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Introduction
I Calabi-Yau (CY) compactification has played a central role

in string theory. Reduced holonomy⇒ low-energy SUSY
I Type II compactifications preserve 4d N = 2 and are the

setting of mirror symmetry
I Heterotic and orientifold compactifications preserve 4d
N = 1 and provide semi-realistic starting points for string
phenomenology

I Setting in which much of our non-perturbative
understanding of string theory has been developed
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K3

I K3 has played a particularly important role
I SU(2) = Sp(1), so in 4d Calabi-Yau = hyper-Kähler. Only

compact examples are K3 and T 4

I A concrete way to think about K3 is as T 4/Z2 orbifold.
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Introduction (continued...)

I Since K3 is hyper-Kähler, preserves even more SUSY (e.g.
K3×T 2 has 4d N = 4)

I Heterotic (on T 4) - type IIA (on K3) duality plays an
essential role in our understanding of how the various
perturbative superstring theories are related. Can fiber this
duality over a P1 base to find dual 4d N = 2 theories

I Earliest example of black hole microstate counting in string
theory
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Introduction (continued...)

I Remarkably, all of this was achieved without an explicit
form of the metric! Indeed, no smooth (compact,
non-toroidal) Ricci-flat Calabi-Yau metric is (was) known!

I Why might this matter to a string theorist? Supposedly,
(tree-level) string vacuum from CFT, such as non-linear
sigma model with action

i
8πα′

∫
(gij − Bij)∂x i ∂̄x j d2z − 2π

∫
ΦR(2) d2z + . . .

(where the . . . involve fermions). But, in reality since we
don’t have the metric, this formulation is rather useless.
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K3 Non-Linear Sigma Models

I This question is particularly well-motivated for K3 (as
opposed to other Calabi-Yaus) because the β function of
the non-linear sigma model is exactly 0 – not just to
leading order in α′

I As an example of our ignorance, even for K3 the
worldsheet partition function is not known at almost all
points in moduli space.
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Explicit K3 metrics
Based on recent work (1810.10540, 2006.02435, 2009.xxxx)
with

Shamit Kachru, Arnav Tripathy

Indeed, we have not one, but two constructions!
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Little string theory

I Heterotic small instanton 5-branes have a decoupling limit
I From supergravity perspective, this works because the

corresponding soliton is so singular. In particular, an
infinite throat with diverging gs develops.

I It is not a QFT – it has T-duality, for example, so there is no
unique stress-energy tensor.
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Geometrizing the moduli space, I: heterotic / F-theory
duality

I Strong-weak duality (for SO(32) heterotic theory, for
concreteness) takes us to D5-brane in type I. Now, to study
the moduli space of the theory on T 2, use T-duality twice to
replace D5 by D3.

I Heterotic (T 2)↔ type IIB orientifold on T 2/Z2 → F-theory
on K3
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Geometrizing the moduli space, II: heterotic / M-theory
duality

I Similarly, to study the theory on T 3, use T-duality three
times to replace D5 by D2. An extra dimension is provided
by the M-theory circle.

I Heterotic (T 3)↔ M-theory on K3
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Parameters of LST

I Moduli of the heterotic string theory become parameters of
the LST. Similarly, gauge symmetry in spacetime descends
to global symmetry of LST.
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BPS states and the metric

Compactification of the 4d theory
I Study little string theory on T 2, further compactified on S1

R
I R →∞ limit is large complex structure / semi-flat limit

studied by [Greene-Shapere-Vafa-Yau ’90] and familiar
from F-theory on K3
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BPS states and the metric

Finite R

I Corrections away from this limit are determined by
instantons in this theory.

