging g_s develops.
- It is not a QFT it has T-duality, for example, so there is no unique stress-energy tensor.

vard

M. Zimet			Ha
K3 Metrics			

ntroduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
	0000000000	000000000			

Geometrizing the moduli space, I: heterotic / F-theory duality

- Strong-weak duality (for SO(32) heterotic theory, for concreteness) takes us to D5-brane in type I. Now, to study the moduli space of the theory on T², use T-duality twice to replace D5 by D3.
- ► Heterotic (T²) ↔ type IIB orientifold on T²/Z₂ → F-theory on K3

M. Zimet

Geometrizing the moduli space, II: heterotic / M-theory duality

Similarly, to study the theory on T³, use T-duality three times to replace D5 by D2. An extra dimension is provided by the M-theory circle.

• Heterotic $(T^3) \leftrightarrow$ M-theory on K3

M. Zimet	Ha	ar
K3 Metrics		

< ロ > < 同 > < 回 > < 画

/ard

Introduction	Little string theory and K3 000● 0000000000	Hyper-Kähler quotient ০০০০০০০০০ ০০০০০০০০০০০০০০০০০০০০০০০০০০	BPS spectra	Another LST	Conclusion

Parameters of LST

 Moduli of the heterotic string theory become parameters of the LST. Similarly, gauge symmetry in spacetime descends to global symmetry of LST.

Harvard

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
BPS states and t	he metric				

Compactification of the 4d theory

- Study little string theory on T^2 , further compactified on S_B^1
- ► R → ∞ limit is large complex structure / semi-flat limit studied by [Greene-Shapere-Vafa-Yau '90] and familiar from F-theory on K3

・ロト ・ 日 ・ モ ト ・ モ ・ つくの

M. Zimet	Harvard
K3 Metrics	

Introduction 000000	Little string theory and K3 ○○○○ ○●○○○○○○○○○	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
BPS states and	the metric				

M. Zimet

- Corrections away from this limit are determined by instantons in this theory.
- These instantons are obtained by taking the worldlines of 4d BPS particles and wrapping them around S¹_R
- Exponentially small away from singular fibers: e^{-2πRM}

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
	0000 000000000	000000000 000000000			

BPS states and the metric

[Gaiotto-Moore-Neitzke '08]

・ロト ・聞 ト ・ 国 ト ・ 国 ト

Harvard

M. Zimet

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
BPS states and	the metric				

Instanton corrections

- At large *R*, these X_γ take a universal form, up to exponentially-suppressed corrections that result from 4d BPS states running around this circle.
- We have thus reduced the determination of a K3 metric to the simpler problem of counting BPS states in a little string theory on T². Specifically, need the BPS index (second helicity supertrace) Ω(γ; *a*) that counts 4d BPS states at a point in (4d) moduli space *a*.
- Thanks to wall crossing formula, in principle only need to determine BPS state counts at one point in parameter and moduli space

・ロト ・回ト ・ヨト ・ヨト

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
BPS states and	the metric				

Approximation

Iterate integral equation once: $\varpi^{\text{inst}}(\zeta) = \sum_{\gamma} \Omega(\gamma) \varpi_{\gamma}^{\text{inst}}$

$$\begin{split} \varpi_{\gamma}^{\text{inst}}(\zeta) &= -\frac{i}{8\pi^2} d\mathcal{Y}_{\gamma}^{\text{sf}}(\zeta) \wedge \left[-A^{\text{inst}} d\log(Z_{\gamma}/\overline{Z_{\gamma}}) + V^{\text{inst}}\left(\frac{1}{\zeta} dZ_{\gamma} - \zeta d\overline{Z_{\gamma}}\right) \right] \\ A^{\text{inst}} &= \sum_{n>0} e^{in\theta_{\gamma}} |Z_{\gamma}| K_1(2\pi Rn |Z_{\gamma}|) \\ V^{\text{inst}} &= \sum_{n>0} e^{in\theta_{\gamma}} K_0(2\pi Rn |Z_{\gamma}|) \end{split}$$

[Ooguri-Vafa '96, Seiberg-Shenker '96, GMN '08]

Harvard

< E > < E >

Image: A matrix

M. Zimet

Introduction	Little string theory and K3 ○○○○ ○○○○○●○○○○○	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
BPS states and t	he metric				

Particularly nice at points in moduli space with constant \(\tau\) – flat base, so combinatorial flat surface problem.

M. Zimet	Harvard
K3 Metrics	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへぐ

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
BPS states and t	he metric				

T^4/Z_q orbifold limits

- ► $T^4/Z_q = (T_F^2 \times T_B^2)/Z_q$, T_F^2 fibration over T_B^2/Z_q [Sen '96, Dasgupta-Mukhi '96].
- Non-abelian global symmetry from coincident 7-branes. Moving D3-brane probe near one of these 7-brane stacks and taking low energy limit yields either SU(2) N_f = 4 SCFT or E₆, E₇, or E₈ Minahan-Nemeschansky (MN) SCFT

q	4d global symmetry	$ au_{F}$	$ au_{B}$
2	$Spin(8)^4 imes U(1)^4$		
3	$E_6^3 imes U(1)^2$	κ_3	κ_{3}
4	$E_7^2 \times Spin(8) \times U(1)^2$	i	i
6	$E_6 \times E_8 \times \text{Spin}(8) \times U(1)^2$	κ_3	κ_{3}

$$\kappa_q = e^{2\pi i/q}$$

Harvard

M. Zimet K3 Metrics

Introduction	Little string theory and K3 ○○○○ ○○○○○○●○○○	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion	
BPS states and the metric						

