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Jackiw-Teitelboim gravity

Jackiw-Teitelboim (JT) 2d dilaton gravity
S = 1

16πG

∫
d2x
√
−gΦ(R + 2) + 1

8πG

∫
dτ
√
−γΦbdyK

Teitelboim ’83, Jackiw ’85

Motivation:

I Dimensional reduction (s-wave) of 3d pure Λ < 0 gravity

I Appears as near-horizon theory of near-extremal
higher-dimensional black holes

I Describes low-energy sector of all (known) SYK-like models

I Solvable including coupling to bulk matter fields

I Understanding of role of higher genus (non-pt) contributions

Here: Discuss bulk QG physics

Path integrate over Φ ⇒ R = −2:
Geometry fixed as AdS2: ds2 = −dF 2+dZ2

Z2 , Z ≥ 0
Poincaré patch (frame) of AdS2, boundary at Z = 0
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Important frames in AdS2 (1)

Lightcone coordinates U = F + Z and V = F − Z
Major classical frames:

I Poincaré patch:
ds2 = − 4dUdV

(U−V )2

Found in near-horizon regime of extremal black hole

Isometries: SL(2,R): U → AU+B
CU+D , V → AV+B

CV+D

I BH frame: U(u) = tanh
(
π
βu
)
, V (v) = tanh

(
π
β v
)

ds2 = −π2

β2
4

sinh2(π
β

(u−v))
dudv

Found in near-horizon regime of near-extremal black hole
with T ≡ 1/β ∼

√
M
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Important frames in AdS2 (2)

Penrose diagram

zy

ty

Global

Black hole

Poincaré
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Jackiw-Teitelboim gravity and the Schwarzian

Path-integrate out Φ:
⇒ Only boundary term survives: S = 1

8πG

∫
dτ
√
−γΦbdyK

Consider boundary curve (F (τ),Z (τ)) as UV cutoff, carving out a
shape from AdS2

Conditions:

I asymptotic Poincaré: Z (τ) = εḞ (τ)

I boundary along constant large value of dilaton Φbdy = a/(2ε)

Using
√
−γ = 1/ε, K = 1 + ε2 {F , τ}+ . . .

⇒ S = −C
∫

dτ {F , τ} , C = a
16πG ,

{
F , τ

}
= F ′′′

F ′ − 3
2

(
F ′′

F ′

)2

Almheiri-Polchinski ’15, Jensen ’16, Maldacena-Stanford-Yang ’16, Engelsöy-TM-Verlinde ’16

F (τ) = time reparametrization

Compare to CS / WZW topological duality
Semi-classical regime: C →∞ ≡ G , ~→ 0
Note: C has dimension length → quantum effects important in IR
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JT disk path integral

JT gravity reduces to an integral over boundary frames F (τ)

Boundary correlators of the thermal JT theory are of the form:

〈O`1O`2 . . .〉β =
1

Z

∫
M

[DF ]O`1O`2 . . . e
C
∫ β

0 dτ {F , τ }

with F ≡ tan
(
πf (τ)
β

)
,

{
F , τ

}
=
{
f , τ

}
+ 2π2

β2 f
′2

M = Diff(S1)/SL(2,R), f (τ + β) = f (τ) + β, f ′ ≥ 0

SL(2,R) : F → aF+b
cF+d comes from isometry group of AdS2

Q: What are the natural operators to consider?
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Boundary two-point function

Take massive scalar field in bulk, asymptotic expansion
(AdS2/CFT1):

φ(Z ,F ) → Z 1−∆φ̃b(F ) = ε1−∆F ′1−∆φ̃b(F (τ)) = ε1−∆φb(τ)

Generating functional:

I ∼
∫

dF1

∫
dF2

1

(F1 − F2)2∆
φ̃b(F1)φ̃b(F2)

=

∫
dτ1

∫
dτ2

F ′(τ1)∆F ′(τ2)∆

(F (τ1)− F (τ2))2∆
φb(τ1)φb(τ2)

Bilocal operator:

O`(τ1, τ2) ≡
(

F ′(τ1)F ′(τ2)

(F (τ1)− F (τ2))2

)`
≡

(
f ′(τ1)f ′(τ2)

β
π sin2 π

β [f (τ1)− f (τ2)]

)`
Other origin of this operator:
I Boundary-anchored Wilson line Blommaert-TM-Verschelde ’18,