I These instantons are obtained by taking the worldlines of
4d BPS particles and wrapping them around S1

R
I Exponentially small away from singular fibers: e−2πRM
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BPS states and the metric

Xγ(ζ) = X sf
γ (ζ) exp

− 1
4πi

∑
γ′∈Γ̂′

a

Ω(γ′; a)
〈
γ, γ′

〉
×
∫
`γ′ (a)

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1−Xγ′(ζ ′))

]

Yγ(ζ) = logXγ(ζ) , Ysf
γ (ζ) =

πR
ζ

Zγ + iθγ + πRζZγ

$(ζ) =
1

4π2R
dYm(ζ) ∧ dYe(ζ) = − i

2ζ
ω+ + ωK −

iζ
2
ω−

ω± = ωI ± iωJ

g = −ωIω
−1
J ωK

[Gaiotto-Moore-Neitzke ’08]
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BPS states and the metric

Instanton corrections

I At large R, these Xγ take a universal form, up to
exponentially-suppressed corrections that result from 4d
BPS states running around this circle.

I We have thus reduced the determination of a K3 metric to
the simpler problem of counting BPS states in a little string
theory on T 2. Specifically, need the BPS index (second
helicity supertrace) Ω(γ; a) that counts 4d BPS states at a
point in (4d) moduli space a.

I Thanks to wall crossing formula, in principle only need to
determine BPS state counts at one point in parameter and
moduli space
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BPS states and the metric

Approximation

Iterate integral equation once: $inst(ζ) =
∑

γ Ω(γ)$inst
γ

$inst
γ (ζ) = − i

8π2 dYsf
γ (ζ)∧

[
−Ainstd log

(
Zγ/Zγ

)
+ V inst

(
1
ζ

dZγ − ζdZγ

)]
Ainst =

∑
n>0

einθγ |Zγ |K1(2πRn|Zγ |)

V inst =
∑
n>0

einθγK0(2πRn|Zγ |)

[Ooguri-Vafa ’96, Seiberg-Shenker ’96, GMN ’08]
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BPS states and the metric

String webs

I Particularly nice at points in moduli space with constant τ –
flat base, so combinatorial flat surface problem.

M. Zimet Harvard

K3 Metrics



Introduction Little string theory and K3 Hyper-Kähler quotient BPS spectra Another LST Conclusion

BPS states and the metric

T 4/Zq orbifold limits
I T 4/Zq = (T 2

F × T 2
B)/Zq, T 2

F fibration over T 2
B/Zq [Sen ’96,

Dasgupta-Mukhi ’96].
I Non-abelian global symmetry from coincident 7-branes.

Moving D3-brane probe near one of these 7-brane stacks
and taking low energy limit yields either SU(2) Nf = 4
SCFT or E6, E7, or E8 Minahan-Nemeschansky (MN)
SCFT

q 4d global symmetry τF τB
2 Spin(8)4 × U(1)4

3 E3
6 × U(1)2 κ3 κ3

4 E2
7 × Spin(8)× U(1)2 i i

6 E6 × E8 × Spin(8)× U(1)2 κ3 κ3

κq = e2πi/q
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BPS states and the metric

LST vs SCFTs

N = 2 SUSY: M = |Zγ |. So, abelian global symmetries must be
associated to F1 and D1 winding about the two 1-cycles of T 2

B .
For q 6= 2, only two linear combinations of these four charges
are conserved
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BPS states and the metric

LST BPS spectra encoded in K3 metrics
I Turn on arbitrary Wilson lines for the 4d global symmetry

as we reduce on S1
R in order to smooth out the orbifold.

(Correspond to extra moduli for heterotic on T 3 vs. T 2, in
addition to MsR.)

I Contributions to $inst(ζ) from the BPS states of the LST
with gauge and global charges of the form γ = mγg + γf :

$eff
γg = − i

8π2 dYsf
γg (ζ) ∧

∑
n>0

einθγg
∑
m|n

m2
∑
γf

Ω(mγg + γf )einθγf /m×

(
−|Zγ/m|K1(2πRn|Zγ/m|)d log(Zγ/Z̄γ)

+K0(2πRn|Zγ/m|)
(

1
ζ

dZγg − ζdZ̄γg

))
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BPS states and the metric

CFT BPS spectra encoded in K3 metrics
I At orbifold point, all flavor contributions to central charge

are from winding, and for simplest string webs winding part
of γf is also divisible by m: γf = mγw + γ̃f . Letting
Zγ′′ = Zγg+γw = Zγ/m gives