 $\mathcal{N} = 2$ SUSY: $M = |Z_{\gamma}|$. So, abelian global symmetries must be associated to F1 and D1 winding about the two 1-cycles of T_B^2 . For $q \neq 2$, only two linear combinations of these four charges are conserved

ard

M. Zimet	Harv
K3 Metrics	

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion	
	0000000000	0000000000				
BPS states and the metric						

LST BPS spectra encoded in K3 metrics

- ▶ Turn on arbitrary Wilson lines for the 4d global symmetry as we reduce on S_R^1 in order to smooth out the orbifold. (Correspond to extra moduli for heterotic on T^3 vs. T^2 , in addition to $M_s R$.)
- Contributions to *π*^{inst}(*ζ*) from the BPS states of the LST with gauge and global charges of the form *γ* = *mγ*_{*g*} + *γ*_{*f*}:

$$\begin{split} \varpi_{\gamma g}^{\text{eff}} &= -\frac{i}{8\pi^2} d\mathcal{Y}_{\gamma g}^{\text{sf}}(\zeta) \wedge \sum_{n>0} e^{in\theta_{\gamma g}} \sum_{m|n} m^2 \sum_{\gamma f} \Omega(m\gamma_g + \gamma_f) e^{in\theta_{\gamma f}/m} \times \\ & \left(-|Z_{\gamma}/m| K_1(2\pi Rn|Z_{\gamma}/m|) d\log(Z_{\gamma}/\bar{Z}_{\gamma}) \right. \\ & \left. + K_0(2\pi Rn|Z_{\gamma}/m|) \left(\frac{1}{\zeta} dZ_{\gamma g} - \zeta d\bar{Z}_{\gamma g} \right) \right) \end{split}$$

Harvard

・ロ・ ・ 四・ ・ ヨ・ ・

M. Zimet

Introduction	Little string theory and K3	Hyper-Kähler quotient 000000000 000000000	BPS spectra	Another LST	Conclusion
BPS states and the metric					
CFT BPS spectra encoded in K3 metrics					

At orbifold point, all flavor contributions to central charge are from winding, and for simplest string webs winding part of γ_f is also divisible by m: γ_f = mγ_w + γ̃_f. Letting Z_{γ''} = Z_{γg+γw} = Z_γ/m gives

$$\begin{split} \varpi_{\gamma_g}^{\text{eff,CFT}} &= -\frac{i}{8\pi^2} d\mathcal{Y}_{\gamma_g}^{\text{sf}}(\zeta) \wedge \sum_{n>0} e^{in\theta_{\gamma_g}} \times \\ &\sum_{\gamma_w} e^{in\theta_{\gamma_w}} \left(-|Z_{\gamma''}| K_1(2\pi Rn|Z_{\gamma''}|) d\log(Z_{\gamma''}/\bar{Z}_{\gamma''}) \right. \\ &\left. + K_0(2\pi Rn|Z_{\gamma''}|) \left(\frac{1}{\zeta} dZ_{\gamma''} - \zeta d\bar{Z}_{\gamma''} \right) \right) \times \\ &\sum_{m|n} m^2 \sum_{\tilde{\gamma}_f} \Omega(m\gamma_g + \gamma_f) e^{in\theta_{\tilde{\gamma}_f}/m} \end{split}$$

Harvard

M. Zimet

Introduction	Little string theory and K3 ○○○○ ○○○○○○○○○○●	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
BPS states and the metric					

CFT BPS spectra encoded in K3 metrics, continued

 So, CFT BPS spectra are encoded in K3 metrics in the form of functions

$$egin{aligned} \mathcal{F}_{n,p,q}(heta) &= \sum_{m\mid n} m^2 \sum_{ ilde{\gamma}_f} \Omega(\gamma) oldsymbol{e}^{in heta_{ ilde{\gamma}_f/m}} \ &= \sum_{m\mid n} m^2 \sum_{\mathcal{R}} \Omega(m,p,q,\mathcal{R}) \phi_{\mathcal{R}}(n heta/m) \end{aligned}$$

- (Dropped dependence on γ_w, since BPS spectrum only depends on which singular fiber strings are ending on, not number of times they wound around before terminating.)
- In contrast with LST spectrum, these CFT spectra don't wall cross, thanks to scale invariance plus R-symmetry

< 🗇 🕨

Introduction	Little string theory and K3 ০০০০ ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Hyper-Kähler quotient ●oooooooooooooooooooooooooooooooooooo	BPS spectra	Another LST	Conclusion
Gauge theory					