Iliesiu-Pufu-Verlinde-Wang ’19
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Approaches to JT correlators: an overview

Several approaches to obtain JT boundary correlators exist:

I 1d Liouville f ′ = eφ Bagrets-Altland-Kamenev ’16, ’17

I 2d Liouville CFT between ZZ-branes TM-Turiaci-Verlinde ’17, TM ’18

I 2d BF bulk Blommaert-TM-Verschelde ’18, Iliesiu-Pufu-Verlinde-Wang ’19

I Particle in infinite B-field in AdS2 Yang ’18, Kitaev-Suh ’18

I Minimal string / Liouville gravity TM-Turiaci ’19, ’20, TM ’20

Result for 〈O`(τ1, τ2)〉β:

1

Z

∫
dE2e

−βE2ρ0(E2)

∫
dE1ρ0(E1)e−τ12(E1−E2) Γ

(
`± i
√
E1 ± i

√
E2

)
Γ(2`)

Z= Schwarzian disk partition function, ρ0(E ) = 1
2π2 sinh 2π

√
E

Fixed energy E2 (microcanonical) answer by stripping off the
Laplace E2-integral
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Bulk observables: defining the bulk frame

Goal of this talk: compute bulk observables

In QG defining bulk observable (= diff-invariant operator) requires
care. E.g. scalar field φ(x), but what is x here ?

Need to specify bulk location in a geometrically invariant way
Holography → preferably boundary-intrinsic way

Choice: given 2 times u and v , define
bulk point (U,V ) from the boundary
reparametrization F using
Radar definition of bulk point:
U =F (u), V =F (v) Blommaert-TM-Verschelde ’19

T

Z

t

z

Observables O(F (u),F (v)) → Contribution in correlator from
implicit dependence on geometry F through this construction
Visible in e.g. commutator computations Donnelly-Giddings ’15
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Application: bulk matter two-point function (1)

Couple JT gravity to a bulk matter action, take massless scalar for
simplicity:
1
2

∫
d2x
√
−g gµν∂µφ∂νφ+ SJT[g ,Φ]

Matter two-point function in a fixed frame F :

Gbb(x , x ′) = 〈φ1φ2〉CFT
= ln

∣∣∣ (F (u)−F (u′))(F (v)−F (v ′))
(F (v)−F (u′))(F (u)−F (v ′))

∣∣∣
= CFT two-point function on UHP with image charge to
implement Dirichlet boundary condition

Integrate over frames: 〈Gbb(x , x ′)〉 =
∫

[DF ]Gbb(x , x ′)e−S[F ]

Two-step process:
1. Integrate over matter to get a gravitational operator
2. Integrate over gravity with this operator insertion
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Application: bulk matter two-point function (2)

Trick:

ln
∣∣∣ (F (u)−F (u′))(F (v)−F (v ′))

(F (v)−F (u′))(F (u)−F (v ′))

∣∣∣ =
∫ u
v dt

∫ u′

v ′ dt
′ F ′(t)F ′(t′)
(F (t)−F (t′))2

Coincides with HKLL prescription to map bulk operators into
boundary observables Hamilton-Kabat-Lifschytz-Lowe ’05

Doing the double integral:
〈Gbb(t, z , z ′)〉β =

∫∞
0 dE2ρ0(E2)e−βE2

∫∞
0 dE1ρ0(E1)e it(E1−E2)

× sin z(E2−E1)
E2−E1

sin z ′(E2−E1)
E2−E1

Γ(1± i
√
E1 ± i

√
E2)

0 2 4 6 8 10
0

5

10

15

20

25

30

z

t

z

Gbb

- Singularities only at
lightlike separated points
- Log-divergences close to
the lightcones
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Generalizations: CFT primaries and massive fields

Generalization to matter CFT primaries:

Gh,h̄(u, u′, v , v ′) =
(

F ′(u)F ′(u′)
(F (u)−F (u′))2

)h ( F ′(v)F ′(v ′)
(F (v)−F (v ′))2

)h̄
− (u′ ↔ v ′)

Generalization to massive bulk fields :
G (x , x ′) ∼ 1

σ∆ 2F1

(
∆
2 ,

∆+1
2 ; 2∆+1

2 ; 1
σ2

)
with invariant distance

function σ = 1− 2 (F (u)−F (u′))(F (v)−F (v ′))
(F (u)−F (v))(F (u′)−F (v ′)) and m2 = ∆(∆− 1)