$eff,CFT
γg = − i

8π2 dYsf
γg (ζ) ∧

∑
n>0

einθγg×∑
γw

einθγw
(
−|Zγ′′ |K1(2πRn|Zγ′′ |)d log(Zγ′′/Z̄γ′′)

+K0(2πRn|Zγ′′ |)
(

1
ζ

dZγ′′ − ζdZ̄γ′′
))
×∑

m|n

m2
∑
γ̃f

Ω(mγg + γf )einθγ̃f /m
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BPS states and the metric

CFT BPS spectra encoded in K3 metrics, continued
I So, CFT BPS spectra are encoded in K3 metrics in the

form of functions

Fn,p,q(θ) =
∑
m|n

m2
∑
γ̃f

Ω(γ)einθγ̃f /m

=
∑
m|n

m2
∑
R

Ω(m,p,q,R)φR(nθ/m)

I (Dropped dependence on γw , since BPS spectrum only
depends on which singular fiber strings are ending on, not
number of times they wound around before terminating.)

I In contrast with LST spectrum, these CFT spectra don’t
wall cross, thanks to scale invariance plus R-symmetry
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Gauge theory

K3 as a Higgs branch
I D2-brane probing T 4/Zq orbifold: K3 is Higgs branch. No

quantum corrections!
I Perturbative type IIA string vacuum: no non-Abelian gauge

symmetry. So, not just S1-reduction of earlier M-theory
frame on K3. B-field [Aspinwall ’95]. From D2-brane point
of view, this B-field breaks global symmetries.

I Non-renormalization theorem: gs is in background vector
multiplet, B-field dilutes away in gs →∞ limit. So, moduli
space is same as that of the M2-brane.

I Reminiscent of 3d mirror symmetry; not an accident! As
discussed in [Porrati-Zaffaroni ’96], this picture yields the
simplest mirror pairs studied in [Intriligator-Seiberg ’96]
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Gauge theory

Hyper-Kähler quotient

I Superpotential takes form Tr Φµ+, where Φ is chiral
multiplet in N = 4 vector multiplet whose vev vanishes on
Higgs branch and µ+ is function of hypermultiplet fields.
F-term equation is then µ+ = 0.

I D-terms analogously take form µR = 0, where µR is a
Hermitian function of the hypermultiplet fields.

I Higgs branch is the quotient of the space µR = µ+ = 0 by
the gauge group.
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Gauge theory

SymN C2

I Higgs branch of N parallel D2-branes. 3d N = 8 U(N)
gauge theory; from N = 4 point of view, adjoint hyper
consisting of chiral multiplets U,V .

I µ+ = −2[U,V ], µR = [U,U†] + [V ,V †]
I µ+ = 0 implies U and V can be simultaneously unitarily

upper triangulized, µR = 0 implies that these upper
triangular matrices are actually diagonal. Can then fix most
of gauge group by demanding U and V be diagonal.
Remaining gauge symmetry is SN Weyl group.
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Gauge theory

C2/Z2

I D2-brane probing C2/Z2. Worldvolume is obtained by
starting on C2 covering space with D2-brane and its image
and the imposing orbifold projections. [Douglas-Moore ’96]

I So, starting point is the N = 2 theory from last slide. We
then require

U = −σzUσz , V = −σzUσz , g = σzgσz

U =

(
u+

u−

)
, V =

(
v+

v−

)
, g = eiθ

(
eiα/2

e−iα/2

)
I µ+ = 0⇒

(
u+

v+

)
= λ

(
u−
v−

)
, µR = 0⇒ |λ| = 1.

I U(1): λ = 1; α = π: (u, v) ∼ (−u,−v)

M. Zimet Harvard

K3 Metrics



Introduction Little string theory and K3 Hyper-Kähler quotient BPS spectra Another LST Conclusion

Gauge theory

T 4 = C2/Z4

I Same idea, but now we have an infinite-dimensional gauge
group. [Taylor ’96]

I Start with U(∞4) and impose Z4 orbifold projection:
(u, v) 7→ (u, v) + (nu,nv ), n ∈ Λ

I Result is Û(1) = Maps(T̂ 4 → U(1)), T̂ 4 = C2/Λ̂,
Λ̂ = Hom(Λ,2πZ).

