PHASE TRANSITIONS, RANDOM MATRICES AND TT
DEFORMATION

Miguel Tierz
ISCTE-Instituto Universitario de Lisboa
Grupo de Fisica Matematica, Departamento de Matematica, Universidade de Lisboa

Workshop on Black Holes: BPS, BMS and Integrability, Instituto Superior Teécnico,
September 2020

tierz@fc.ul.pt

Based on joint work with Leonardo Santilli (Lisboa), Jorge Russo (Barcelona) and Richard ). Szabo (Edinburgh).



ORGANIZATION OF THE TALK

- Introduction to random matrix theory

- Some definitions and kernel
- Relationship with structured matrices. Schur insertions



ORGANIZATION OF THE TALK

- Introduction to random matrix theory

- Some definitions and kernel
- Relationship with structured matrices. Schur insertions

- Phase transitions in matrix models

- Example: Gross-Witten
- Unitary models vs models on the real line, continuum and discrete



ORGANIZATION OF THE TALK

- Introduction to random matrix theory

- Some definitions and kernel
- Relationship with structured matrices. Schur insertions

- Phase transitions in matrix models

- Example: Gross-Witten
- Unitary models vs models on the real line, continuum and discrete

- TT-deformation of 2d Yang-Mills theory on S?

- Effects of deformation on Douglas-Kazakov phase transition
- Comments on the g-deformed theory



ORGANIZATION OF THE TALK

- Introduction to random matrix theory

- Some definitions and kernel
- Relationship with structured matrices. Schur insertions

- Phase transitions in matrix models

- Example: Gross-Witten
- Unitary models vs models on the real line, continuum and discrete

- TT-deformation of 2d Yang-Mills theory on S?

- Effects of deformation on Douglas-Kazakov phase transition
- Comments on the g-deformed theory

- Qutlook and references



INTRODUCTION TO RANDOM MATRIX THEORY

- Random matrix theory roughly aims to understand of the properties
(such as the statistics of matrix eigenvalues) of matrices with entries
drawn randomly from various probability distributions.

- LetM = (/\/lj-k)j'.V,?:1 be a square N x N matrix with randomly distributed
elements M. This is a random matrix with respect to a probability
distribution, defined by

P (M)dM = exp (—BTrV(M)) dM.

- Most studied ensembles are the Gaussian ensembles, V(M) = M?. It can
be shown that the previous expression is automatically restricted to the

form
P(M) = exp(—aTrM* + bTrM +c¢), a > 0.

If one postulates statistical independence of the matrix elements M.
There are three different ensembles defined, depending on the values
of the parameter 8 = 1,2 or 4.



INTRODUCTION TO RANDOM MATRIX THEORY

- Ensembles of random N x N matrices M are defined by the following
demands:

1. The probability P(M)d[M] is invariant under any transformation
M — U~'MU, where U is either an orthogonal (8 = 1), unitary (8 = 2) or
symplectic (8 = 4) matrix. That is to say, if M’ = U~'MU where U
belongs to the unitary group U(N; 8), then P (M) d [M'] =P (M) d [M].

2. The matrix elements which are not related by the symmetry of the
matrix are statistically independent (Gaussian ensembles).



RMT: INTEGRATION OVER EIGENVALUES

- Diagonalization: for each matrix M there is a matrix U that maps it onto
its eigenvalues. The Jacobian of the transformation is
Js ({xi}) = 11 IXi — xi|°. The resulting expression is

P(x1,...,xn) = Cy H |Xi —Xj‘B exp [_ i V(Xi)] )

i<j i=1
- The main relevant quantities are m-partial integrations over the
previous N-dimensional probability density function.
- The simplest case to treat analytically: Hermitian (8 = 2) ensemble.