K3 as a Higgs branch

- ► D2-brane probing T^4/Z_q orbifold: K3 is *Higgs branch*. No quantum corrections!
- Perturbative type IIA string vacuum: no non-Abelian gauge symmetry. So, not just S¹-reduction of earlier M-theory frame on K3. B-field [Aspinwall '95]. From D2-brane point of view, this B-field breaks global symmetries.
- ▶ Non-renormalization theorem: g_s is in background vector multiplet, B-field dilutes away in $g_s \rightarrow \infty$ limit. So, moduli space is same as that of the M2-brane.
- Reminiscent of 3d mirror symmetry; not an accident! As discussed in [Porrati-Zaffaroni '96], this picture yields the simplest mirror pairs studied in [Intriligator-Seiberg '96]

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient o●oooooooo oooooooooo	BPS spectra	Another LST	Conclusion
Gauge theory					

Hyper-Kähler quotient

- Superpotential takes form Tr Φμ₊, where Φ is chiral multiplet in N = 4 vector multiplet whose vev vanishes on Higgs branch and μ₊ is function of hypermultiplet fields.
 F-term equation is then μ₊ = 0.
- ► D-terms analogously take form µ_ℝ = 0, where µ_ℝ is a Hermitian function of the hypermultiplet fields.
- ► Higgs branch is the quotient of the space µ_ℝ = µ₊ = 0 by the gauge group.

M. Zimet		Harvard
K3 Metrics		

Introduction	Little string theory and K3 ০০০০ ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Hyper-Kähler quotient oo●oooooo ooooooooo	BPS spectra	Another LST	Conclusion
Gauge theory					
Svm ^N ℂ ²					

► Higgs branch of N parallel D2-branes. 3d N = 8 U(N) gauge theory; from N = 4 point of view, adjoint hyper consisting of chiral multiplets U, V.

▶
$$\mu_+ = -2[U, V], \, \mu_\mathbb{R} = [U, U^\dagger] + [V, V^\dagger]$$

μ₊ = 0 implies U and V can be simultaneously unitarily upper triangulized, μ_R = 0 implies that these upper triangular matrices are actually diagonal. Can then fix most of gauge group by demanding U and V be diagonal. Remaining gauge symmetry is S_N Weyl group.

M. Zimet	Harvard
K3 Metrics	

<ロ> <同> <同> < 回> < 回> < 回> = 三

Introduction 000000	Little string theory and K3 ০০০০ ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Hyper-Kähler quotient ooo●ooooo ooooooooo	BPS spectra	Another LST	Conclusion
Gauge theory					

- ► D2-brane probing C²/Z₂. Worldvolume is obtained by starting on C² covering space with D2-brane and its image and the imposing orbifold projections. [Douglas-Moore '96]
- So, starting point is the N = 2 theory from last slide. We then require

$$U = -\sigma_z U \sigma_z , \quad V = -\sigma_z U \sigma_z , \quad g = \sigma_z g \sigma_z$$
$$U = \begin{pmatrix} u_+ \\ u_- \end{pmatrix} , \quad V = \begin{pmatrix} v_+ \\ v_- \end{pmatrix} , \quad g = e^{i\theta} \begin{pmatrix} e^{i\alpha/2} \\ e^{-i\alpha/2} \end{pmatrix}$$
$$+ \mu_+ = 0 \Rightarrow \begin{pmatrix} u_+ \\ v_+ \end{pmatrix} = \lambda \begin{pmatrix} u_- \\ v_- \end{pmatrix} , \quad \mu_{\mathbb{R}} = 0 \Rightarrow |\lambda| = 1.$$
$$+ U(1): \lambda = 1; \alpha = \pi: (u, v) \sim (-u, -v)$$

M. Zimet

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient oooo●oooo oooooooooo	BPS spectra	Another LST	Conclusion
Gauge theory					

 $T^4 = \mathbb{C}^2 / \mathbb{Z}^4$

- Same idea, but now we have an infinite-dimensional gauge group. [Taylor '96]
- ► Start with $U(\infty^4)$ and impose \mathbb{Z}^4 orbifold projection: $(u, v) \mapsto (u, v) + (n^u, n^v), n \in \Lambda$
- ► Result is $\widehat{U(1)} = \text{Maps}(\widehat{T}^4 \to U(1)), \ \widehat{T}^4 = \mathbb{C}^2/\widehat{\Lambda}, \ \widehat{\Lambda} = \text{Hom}(\Lambda, 2\pi\mathbb{Z}).$
- T-duality: D2 probing T^4 becomes D6 wrapping \hat{T}^4
- *U* and *V* now define a U(1) connection on \hat{T}^4 :

$$B = \sum_{n} (U_n d\psi_1 + V_n d\psi_2) e(n) + \text{h.c.}$$

$$e(n) = e^{i(n^{u}\psi_{1}+n^{v}\psi_{2}+c.c.)} = e^{in\cdot y}, \psi_{1} = \frac{y_{1}-iy_{2}}{2}, \psi_{2} = \frac{y_{3}-iy_{4}}{2}$$

Harvard

M. Zimet

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
Gauge theory					

T⁴ continued

M. Zimet

K3 Metrics

The moment map equations, taken together, are equivalent to

$$F = - * F$$
.

So, just looking at moduli space of ASD connections, mod gauge equivalence.

$$\|F\|^2 \equiv \int F \wedge *F = -\int F \wedge F = -\int dCS_3 = 0$$

So, moduli space of flat U(1) connections / Wilson lines on \hat{T}^4 , which is indeed T^4 .