I T-duality: D2 probing T 4 becomes D6 wrapping T̂ 4

I U and V now define a U(1) connection on T̂ 4:

B =
∑

n

(Undψ1 + Vndψ2)e(n) + h.c.

e(n) = ei(nuψ1+nvψ2+c.c.) = ein·y , ψ1 = y1−iy2
2 , ψ2 = y3−iy4

2
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Gauge theory

T 4 continued
I The moment map equations, taken together, are equivalent

to
F = − ∗ F .

So, just looking at moduli space of ASD connections, mod
gauge equivalence.

‖F‖2 ≡
∫

F ∧ ∗F = −
∫

F ∧ F = −
∫

dCS3 = 0

So, moduli space of flat U(1) connections / Wilson lines on
T̂ 4, which is indeed T 4.

I Physically sensible that we reduce to constant gauge
fields: Kaluza-Klein masses. Moduli space is compact
because of large gauge transformations.
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Gauge theory

K 3 = T 4/Zq = C2/Z4 o Zq
I Now, realize K3 as resolution of T 4/Zq; i.e., orbifold C2 by

Λ, and then by Zq, or equivalently by Z4 o Zq. [q = 2 case
studied in Ramgoolam-Waldram ’98, Greene-Lazaroiu-Yi
’98. Similar constructions exist for all torus orbifold limits of
K3]

I Start with U(q) gauge theory on T̂ 4 and then impose Zq
projections:

ι∗B = σqBσ†q , g ◦ ι = σqgσ†q

σq =


1

κq
. . .

κq−1
q
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Gauge theory

K3: blow-up parameters

F = − ∗ F +
∑
y ′

q−1∑
i=1

ηy ′,iσ
i
qδ

4(y − y ′)

I So, K3 is hyper-Kähler quotient of infinite-dimensional flat
space of Zq-equivariant SU(q) connections on T̂ 4 with
prescribed (singular, for generic FI parameters) boundary
conditions by group of equivariant SU(q) gauge
transformations (that preserve the boundary conditions).

I q = 2: 16 triples of FI parameters plus 10 T 4 moduli = 58
moduli

I q 6= 2: 18 triples of FI parameters plus 4 T 4 moduli = 58
moduli
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Gauge theory

K3: moduli space with vanishing FI parameters
I Can restrict to zero-modes, thanks to Kaluza-Klein masses

and gauge transformations.
I Zero-mode moment maps and gauge transformations

allow us to set U0 = usq, V0 = vs†q, where

sq =


1

1
. . .

1
1

 ,

and (u, v) ∼ (κqu, κ∗qv).
I ‘Quasi-large’ gauge transformations preserve this gauge

and implement (u, v) ∼ (u + nu, v + nv ).
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Metric

Perturbation theory

I Parametrize general zero modes as U0 = Uorb
0 + ∆U0,

V0 = V orb
0 + ∆V0, where

Tr (Uorb
0 )†∆U0 = Tr (V orb

0 )†∆V0 = 0 .

I Goal: solve for Un(u, v),Vn(u, v) (in a particular gauge) –
carve K3 out of infinite-dimensional flat space

M. Zimet Harvard

K3 Metrics



Introduction Little string theory and K3 Hyper-Kähler quotient BPS spectra Another LST Conclusion

Metric

Perturbation theory, continued

I Suppose, inductively, that one knows (ν − 1)-th order
approximations U(ν−1)

n (u, v),V (ν−1)
n (u, v). Then, write

U(ν)
n = U(ν−1)

n + δU(ν)
n , and similarly for V .

I Writing the moment map equations and keeping only order
ν terms, we find that they are linear in δU(ν)

n and δV (ν)
n and

decouple into infinitely many equations, each involving only
finitely many variables.