Generic picture:

z

t

blue: UV singularities
red: IR region where strong QG fluctuations ap-
pear
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Bulk locality

Local operators: should commute for spacelike separation

[φ(t1, z1), φ(t2, z2)] = 0, (t1, z1) and (t2, z2) spacelike

Commutator ≡ Difference of two orderings for bulk two-point
function

⇒ Satisfied here: these observables are (mutually) local operators
in the full QG in the bulk

See also Lin-Maldacena-Zhao ’19 for other construction of diff-invariant
operators that turn out to be local

⇒ JT gravity is more local than generically expected in QG (as in
e.g. Donnelly-Giddings ’15)
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Breakdown of Rindler geometry

Near-horizon region is IR region, similar to late time regime ⇒
strong quantum gravitational effects, deviations from Rindler
correlators

Further intuition: Operational definition of infinitesimal distance2:

ds2 = ln
∣∣∣1− (F (u)−F (u+du))

(F (u)−F (v))
(F (v)−F (v+dv))

(F (u)−F (v))

∣∣∣ = Ḟ (u)Ḟ (v)
(F (u)−F (v))2 du dv

Indeed strong deviations close to horizon in this quantum geometry

Implications for information paradox:
Defining bulk operators in a diff-invariant way can lead to the
near-horizon region being very different from Rindler
→ breakdown effective field theory

Reservations:

I for this specific model ↔ universality JT

I for these specific bulk operators → (less natural) bulk
operators (presumably) exist that do not have this property
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Unruh heat bath: bulk detector (1)

Now: spectral content of the bulk two-point function
→ probes black hole thermal atmosphere (Unruh bath)

Two quantities: detector measurement, and bath spectral energy
density

Define detector trajectory of Unruh-DeWitt detector operationally:

F

Z
t+z

t-z

I Use radar definition to define entire
trajectory (Z (t),F (t)) of detector
worldline

I Along worldline, introduce
interaction Hint = µ(t)φ(x(t))
coupling the bulk quantum field φ
to a detector QM system µ Unruh ’79,

DeWitt ’80
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Unruh heat bath: bulk detector (2)

Transition probability for detector to go from ground state |0det〉 to
|ωdet〉, without any information on the excitation of the QFT
matter state:

P(ω) =
∑

φQFT

∣∣∣〈ωdet, φQFT| − i
∫ +∞
−∞ dtHint(t) |0det, 0F 〉

∣∣∣2

Transition rate:
R(ω) ≡ limT→+∞ P(ω)/T =

|〈ω|µ(0) |0〉det|
2 lim
T→+∞

1
T

∫ +T
−T dtdt ′e−iω(t−t′) 〈φ(x(t))φ(x(t ′))〉

CFT

in terms of CFT bulk matter two-point function

Strategy: insert in Schwarzian path integral and Fourier transform
For simplicity, consider the microcanonical ensemble for a fixed
energy M black hole state
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Unruh heat bath: bulk detector (3)

Answer:
R(ω) = 2

(
sin zω
ω

)2 sinh 2π
√
M−ω

2π2 Γ(1± i
√
M ± i

√
M − ω) Θ(M − ω)

Interpretation:

I 2
(

sin zω
ω

)2
is interference factor from the image charges across

the AdS2 boundary

I sinh 2π
√
M−ω

2π2 Γ(1± i
√
M ± i

√
M − ω) Θ(M − ω) is the matter

emission probability

I Θ(M − ω) signals backreaction effects: no energy greater
than the original black hole mass can be emitted to the
detector probe

In semi-classical regime M � 1, M � ω, we approximate:

R(ω) ≈ 2
(

sin zω
ω

)2 ω
eβω−1

in terms of the Bose-Einstein (Planckian)
black body spectrum
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R(ω) ≈ 2
(

sin zω
ω

)2 ω
eβω−1

in terms of the Bose-Einstein (Planckian)
black body spectrum
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Higher topology (1)

Up to now, we only considered the genus 0 topology (disk)

Including higher topology in gravity is important:
Typically strongly suppressed by ∼ e−(2g−1)S0 , coming from the
EH term S0

1
4π

∫
d2x
√
gR with S0 the extremal entropy

But can be important in parametric regimes where this suppression
is compensated by an enhancement (late time, small energy
separation). Recent examples:

I Replica wormholes to find the Page curve Almheiri et al. ’19, Penington et al

’19

I Ramp regime that governs late-time averaged correlations of
the boundary theory Saad-Shenker-Stanford ’19

Higher genus expansion is asymptotic, requires non-perturbative
completion
⇒ For JT gravity, a double-scaled random matrix integral
completes the genus expansion Saad-Shenker-Stanford ’19
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Higher topology (2)

Studied for multi-boundary amplitudes in Saad-Shenker-Stanford ’19

Studied for boundary correlators Blommaert-TM-Verschelde ’19, Saad ’19

Computations show that these contributions only correct the
n-density factor in the correlator, e.g. in the two-point function:
ρ0(E1)ρ0(E2) → ρJT (E1,E2), ρ0(E ) = eS0

2π2 sinh 2π
√
E

where ρ(E1,E2) is the JT random matrix pair density correlator

ρJT (E1,E2) very well approximated by the GUE random matrix
structure of the pair density correlator:

ρ(E1,E2) = ρ(E1)ρ(E2)− sin2 πρ(Ē)(E1−E2)
π2(E1−E2)2 + ρ(E2)δ(E1 − E2)

Important features:

I level repulsion: ρ(E1,E2)
E1≈E2≈ (E1 − E2)2 + . . .

I high-frequency wiggles: spacing ∼ e−S0

Bulk observables in JT gravity Thomas Mertens 20 30
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Higher topology (3)

Geometrically:

...

+

...
...

+ +

Interpretation:
First two diagrams: disk topology + disconnected higher topology
on each side of the line: ρ(E1)ρ(E2)
Last diagram: connected higher topology across the line:
ρconn(E1,E2)

Since bulk correlator was written through HKLL and the radar
construction in terms of a boundary correlator, we insert the higher
genus effects directly in the boundary correlator

We obtain for the detector response rate:

R(ω) = 2
(

sin zω
ω

)2 ρ(M,M−ω)
ρ(M) Γ(1± i

√
M ± i

√
M − ω)
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Higher topology (4)

R(ω) = 2
(

sin zω
ω

)2 ρ(M,M−ω)
ρ(M) Γ(1± i

√
M ± i

√
M − ω)

R(ω) = 2
(

sin zω
ω

)2×

ω0

Interpretation as product of probabilities:

I Probability of black hole system containing two levels spaced
by ω, ∼ ρ(M,M−ω)

ρ(M)ρ(M−ω)

I Probability of matter emission from such a system
∼ ρ(M − ω)Γ(1± i

√
M ± i

√
M − ω)

I AdS2 interference factor
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Unruh bath energy

Energy flux densities:
As coincident limit of two-point function
〈: Tuu(u) :〉CFT = limu′→u 〈: ∂uφ(u)∂uφ(u′) :〉CFT

= − 1
4π limu′→u

[
F ′(u)F ′(u′)

(F (u)−F (u′))2 − 1
(u−u′)2

]
= − c

24π

{
tanh π

β f (u), u
}

In Schwarzian path integral:
⇒ 〈:Tuu(u):〉β = 〈:Tvv (v):〉β = c π

12β2 + c 1
16πβC

First term is standard Unruh heat bath energy density, second term
is gravitational correction ∼ 1/C

Total bath energy Ebath =
∫ +∞

0 du 〈:Tuu :〉+ 〈:Tvv :〉
defined operationally by summing local energy densities defined
through radar definition
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Unruh spectral energy density (1)

From two-point function, we can extract the energy occupation
number ωNω[f ] ≡ 〈0F |ωa†ωaω |0F 〉 by Fourier transforming from
the two-point function to the oscillators:

− 1
8π2

∫
du1

∫
du2e

−iω(u1−u2)

[
F ′(u1)F ′(u2)
(F1−F2+iε)2 −

(
1

u12+iε

)2
]

+ (ε→ −ε)

Technical remark:
The above formula corresponds to writing
Nω = 1

2 (a†ωaω + aωa
†
ω)− 1

2δ(0)

Trivial manipulation in QFT on curved spacetime, but not after
coupling to quantum gravity
We need this form to match with the bulk bath energy
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Unruh spectral energy density (2)

Insert this expression in Schwarzian path integral (only disk)

⇒ Canonical ensemble result:

0 1 2 3 4 5
Ω0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ΩN

Ω

red: Planckian black-body spec-
trum in 1+1d with β = 4C
blue: JT disk result

→ Slightly higher population

Check:
∫ +∞

0 dω ω
〈
Nω
〉
β

=
∫ +∞

0 du 〈 :Tuu : 〉β + 〈 :Tvv : 〉β

Bulk observables in JT gravity Thomas Mertens 25 30



Unruh spectral energy density (2)

Insert this expression in Schwarzian path integral (only disk)
⇒ Canonical ensemble result:

0 1 2 3 4 5
Ω0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ΩN

Ω

red: Planckian black-body spec-
trum in 1+1d with β = 4C
blue: JT disk result

→ Slightly higher population

Check:
∫ +∞

0 dω ω
〈
Nω
〉
β

=
∫ +∞

0 du 〈 :Tuu : 〉β + 〈 :Tvv : 〉β

Bulk observables in JT gravity Thomas Mertens 25 30



Unruh spectral energy density (2)

Insert this expression in Schwarzian path integral (only disk)
⇒ Canonical ensemble result:

0 1 2 3 4 5
Ω0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ΩN

Ω

red: Planckian black-body spec-
trum in 1+1d with β = 4C
blue: JT disk result

→ Slightly higher population

Check:
∫ +∞

0 dω ω
〈
Nω
〉
β

=
∫ +∞

0 du 〈 :Tuu : 〉β + 〈 :Tvv : 〉β

Bulk observables in JT gravity Thomas Mertens 25 30



Unruh spectral energy density: fermions

Generalization to bulk massless Majorana fermion field TM ’19:

0 1 2 3 4 5
Ω0.0

0.1

0.2

0.3

0.4

0.5

0.6
N

Ω

red: Fermi-Dirac spectrum in 1+1d
with β = 4C
blue: Exact result

Interpretation: low-energy spectrum has competition between
gravity and Pauli-exclusion preventing any major modifications to
these highly occupied levels

Bulk observables in JT gravity Thomas Mertens 26 30



Extensions: charged and SUSY systems

Charged black hole: additional U(1) free boson action

S = −C
∫ β

0 dt
{

tan π
β f (t), t

}
− K

2

∫ β
0 dt (Λ′(t)− iµf ′(t))2 ,

Bulk charged matter field also has to be dressed by Wilson line to
make it small U(1) gauge invariant
Bilocal correlators of this action already determined in TM-Turiaci ’19

JT supergravity: given by boundary super-Schwarzian describing
reparametrizations of S1|1:
τ̃ = f (τ + θη(τ)), θ̃ =

√
∂τ f

(
θ + η(τ) + 1

2θη(τ)∂τη(τ)
)

→ Operational definition of bulk point in superspace
Given two such times τ, θ and τ ′, θ′, we fully fix the small Sdiff

gauge symmetry: Φ(z̃ , θ̃, ˜̄z , ˜̄θ) in terms of τi , θi

ds2 = 1

(z̃−¯̃z−θ̃ ¯̃θ)2
|dz̃ + θ̃d θ̃|2 = (Dθ̃)2(D̄ ¯̃θ)2

(z̃−¯̃z−θ̃ ¯̃θ)2
|dz + θdθ|2

⇒ Bulk correlators in terms of super-Schwarzian correlators
⇒ Differs from bosonic JT in the quantum corrections only (since
classical bulk solution has no fermions) → super-Unruh effect
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Unruh spectral energy density: beyond the disk (1)

Going beyond the disk, we choose to work microcanonically and
refer our energy density w.r.t. the M = 0 energy density

Results in level repulsion and high-frequency wiggles:

wNw

~e-S0

Green: semi-classical result, Red: Schwarzian result, Blue: full
result
M = 2 (= 1/C ), S0 = 10
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Conclusion

Jackiw-Teitelboim gravity is toy model of quantum gravity, striking
the ideal balance between relevance and solvability
I Relevance: low-energy sector of all SYK-type models

Most basic non-trivial holographic 2d gravity model
Universal in near-extremal near-horizon regimes

I Solvability: gravitational dofs reduce to boundary time
reparametrizations F , with explicit analytic solution for
correlators, non-perturbatively in GN . Explicit understanding
of higher topology and resulting random matrix effects

Computed bulk two-point functions (strongly dependent on the
definition of our bulk observables) that exhibit:
I Bulk microcausality
I Gravitational corrections to the Unruh heat bath and detector

response, with level repulsion at ultra-low emission energies

JT gravity is ideal test case to study conceptual questions about
quantum gravity
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Thank you!
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