- Weyl integration formula: G Lie group, T maximal torus. The Haar

Integral of a class function computed as an integral over the torus. Ex:
G = U(N)

t
[rodg=2 [5| - |TIwe-gra
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REPRODUCING KERNEL

- Let py(x) = awx"+ ... be the N-th orthogonal polynomial associated to
e~"™_ k-point correlation function can be computed from the two-point
kernel as follows (for 8 = 2)

Rr(X1, X2, ..., Xx) = det [Ky (Xi,Xj)]qgi,jgfe :

- Orthogonal polynomials method = explicit expressions for Ky (x;, x;).
The two-point kernel (using also the Christoffel-Darboux identity) is

N—1
_ (V()+v(v)
Kn(X,y) = e 2 5 Pr (X) Pr(y)
k=0

Cn—1 PN (X)Pn—1(Y) = Pn—1 (X) P (y) - Co1von
Cn X—=Yy '

- This kernel is important also in statistical and machine learning (e.g.
support vector machines) and in statistics in general since, without any
scaling can be understood as a delta sequence.
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TOEPLITZ DETERMINANTS

(do dov dey des )
di do d.a d_,

o o\ ik
Du(f) = det(dip) =det [ dy di  do dg | ew fl€7) = édke
dy dy dido

o ey

- The N-th determinant verifies Dy(f) = fuo\/) f(M)dM.
- Heine-Szego identity

Du(f) = %Q“T)N/OM.../OM

- This expression is of random matrix type. The integrand can be
Interpreted as the joint p.d.f. of the eigenvalues of a unitary random
matrix ensemble.

N
H |ei9j . ei9k|2 Hf(eiek)del?.
k=1

1<j<REN



MINORS OF TOEPLITZ MATRICES

(C/o d_s d_, d_3 d_, d_s \
dy do d_i d_, d—3 d_,
d, dy do d-i d-, d_s3
P =G )= & & di do d do
d, ds3 d d do d_q




MINORS OF TOEPLITZ MATRICES

B

C/1 do d_1 C/._z d_3 C/_4

Q.
D

D
D
o

A
C G0

DyH(f) = det(di_x —kyp, ) = det
N Nx N TN TR T N s & di  do d_i d

de O3 d> OF do d_;

The striking pattern is encoded in partitions. Above, A = (1), u = (2,1).
We always assume [(A), [(n) < N.




MINORS OF TOEPLITZ MATRICES
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C/1 do d_1 C/._z d_3 C/_4
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D
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D
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DyH(f) = det(di_x —kyp, ) = det
N Nx N TN TR T N s & di  do d_i d

ds as o)) d do d_q

The striking pattern is encoded in partitions. Above, A = (1), u = (2,1).
We always assume [(\), [(u) < N. Generalized Heine-Szeg6 identity

O () = [ S\ ()M =

%(2;),\, /()27r.../027r sa(e™)s,(e) H
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Unitary and discrete matrix models:
phases and a 2d YM motivation
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UNITARY VS DISCRETE MATRIX MODELS

2d YM: Wilson and heat-kernel lattice actions

- Lattice theory with Wilson action = integration over gauge group SU(N)
or U(N). This gives the Gross-Witten-Wadia matrix model. Integration
variables on the unit circle.

25N cost C 0 — 0\’
Zaww = dNeeéZ/N:1 91H<25|n ' j)

[—TF,TI']N /<] 2

Large N limit with A = gN fixed. Third order phase transition at A = 2.

- With heat-kernel lattice action: Migdal formula. For the sphere S?

Zym = Z(dim R)’ exp{—agé(M Cz(R)} : (1)

This can be written as a discrete Gaussian ensemble (discrete GUE). Both
models are studied with standard methods in Random Matrix Theory,
showing a third order phase transition at large N (GWW and Douglas-Kazakov
transition).



UNITARY MATRIX MODELS AND PHASE TRANSITIONS

However, the underlying mechanism is different, from the point of view of
the random matrix theory.

Beyond GWW: unitary matrix model with generic potential. Typically, one
finds third order transitions of the GWW type between a phase in which the
eigenvalues are spread all over the unit circle and a phase in which the
eigenvalues are placed only on an arc of the circle. The two phases are
separated by a critical point (yc = A=" in the figure).