I Furthermore, there is a natural gauge choice,

dBorb ∗ B = 0 ,

which shares these features.
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Metric

Perturbation theory, continued
Explicitly, for each n we solve the linear equations

ξ
(ν)
n,+ = δU(ν)

n nv − δV (ν)
n nu + [Uorb

0 , δV (ν)
n ] + [δU(ν)

n ,V orb
0 ]

ξ
(ν)
n,R = −nu(δU(ν)

−n )† + nūδU(ν)
n + [Uorb

0 , (δU(ν)
−n )†] + [δU(ν)

n , (Uorb
0 )†]

+ (U 7→ V )

0 = −nu(δU(ν)
−n )† − nūδU(ν)

n + [Uorb
0 , (δU(ν)

−n )†] + [(Uorb
0 )†, δU(ν)

n ]

+ (U 7→ V ) ,

where ξ(ν)
n,+/R are constructed out of δU(ν′)

n , δV (ν′)
n with ν ′ < ν

and ξ(1)
n,+/R are the FI parameters. Note: coefficients on right

side of equation are identical for all ν!
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Metric

Perturbation theory, continued

For ν ≥ 2,

ξ
(ν)
n,+ = −

∑
m

ν−1∑
ν′=1

[δU(ν′)
n−m, δV

(ν−ν′)
m ]

ξ
(ν)
n,R = −

∑
m

ν−1∑
ν′=1

[δU(ν′)
n+m, (δU

(ν−ν′)
m )†] + (U 7→ V )
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Metric

Solution

Nu
i,j = nu+(1−κi

q)κj
qu , Nv

i,j = nv +(1−κ−i
q )κ−j

q v , Di,j = |Nu
i,j |

2+|Nv
i,j |2

ξ̃
(ν)
n,i,j,+ =

1
q

Tr SjS
†
i+jξ

(ν)
n,+ , ξ̃

(ν)
n,i,j,R =

1
q

Tr SjS
†
i+jξ

(ν)
n,R , Sj =


1
κj

q
...

κ
(q−1)j
q


δU(ν)

n =
1

2q

q−1∑
j=0

q−1∑
i=δn,0

2ξ̃(ν)
n,i,j,+N̄v

i,j + ξ̃
(ν)
n,i,j,RNu

i,j

Di,j
Si+jS

†
j

δV (ν)
n =

1
2q

q−1∑
j=0

q−1∑
i=δn,0

−2ξ̃(ν)
n,i,j,+N̄u

i,j + ξ̃
(ν)
n,i,j,RNv

i,j

Di,j
Si+jS

†
j
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Metric

Integral equation
Summing up the contribution from each ν and writing
e(n) = ein·y , U = Uorb + ∆U, and V = V orb + ∆V , we find

∆U =
1

2q

∑
n

q−1∑
j=0

q−1∑
i=δn,0

Si+jS
†
j

Di,j

[(
2ξn,i,+e(n)N̄v

i,j + ξn,i,Re(n)Nu
i,j

)
−1

q

∑
m

Tr
[
SjS

†
i+j

(
2[∆Un−me(n −m),∆Vme(m)]N̄v

i,j

+
(

[∆Un+me(n + m),∆U†me(−m)]

+[∆Vn+me(n + m),∆V †me(−m)]
)

Nu
i,j

) ]]
.

Similarly for ∆V . Coupled integral equations on T̂ 4!
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Metric

Kähler forms

ωI =
i

2q

∑
n

Tr
(
−dUn ∧ dV−n + dU†n ∧ dV †−n

)
ωJ = − 1

2q

∑
n

Tr
(

dUn ∧ dV−n + dU†n ∧ dV †−n

)
ωK =

i
2q

∑
n

Tr
(

dUn ∧ dU†n + dVn ∧ dV †n
)

dUn =
∂Un

∂u
du +

∂Un

∂u∗
du∗ +

∂Un

∂v
dv +

∂Un

∂v∗
dv∗
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Metric

Kähler forms – first order corrections

ωorb
+ = −i du ∧ dv , ωorb

K =
i
2

(du ∧ du∗ + dv ∧ dv∗)

$(ζ) = $orb(ζ) +$pert(ζ)

$pert(ζ) = − i
2ζ
ω

pert
+ + ω

pert
K − iζ

2
ω

pert
−

=
∑

n

bq/2c∑
i=1

fi
∑

t=±1

(
− i

2ζ
ωnti+ + ωntiK −

iζ
2
ωnti−

)

fi =

{ 1
2 : i = q/2
1 : else
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Metric

Nu
i = Nu

i,0, etc.