Physically sensible that we reduce to constant gauge fields: Kaluza-Klein masses. Moduli space is compact because of large gauge transformations.

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ooooooooo ooooooooo	BPS spectra	Another LST	Conclusion
Gauga theory					

$$K3 = T^4/Z_q = \mathbb{C}^2/\mathbb{Z}^4 \rtimes Z_q$$

- Now, realize K3 as resolution of T⁴/Z_q; i.e., orbifold C² by Λ, and then by Z_q, or equivalently by Z⁴ ⋊ Z_q. [q = 2 case studied in Ramgoolam-Waldram '98, Greene-Lazaroiu-Yi '98. Similar constructions exist for all torus orbifold limits of K3]
- Start with U(q) gauge theory on T⁴ and then impose Z_q projections:

$$u^*B = \sigma_q B \sigma_q^{\dagger}, \quad g \circ \iota = \sigma_q g \sigma_q^{\dagger} \\
 \sigma_q = \begin{pmatrix} 1 & & \\ & \kappa_q & \\ & & \ddots & \\ & & & \kappa_q^{q-1} \end{pmatrix} \\
 \varepsilon = \kappa \cdot \varepsilon = \kappa \cdot$$

Harvard

M. Zimet

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ooooooooo ooooooooo	BPS spectra	Another LST	Conclusion
Gauge theory					

K3: blow-up parameters

$$F = -*F + \sum_{\mathbf{y}'} \sum_{i=1}^{q-1} \eta_{\mathbf{y}',i} \sigma_q^i \delta^4(\mathbf{y} - \mathbf{y}')$$

- ► So, K3 is hyper-Kähler quotient of infinite-dimensional flat space of Z_q-equivariant SU(q) connections on T⁴ with prescribed (singular, for generic FI parameters) boundary conditions by group of equivariant SU(q) gauge transformations (that preserve the boundary conditions).
- ► q = 2: 16 triples of FI parameters plus 10 T⁴ moduli = 58 moduli
- ► q ≠ 2: 18 triples of FI parameters plus 4 T⁴ moduli = 58 moduli

Introduction	Little string theory and K3	Hyper-Kähler quotient oooooooo oooooooo	BPS spectra	Another LST	Conclusion
Gauge theory					

K3: moduli space with vanishing FI parameters

- Can restrict to zero-modes, thanks to Kaluza-Klein masses and gauge transformations.
- ► Zero-mode moment maps and gauge transformations allow us to set $U_0 = us_q$, $V_0 = vs_q^{\dagger}$, where

$${m s}_q = egin{pmatrix} 1 & & & \ & 1 & & \ & & \ddots & \ & & & \ddots & \ 1 & & & & 1 \end{pmatrix} \;,$$

and $(u, v) \sim (\kappa_q u, \kappa_q^* v)$.

You 'Quasi-large' gauge transformations preserve this gauge and implement (u, v) ∼ (u + n^u, v + n^v).

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ○○○○○○○○ ●○○○○○○○○	BPS spectra	Another LST	Conclusion
Metric					

Perturbation theory

• Parametrize general zero modes as $U_0 = U_0^{\text{orb}} + \Delta U_0$, $V_0 = V_0^{\text{orb}} + \Delta V_0$, where

$$\operatorname{Tr}(U_0^{\operatorname{orb}})^{\dagger}\Delta U_0 = \operatorname{Tr}(V_0^{\operatorname{orb}})^{\dagger}\Delta V_0 = 0$$
 .

イロン イヨン イヨン イヨン

Harvard

► Goal: solve for U_n(u, v), V_n(u, v) (in a particular gauge) – carve K3 out of infinite-dimensional flat space

M. Zimet			
K3 Metrics			

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ○○○○○○○○ ○●○○○○○○○	BPS spectra	Another LST	Conclusion
Metric					

Perturbation theory, continued

- Suppose, inductively, that one knows (ν − 1)-th order approximations U^(ν−1)_n(u, ν), V^(ν−1)_n(u, ν). Then, write U^(ν)_n = U^(ν−1)_n + δU^(ν)_n, and similarly for V.
- Writing the moment map equations and keeping only order ν terms, we find that they are linear in δU_n^(ν) and δV_n^(ν) and decouple into infinitely many equations, each involving only finitely many variables.
- Furthermore, there is a natural gauge choice,

$$d_{B^{\rm orb}}*B=0,$$

which shares these features.

M. Zimet	Harvard
K3 Metrics	

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ○○○○○○○○ ○○●○○○○○○○	BPS spectra	Another LST	Conclusion
Metric					