{/

7 O‘\

Characterization of phase structure with infinitely many interactions [Baik
math/0001022, ST 1902.06649]. We again find a third order phase transition
of GWW type.
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MAPPING TO THE REAL LINE

Stereographic projection: send the eigenvalues from the unit circle to the
real line with

- T+ ix
819 . +1

= —, —nm <0 <m xeR,
T—ix

Puncture on the circle: only one phase will be reproduced at large N. Study
of the partition function on the real line matches the analysis on the circle
[ST 200310475] in one phase, but the unitary matrix model will show a richer
phase structure.

The same happens in [RT 2007.08515], the generalized GWW model has a
richer phase structure than the deformed Cauchy ensemble [J. Russo,
2006.00672] to which it maps.



ANOTHER RELATIONSHIP BETWEEN UNITARY AND DISCRETE MATRIX MODELS

In [ST 200310475] we established a relation between a unitary matrix model
of the type discussed above (with infinitely many interactions) and a discrete matrix
model.

N 2
- " 0 — 0;
Zhomttersy = / d"0 T + )" (1 + te )™ [ (2sin ’2 f)
(=]t J=1 i<j
Mq+N—1 Mq+N—1

Z Z Z H (h B hk) H (/\/lz Mi + h) 12h;

h,=0 h/\/{1 =0 1<j<k<M;

Discrete model is the classical Meixner ensemble, but with a hard wall. It is
then a probability (when normalized) (K. Johansson "Discrete orthogonal
polynomial ensembles and the Plancherel measure”, Ann. of Math. 153
(2001), 259). Discussion of hard wall and six vertex model [Colomo-Pronko
1306.6207].

Important aspect: the connection is not a direct map, but uses intermediate
steps and theory of random partitions.



UNITARY VS DISCRETE MATRIX MODEL: PHASE DISCREPANCY

While for My = M, we find third order transition and agreement between
observables in the two models, we find a second order transition in the

unitary model when My # M,, opposed to the third order transition in the
discrete ensemble.
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UNITARY VS DISCRETE MATRIX MODEL: PHASE DISCREPANCY

While for My = M, we find third order transition and agreement between

observables in the two models, we find a second order transition in the

unitary model when My # M,, opposed to the third order transition in the
Mq—M,

discrete ensemble. Obstruction o (T)Z

Technical reason: Zunitary DeCOMeEs complex when My £ My, need to deform
the integration contour from the unit circle to a different 1d contour in

C. Result [ST 2003.10475]: if the new integration contour is a smooth
deformation of the circle, the phase transition is third order, otherwise is
second order.

We learn then that the discrete and the unitary matrix model always agree at
finite N, but only agree at large N and with scaling if both are real-valued.
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DEFORMATION BY OPERATOR TT

In recent years, the study of irrelevant deformations of 2d CFTs by operator
TT [Smirnov-Zamolodchikov 16, Cavaglia-Negro-Szécsényi-Tateo "16] attracted
considerable attention.

TT-deformation of CFT has a geometric interpretation: it is equivalent to

- undeformed CFT coupled to JT gravity [Dubovsky et al. 17, "18].

- coordinate transformation [Cardy '18, Conti et al. 18]
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DEFORMATION BY OPERATOR TT

In recent years, the study of irrelevant deformations of 2d CFTs by operator
TT [Smirnov-Zamolodchikov 16, Cavaglia-Negro-Szécsényi-Tateo "16] attracted
considerable attention.

TT-deformation of CFT has a geometric interpretation: it is equivalent to

- undeformed CFT coupled to JT gravity [Dubovsky et al. 17, "18].

- coordinate transformation [Cardy '18, Conti et al. 18]

TT-deformed theories have been analysed from different points of
view. Recent work on the topic include the study of such deformation in the
context of:

- AdS/CFT correspondence;

- SCFTs;

- generalization of TT and conserved currents;
- entanglement entropy;

- elc



TT-DEFORMATION OF BOSONIC MODEL

We will not consider any of those topics here. Instead, we follow a result by
[Conti et al. 18]. Starting with a free bosonic Lagrangian

L(t =0)[g] = |Ve|

and turning on a TT-deformation, £(7)[¢] is the bosonic Born-Infeld model.