ωnti+ uū =
i |1− κi

q|2

4
(2ξnti+N̄v

i + ξntiRNu
i )(2ξn(−t)i+N̄u

i − ξ
∗
ntiRNv

i )

D3
i

ωnti+ uv = 0

ωnti+ uv̄ = −
i(1− κi

q)2

4
(2ξnti+N̄u

i − ξntiRNv
i )(2ξn(−t)i+N̄u

i − ξ
∗
ntiRNv

i )

D3
i

ωnti+ ūv = −
i(1− κ−i

q )2

4
(2ξnti+N̄v

i + ξntiRNu
i )(2ξn(−t)i+N̄v

i + ξ∗ntiRNu
i )

D3
i

ωnti+ ūv̄ = 0
ωnti+ vv̄ = −ωnti+ uū

Similar expressions for ωK
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Metric

g = −ωIω
−1
J ωK = gorb +

∑
n

gn

JI = −ω−1
J ωK = Jorb

I +
∑

n

JnI , . . .

Rkm = R`
k`m ≈ (gorb)`iRik`m

≈ 1
2

∑
n

(gorb)`i
(
gn im,k` + gn k`,im − gn i`,km − gn km,i`

)
= 0

J2
σ ≈ (Jorb

σ )2 +
∑

n

{Jorb
σ , Jnσ} = −1
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∑
n

δ(x − n) =
∑

k

e2πikx

∑
n

lim
x→n

f (x) =
∑

k

F [f ](k)

I We now perform a 2-dimensional Poisson resummation
over lattice parametrized by nv . Motivated by geometric
picture we’re trying to make contact with – corrections to
semi-flat geometry.

I Set ξ+ = 0 for simplicity – focus on BPS spectrum of 4d
theory at orbifold point
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$inst(ζ) =
∑
γg

$eff
γg

$eff
γg = − i

8π2 dYsf
γg (ζ) ∧

∑
n>0

einθγg×∑
γw

einθγw
(
−|Zγ′′ |K1(2πRn|Zγ′′ |)d log(Zγ′′/Z̄γ′′)

+K0(2πRn|Zγ′′ |)
(

1
ζ

dZγ′′ − ζdZ̄γ′′
))
×

Fn,p,q,γw

Geometry of string webs is encoded in lattice of winding
charges and the flavor central charges Zγw :
Zγ′′ = (pτF + q)(a− a0)
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Fn,p,q,γw depends very weakly on γw : only depends on
subgroup of Zq that stabilizes fixed point a0 – i.e., type of
singular fiber

Fn,p,q,Z2 = n2(−1)n
∑
λ∈Z 2

2

(
−1

2
π4R2ξ2

λ1R

)
(−1)n(λ3p+λ4q)

Fn,p,q,Z3 = n2(−1)n
∑
λ∈Z3

(
−4

3
π4R2|ξλ2R|2

)
κ

nλ(p+q)
3
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Fn,p,q,Z4 = n2(−1)n
∑
λ∈Z2

(
−2π4R2|ξλ3R|2

)
(−1)nλ(p+q)

+ Fn,p,q,Z2(ξ(1,0)1R = ξ(0,1)1R)

Fn,p,q,Z6 = n2(−1)n
(
−4π4R2|ξ4R|2

)
+ Fn,p,q,Z2(ξ(1,0)1R = ξ(0,1)1R = ξ(1,1)1R)

+ Fn,p,q,Z3(ξ12R = ξ22R)
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Conjectural exact relationships

Fn,p,q,Z4(ξλ3R = 0) = Fn,p,q,Z2(ξ(1,0)1R = ξ(0,1)1R)

Fn,p,q,Z6(ξ4R = 0) = Fn,p,q,Z2(ξ(1,0)1R = ξ(0,1)1R = ξ(1,1)1R)

+ Fn,p,q,Z3(ξ12R = ξ22R)
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Z2: SU(2) Nf = 4

Fn,p,q(θ) =

{
φRp,q (nθ)− 8 : 2|n

φRp,q (nθ) : 2 - n
, Rp,q =


8v : 2|p ∧ 2 - q
8s : 2 - p ∧ 2 - q
8c : 2 - p ∧ 2|q

I Half-hyper (Ω = 1) with gauge charge (p,q) in one of the 3
8-dimensional reps of Spin(8), depending on whether p, q,
or both are odd.