Perturbation theory, continued

Explicitly, for each n we solve the linear equations

$$\begin{split} \xi_{n,+}^{(\nu)} &= \delta U_n^{(\nu)} n^{\nu} - \delta V_n^{(\nu)} n^{\mu} + [U_0^{\text{orb}}, \delta V_n^{(\nu)}] + [\delta U_n^{(\nu)}, V_0^{\text{orb}}] \\ \xi_{n,\mathbb{R}}^{(\nu)} &= -n^{\mu} (\delta U_{-n}^{(\nu)})^{\dagger} + n^{\bar{\mu}} \delta U_n^{(\nu)} + [U_0^{\text{orb}}, (\delta U_{-n}^{(\nu)})^{\dagger}] + [\delta U_n^{(\nu)}, (U_0^{\text{orb}})^{\dagger}] \\ &+ (U \mapsto V) \\ \mathbf{0} &= -n^{\mu} (\delta U_{-n}^{(\nu)})^{\dagger} - n^{\bar{\mu}} \delta U_n^{(\nu)} + [U_0^{\text{orb}}, (\delta U_{-n}^{(\nu)})^{\dagger}] + [(U_0^{\text{orb}})^{\dagger}, \delta U_n^{(\nu)}] \\ &+ (U \mapsto V) , \end{split}$$

where $\xi_{n,+/\mathbb{R}}^{(\nu)}$ are constructed out of $\delta U_n^{(\nu')}$, $\delta V_n^{(\nu')}$ with $\nu' < \nu$ and $\xi_{n,+/\mathbb{R}}^{(1)}$ are the FI parameters. Note: coefficients on right side of equation are identical for all ν !

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Harvard

M. Zimet

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ○○○○○○○○ ○○○●○○○○○○	BPS spectra	Another LST	Conclusion
Metric					

Perturbation theory, continued

For $\nu \geq 2$,

æ

Harvard

M. Zimet

Introduction 000000	Little string theory and K3 ০০০০ ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
Metric					

Solution

$$\begin{split} \mathcal{N}_{i,j}^{u} &= n^{u} + (1 - \kappa_{q}^{i})\kappa_{q}^{j}u , \ \mathcal{N}_{i,j}^{v} = n^{v} + (1 - \kappa_{q}^{-i})\kappa_{q}^{-j}v , \ D_{i,j} = |\mathcal{N}_{i,j}^{u}|^{2} + |\mathcal{N}_{i,j}^{v}|^{2} \\ \tilde{\xi}_{n,i,j,+}^{(\nu)} &= \frac{1}{q} \operatorname{Tr} S_{j} S_{i+j}^{\dagger} \xi_{n,+}^{(\nu)} , \ \tilde{\xi}_{n,i,j,\mathbb{R}}^{(\nu)} &= \frac{1}{q} \operatorname{Tr} S_{j} S_{i+j}^{\dagger} \xi_{n,\mathbb{R}}^{(\nu)} , \ S_{j} = \begin{pmatrix} 1 \\ \kappa_{q}^{j} \\ \vdots \\ \kappa_{q}^{(q-1)j} \end{pmatrix} \\ \delta U_{n}^{(\nu)} &= \frac{1}{2q} \sum_{j=0}^{q-1} \sum_{i=\delta_{n,0}}^{q-1} \frac{2 \tilde{\xi}_{n,i,j,+}^{(\nu)} \bar{\mathcal{N}}_{i,j}^{v} + \tilde{\xi}_{n,i,j,\mathbb{R}}^{(\nu)} \mathcal{N}_{i,j}^{u}}{D_{i,j}} S_{i+j} S_{j}^{\dagger} \\ \delta V_{n}^{(\nu)} &= \frac{1}{2q} \sum_{j=0}^{q-1} \sum_{i=\delta_{n,0}}^{q-1} \frac{-2 \tilde{\xi}_{n,i,j,+}^{(\nu)} \bar{\mathcal{N}}_{i,j}^{u} + \tilde{\xi}_{n,i,j,\mathbb{R}}^{(\nu)} \mathcal{N}_{i,j}^{v}}{D_{i,j}} S_{i+j} S_{j}^{\dagger} \end{split}$$

≡ •∕ ९.० Harvard

ヘロト 人間 とくほとくほど

M. Zimet

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ○○○○○○○○ ○○○○○●○○○○	BPS spectra	Another LST	Conclusion
Motrio					

Integral equation

Summing up the contribution from each ν and writing $e(n) = e^{in \cdot y}$, $U = U^{\text{orb}} + \Delta U$, and $V = V^{\text{orb}} + \Delta V$, we find

$$\begin{split} \Delta U &= \frac{1}{2q} \sum_{n} \sum_{j=0}^{q-1} \sum_{i=\delta_{n,0}}^{q-1} \frac{S_{i+j} S_j^{\dagger}}{D_{i,j}} \left[\left(2\xi_{n,i,+} e(n) \bar{N}_{i,j}^{\mathsf{v}} + \xi_{n,i,\mathbb{R}} e(n) N_{i,j}^{\mathsf{u}} \right) \\ &- \frac{1}{q} \sum_{m} \operatorname{Tr} \left[S_j S_{i+j}^{\dagger} \left(2[\Delta U_{n-m} e(n-m), \Delta V_m e(m)] \bar{N}_{i,j}^{\mathsf{v}} \right. \\ &+ \left([\Delta U_{n+m} e(n+m), \Delta U_m^{\dagger} e(-m)] \right. \\ &+ \left[\Delta V_{n+m} e(n+m), \Delta V_m^{\dagger} e(-m) \right] \right] N_{i,j}^{\mathsf{u}} \right] \right] . \end{split}$$

Harvard

Similarly for ΔV . Coupled integral equations on \hat{T}^4 !

M. Zimet

Introduction	Little string theory and K3	Hyper-Kähler quotient ○○○○○○○ ○○○○○●○○○	BPS spectra	Another LST	Conclusion
Metric					

Kähler forms

$$\omega_{I} = \frac{i}{2q} \sum_{n} \operatorname{Tr} \left(-dU_{n} \wedge dV_{-n} + dU_{n}^{\dagger} \wedge dV_{-n}^{\dagger} \right)$$
$$\omega_{J} = -\frac{1}{2q} \sum_{n} \operatorname{Tr} \left(dU_{n} \wedge dV_{-n} + dU_{n}^{\dagger} \wedge dV_{-n}^{\dagger} \right)$$
$$\omega_{K} = \frac{i}{2q} \sum_{n} \operatorname{Tr} \left(dU_{n} \wedge dU_{n}^{\dagger} + dV_{n} \wedge dV_{n}^{\dagger} \right)$$
$$dU_{n} = \frac{\partial U_{n}}{\partial u} du + \frac{\partial U_{n}}{\partial u^{*}} du^{*} + \frac{\partial U_{n}}{\partial v} dv + \frac{\partial U_{n}}{\partial v^{*}} dv^{*}$$

≣। ► ≣ •⁄ ९.० Harvard

(日)

M. Zimet

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion
	00000000000	0000000000			

Kähler forms – first order corrections

$$\omega^{\mathrm{orb}}_{+} = -i\, du \wedge dv \;, \quad \omega^{\mathrm{orb}}_{K} = rac{i}{2}(du \wedge du^{*} + dv \wedge dv^{*})$$

$$\begin{split} \varpi(\zeta) &= \varpi^{\text{orb}}(\zeta) + \varpi^{\text{pert}}(\zeta) \\ \varpi^{\text{pert}}(\zeta) &= -\frac{i}{2\zeta} \omega_{+}^{\text{pert}} + \omega_{K}^{\text{pert}} - \frac{i\zeta}{2} \omega_{-}^{\text{pert}} \\ &= \sum_{n} \sum_{i=1}^{\lfloor q/2 \rfloor} f_{i} \sum_{t=\pm 1} \left(-\frac{i}{2\zeta} \omega_{nti+} + \omega_{ntiK} - \frac{i\zeta}{2} \omega_{nti-} \right) \\ f_{i} &= \begin{cases} \frac{1}{2} &: i = q/2 \\ 1 &: \text{else} \end{cases} \end{split}$$

Harvard

2

(日)

M. Zimet

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ○○○○○○○○ ○○○○○○○○○	BPS spectra	Another LST	Conclusion
Metric					
N _i ^u =	$= N_{i,0}^{u}$, etc.				
$\omega_{\it nti+}$	$L_{u\bar{u}} = rac{i 1-\kappa_q^i ^2}{4} rac{(2)}{4}$	$2\xi_{nti+}\bar{N}_i^{v}+\xi_{nti\mathbb{R}}N_{i}^{v}$	$\frac{D_i^u}{D_i^3}$	$\bar{N}_i^u - \xi_{nti\mathbb{R}}^*$	N_i^{ν})
$\omega_{\it nti+}$	uv = 0	- -		=	

$$\begin{split} \omega_{nti+\,u\bar{v}} &= -\frac{i(1-\kappa_q^i)^2}{4} \frac{(2\xi_{nti+}\bar{N}_i^u - \xi_{nti\mathbb{R}}N_i^v)(2\xi_{n(-t)i+}\bar{N}_i^u - \xi_{nti\mathbb{R}}^*N_i^v)}{D_i^3}\\ \omega_{nti+\,\bar{u}v} &= -\frac{i(1-\kappa_q^{-i})^2}{4} \frac{(2\xi_{nti+}\bar{N}_i^v + \xi_{nti\mathbb{R}}N_i^u)(2\xi_{n(-t)i+}\bar{N}_i^v + \xi_{nti\mathbb{R}}^*N_i^u)}{D_i^3}\\ \omega_{nti+\,\bar{u}\bar{v}} &= 0\\ \omega_{nti+\,v\bar{v}} &= -\omega_{nti+\,u\bar{u}} \end{split}$$

Harvard

Similar expressions for ω_K

M. Zimet K3 Metrics

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient ○○○○○○○○ ○○○○○○○●	BPS spectra	Another LST	Conclusion
Metric					

$$g = -\omega_I \omega_J^{-1} \omega_K = g^{\text{orb}} + \sum_n g_n$$

$$J_I = -\omega_J^{-1} \omega_K = J_I^{\text{orb}} + \sum_n J_{nI}, \quad \dots$$

$$R_{km} = R^{\ell}_{k\ell m} \approx (g^{\text{orb}})^{\ell i} R_{ik\ell m}$$

$$\approx \frac{1}{2} \sum_n (g^{\text{orb}})^{\ell i} (g_{n\,im,k\ell} + g_{n\,k\ell,im} - g_{n\,i\ell,km} - g_{n\,km,i\ell}) = 0$$

$$J_{\sigma}^2 \approx (J_{\sigma}^{\text{orb}})^2 + \sum_n \{J_{\sigma}^{\text{orb}}, J_{n\sigma}\} = -1$$

Harvard

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

M. Zimet

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra ●○○○○○○○○	Another LST	Conclusion

$$\sum_{n} \delta(x - n) = \sum_{k} e^{2\pi i k x}$$
$$\sum_{n} \lim_{x \to n} f(x) = \sum_{k} \mathcal{F}[f](k)$$