I Vector (Ω = −2) with gauge charge (2p,2q) in singlet of
Spin(8)

Agrees with result from hyper-Kähler quotient after a simple
linear change of variables from θ to ξ
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Z3: E6 MN

[Hollands-Neitzke ’16]. We also compared with data on E6 and
E7 theories from [Hao-Hollands-Neitzke ’19]
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I We have derived constraints on the spectra of these field
theories for arbitrarily large imprimitivity!

I At leading order in the FI parameters, they are fairly weak,
but we have obtained some new BPS state counts.

I Proceeding to higher orders will yield the entire spectra.
I Motivated by the leading order expressions produced by

the hyper-Kähler quotient, we have conjectured strong
all-orders relationships between the BPS spectra of the
various field theories that coexist within the same F-theory
compactifications (which are satisfied by all existing data)
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Missing BPS states of LSTs
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A1 N = (1,1) LST

I Considerations from before show that moduli space of LST
on T 3 is Sym2(T 4)

I However, can turn on holonomy of background
R-symmetry gauge field which preserves 3d N = 4, and
resulting moduli space is essentially T 4 × K 3
[Cheung-Ganor-Krogh ’98]

I Mathematically, this is related to construction of K3 as a
generalized Kummer variety

I So, can read off K3 metric from metric on this moduli space
I Only get special K3 surfaces from this construction: always

have Z 4
2 symmetries.

M. Zimet Harvard

K3 Metrics



Introduction Little string theory and K3 Hyper-Kähler quotient BPS spectra Another LST Conclusion

BPS state counting
I One 1-real-dimensional family is particularly nice: if

holonomy is only on the third circle, then the BPS state
counting problem is simply that of the (1,1) (or (2,0)) LST
on T 2, with no R-symmetry holonomies

I String web formulation: type IIB on T 2 with two transverse
D3-branes

I Geometric engineering: type IIA on affine A1 singularity,
i.e. total space of I2 singular fiber, times T 2
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Conclusion

I A hyper-Kähler quotient yields computationally useful,
explicit, analytic expressions for K3 metrics.

I They secretly encode the solution to a little string theory
BPS state counting problem. In particular, there are
piecewise constant lists of integers hiding inside of K3
metrics! Similarly, we find characters of Spin(8) and En
representations. We also find an interesting dependence
on the geometry of string webs.

I Via string dualities, we can recast this BPS state counting
problem in terms of open string reduced Gromov-Witten
theory of K3. Aligns with the Strominger-Yau-Zaslow
construction of mirror manifolds.
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Coulomb branch construction

I By finding the full BPS spectrum of the little string theory,
we will complete the specification of a second, equivalent
construction of K3 metrics. We intend to do so by Poisson
resumming the Higgs branch result at all orders.

I Other approaches: geometric engineering, holography,
DLCQ, deconstruction. Neat connections with N = (1,1)
A1 little string theory and open topological string theory.

I Even without most counts, Coulomb branch construction
gives some very accurate approximations, similar to (and
generalizing) [Gross-Wilson ’00]
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Generalizations

I Adding D6-branes wrapping T 4 or an orbifold thereof to the
hyper-Kähler quotient construction will allow us to obtain
nearly all (hopefully all) known compact hyper-Kähler
manifolds. 3d mirror symmetry again relates these
configurations to little string theories

I Poisson resumming 1, 3, or 4 times is also possible. Do
these yield other interesting expansions with
corresponding counting problems?

I Although we’ve focused in this talk on K3 and little string
theories, analogous stories hold for moduli spaces of
various field theories whose Coulomb branches are
non-compact 4-dimensional hyper-Kähler manifolds.
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