- We now perform a 2-dimensional Poisson resummation over lattice parametrized by n^v. Motivated by geometric picture we're trying to make contact with – corrections to semi-flat geometry.
- Set ξ₊ = 0 for simplicity − focus on BPS spectrum of 4d theory at orbifold point

M. Zimet	Harvard
K3 Metrics	

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra o●ooooooo	Another LST	Conclusion

$$\begin{split} \varpi^{\text{inst}}(\zeta) &= \sum_{\gamma g} \varpi_{\gamma g}^{\text{eff}} \\ \varpi_{\gamma g}^{\text{eff}} &= -\frac{i}{8\pi^2} d\mathcal{Y}_{\gamma g}^{\text{sf}}(\zeta) \wedge \sum_{n>0} e^{in\theta_{\gamma g}} \times \\ &\sum_{\gamma_w} e^{in\theta_{\gamma_w}} \left(-|Z_{\gamma''}| K_1(2\pi Rn|Z_{\gamma''}|) d\log(Z_{\gamma''}/\bar{Z}_{\gamma''}) \right. \\ &+ K_0(2\pi Rn|Z_{\gamma''}|) \left(\frac{1}{\zeta} dZ_{\gamma''} - \zeta d\bar{Z}_{\gamma''} \right) \right) \times \\ &F_{n,p,q,\gamma_w} \end{split}$$

Geometry of string webs is encoded in lattice of winding charges and the flavor central charges Z_{γ_w} : $Z_{\gamma''} = (p\tau_F + q)(a - a_0)$

イロト イヨト イヨト イヨト

Harvard

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient 000000000 000000000	BPS spectra oo●oooooo	Another LST	Conclusion

 F_{n,p,q,γ_w} depends very weakly on γ_w : only depends on subgroup of Z_q that stabilizes fixed point a_0 – i.e., type of singular fiber

$$\begin{split} F_{n,p,q,Z_2} &= n^2 (-1)^n \sum_{\lambda \in Z_2^2} \left(-\frac{1}{2} \pi^4 R^2 \xi_{\lambda 1 \mathbb{R}}^2 \right) (-1)^{n(\lambda^3 p + \lambda^4 q)} \\ F_{n,p,q,Z_3} &= n^2 (-1)^n \sum_{\lambda \in Z_3} \left(-\frac{4}{3} \pi^4 R^2 |\xi_{\lambda 2 \mathbb{R}}|^2 \right) \kappa_3^{n\lambda(p+q)} \end{split}$$

Harvard

→ E → < E →</p>

M. Zimet

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient 000000000 000000000	BPS spectra ooo●ooooo	Another LST	Conclusion

$$\begin{split} F_{n,p,q,Z_4} &= n^2 (-1)^n \sum_{\lambda \in Z_2} \left(-2\pi^4 R^2 |\xi_{\lambda 3\mathbb{R}}|^2 \right) (-1)^{n\lambda(p+q)} \\ &+ F_{n,p,q,Z_2} (\xi_{(1,0)1\mathbb{R}} = \xi_{(0,1)1\mathbb{R}}) \\ F_{n,p,q,Z_6} &= n^2 (-1)^n \left(-4\pi^4 R^2 |\xi_{4\mathbb{R}}|^2 \right) \\ &+ F_{n,p,q,Z_2} (\xi_{(1,0)1\mathbb{R}} = \xi_{(0,1)1\mathbb{R}} = \xi_{(1,1)1\mathbb{R}}) \\ &+ F_{n,p,q,Z_3} (\xi_{12\mathbb{R}} = \xi_{22\mathbb{R}}) \end{split}$$

Harvard

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

M. Zimet

Introduction	Little string theory and K3	Hyper-Kähler quotient	BPS spectra oooo●oooo	Another LST	Conclusion

Conjectural exact relationships

$$\begin{split} F_{n,p,q,Z_4}(\xi_{\lambda \Im \mathbb{R}} = 0) &= F_{n,p,q,Z_2}(\xi_{(1,0)1\mathbb{R}} = \xi_{(0,1)1\mathbb{R}}) \\ F_{n,p,q,Z_6}(\xi_{4\mathbb{R}} = 0) &= F_{n,p,q,Z_2}(\xi_{(1,0)1\mathbb{R}} = \xi_{(0,1)1\mathbb{R}} = \xi_{(1,1)1\mathbb{R}}) \\ &+ F_{n,p,q,Z_3}(\xi_{12\mathbb{R}} = \xi_{22\mathbb{R}}) \end{split}$$

Harvard

M. Zimet

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra ooooo●ooo	Another LST	Conclusion

$$Z_2$$
: $SU(2) N_f = 4$

$$F_{n,p,q}(\theta) = \begin{cases} \phi_{\mathcal{R}_{p,q}}(n\theta) - 8 & : 2|n \\ \phi_{\mathcal{R}_{p,q}}(n\theta) & : 2 \nmid n \end{cases}, \quad \mathcal{R}_{p,q} = \begin{cases} \mathbf{8_v} & : 2|p \land 2 \nmid q \\ \mathbf{8_s} & : 2 \nmid p \land 2 \nmid q \\ \mathbf{8_c} & : 2 \nmid p \land 2 \mid q \end{cases}$$

- Half-hyper (Ω = 1) with gauge charge (p, q) in one of the 3 8-dimensional reps of Spin(8), depending on whether p, q, or both are odd.
- Vector (Ω = −2) with gauge charge (2p, 2q) in singlet of Spin(8)

Agrees with result from hyper-Kähler quotient after a simple linear change of variables from θ to ξ

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra oooooooooo	Another LST	Conclusion

n	$\mathbf{\Omega}_{\mathrm{red}}(n\gamma_1)$
1	27
2	27
3	78 + 2 imes 1
4	$\overline{351} + 2 imes \overline{27}$
5	$1728 + 2 \times 351 + 6 \times 27$
6	${\bf 5824} + {\bf 2430} + 2 \times {\bf 2925} + 6 \times {\bf 650} + {\bf 13} \times {\bf 78} + {\bf 16} \times {\bf 1}$
7	$\overline{\textbf{19305}} + 3 \times \overline{\textbf{17550}} + 6 \times \overline{\textbf{7371}} + 13 \times \overline{\textbf{1728}} + 12 \times \overline{\textbf{351'}} + 29 \times \overline{\textbf{351}} + 44 \times \overline{\textbf{27}}$

[Hollands-Neitzke '16]. We also compared with data on E_6 and E_7 theories from [Hao-Hollands-Neitzke '19]

M. Zimet	Harvard
K3 Metrics	

・ロト・日本・日本・日本・日本・日本・日本

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra ooooooo●o	Another LST	Conclusion

- We have derived constraints on the spectra of these field theories for arbitrarily large imprimitivity!
- At leading order in the FI parameters, they are fairly weak, but we have obtained some new BPS state counts.
- Proceeding to higher orders will yield the entire spectra.
- Motivated by the leading order expressions produced by the hyper-Kähler quotient, we have conjectured strong all-orders relationships between the BPS spectra of the various field theories that coexist within the same F-theory compactifications (which are satisfied by all existing data)

.

Harvard

M. Zimet		
K3 Metrics		

Introduction 000000	Little string theory and K3	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion

Missing BPS states of LSTs

M. Zimet	Harvard
K3 Metrics	

くして (四)・(日)・(日)・(日)

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST ●○	Conclusion

$\textit{A}_1 \; \mathcal{N} = (1,1) \; \text{LST}$

- Considerations from before show that moduli space of LST on T³ is Sym²(T⁴)
- However, can turn on holonomy of background R-symmetry gauge field which preserves 3d N = 4, and resulting moduli space is essentially T⁴ × K3 [Cheung-Ganor-Krogh '98]
- Mathematically, this is related to construction of K3 as a generalized Kummer variety
- So, can read off K3 metric from metric on this moduli space
- Only get special K3 surfaces from this construction: always have Z₂⁴ symmetries.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST ○●	Conclusion

BPS state counting

- One 1-real-dimensional family is particularly nice: if holonomy is only on the third circle, then the BPS state counting problem is simply that of the (1, 1) (or (2, 0)) LST on T², with no R-symmetry holonomies
- String web formulation: type IIB on T² with two transverse D3-branes

Geometric engineering: type IIA on affine A₁ singularity,
 i.e. total space of I₂ singular fiber, times T²

Harvard

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion ●○○

Conclusion

- A hyper-Kähler quotient yields computationally useful, explicit, analytic expressions for K3 metrics.
- They secretly encode the solution to a little string theory BPS state counting problem. In particular, there are piecewise constant lists of integers hiding inside of K3 metrics! Similarly, we find characters of Spin(8) and E_n representations. We also find an interesting dependence on the geometry of string webs.
- Via string dualities, we can recast this BPS state counting problem in terms of open string reduced Gromov-Witten theory of K3. Aligns with the Strominger-Yau-Zaslow construction of mirror manifolds.

イロト イヨト イヨト イヨト

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion ○●○

Coulomb branch construction

- By finding the full BPS spectrum of the little string theory, we will complete the specification of a second, equivalent construction of K3 metrics. We intend to do so by Poisson resumming the Higgs branch result at all orders.
- Other approaches: geometric engineering, holography, DLCQ, deconstruction. Neat connections with $\mathcal{N} = (1, 1)$ A_1 little string theory and open topological string theory.
- Even without most counts, Coulomb branch construction gives some very accurate approximations, similar to (and generalizing) [Gross-Wilson '00]

M. Zimet	Harvard
K3 Metrics	

Introduction	Little string theory and K3 0000 0000000000	Hyper-Kähler quotient	BPS spectra	Another LST	Conclusion ○○●

Generalizations

- Adding D6-branes wrapping T⁴ or an orbifold thereof to the hyper-Kähler quotient construction will allow us to obtain nearly all (hopefully all) known compact hyper-Kähler manifolds. 3d mirror symmetry again relates these configurations to little string theories
- Poisson resumming 1, 3, or 4 times is also possible. Do these yield other interesting expansions with corresponding counting problems?
- Although we've focused in this talk on K3 and little string theories, analogous stories hold for moduli spaces of various field theories whose Coulomb branches are non-compact 4-dimensional hyper-Kähler manifolds.

< ロ > < 同 > < 回 > < 回 >