TT-DEFORMATION OF BOSONIC MODEL

We will not consider any of those topics here. Instead, we follow a result by
[Conti et al. 18]. Starting with a free bosonic Lagrangian

L(r = 0)[¢] = [Vgl’
and turning on a TT-deformation, £(7)[¢] is the bosonic Born-Infeld model.
Starting with an interacting Lagrangian
L(r = 0)[¢] = [VgI" + V(¢),

a general expression for its TT-deformation was obtained.

For Abelian Yang-Mills on a Riemann surface, the deformed Lagrangian looks
complicated, but the Hamiltonian is:

__ Hym(r =0)
Hvm(7) = 1—7Hym(r =0)°

They propose the same formula for the non-Abelian case.
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Quick reminder of 2d Yang-Mills on a closed Riemann surface of genus h.
Migdal formula for SU(N): partition function is a sum over representations
[Migdal '75]
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YANG-MILLS ON A RIEMANN SURFACE

Quick reminder of 2d Yang-Mills on a closed Riemann surface of genus h.
Migdal formula for SU(N): partition function is a sum over representations

[Migdal '75]
ZyMm = Z(dim :’:\’)2_Zh exp {—
R

agij Cz(R)} . (2)

Irreducible SU(N) representations are in one-to-one correspondence with
partitions of N. We consider instead the U(N) theory, whose irreducible
representations are in one-to-one correspondence with N-tuples:

foo>H>Hh> >y > —oo.

The TT-deformation of the theory is of the form: [Conti et al, ST, Ireland-Shyam,

SST]
G (R)



2D YANG-MILLS THEORY ON THE SPHERE

We focus on the study of two-dimensional Yang-Mills on the sphere S°. Thus
we set h = 0 in the Migdal formula (2). Properties of interest are:

- large N phase transition [Douglas-Kazakov '93];

- phase transition is triggered by instantons [Gross-Matytsin '94].

We consider the partition function of TT-deformed U(N) Yang-Mills:

Zv(a, ) = XR: (dim R)? exp (— agifM (1 _C%(g)(R)» , (3)

and take the 't Hooft limit N — oo with
A=agiuN  fixed.

As the rank N grows, the leading contribution comes from the saddle point
configuration of the action.



2D YANG-MILLS THEORY ON THE SPHERE

We focus on the study of two-dimensional Yang-Mills on the sphere S°. Thus
we set h = 0 in the Migdal formula (2). Properties of interest are:

- large N phase transition [Douglas-Kazakov '93];

- phase transition is triggered by instantons [Gross-Matytsin '94].

We consider the partition function of TT-deformed U(N) Yang-Mills:

Zu(a,7) = Y (dimR)? exp (— agifM (1 _C%(g)(R)» , (3)

R

and take the 't Hooft limit N — oo with
A=agiuN  fixed.

As the rank N grows, the leading contribution comes from the saddle point
configuration of the action.

We follow standard techniques and introduce the eigenvalue density p(h).



SADDLE POINT EQUATION

This leads to the saddle point equation:

P/duhp(_u Z(/+1 [/du/o(u)u ——] : (4)

where we expanded the geometric series. We must take into account the
discrete nature of the ensemble: there exists a minimum distance between
two eigenvalues.

This translates into the condition

p(u) <1

on the eigenvalue density. We studied in [ST 1810.05404] the saddle point
equation (4) perturbatively in the TT-deformation parameter .



CRITICAL POINT

The Douglas-Kazakov weak coupling phase extends up to the critical point

A <Acr:7Tz.



CRITICAL POINT

The Douglas-Kazakov weak coupling phase extends up to the critical point

A <Acr:7Tz.

In the TT-deformed case, we obtained in JHEP 1901 (2019) 054, [1810.05404]:

Ac(r)=7n"[1—7 to1 2
AN w2 12 ’
127

as long as 7 < 77—, and no positive solution for 7 bigger than this value.

When A > A« (1), one has to find another solution in order to fulfill the
condition p(u) < 1.

Ansatz: two-cut solution (again following Douglas-Kazakov)



THIRD ORDER PHASE TRANSITION

The strong coupling phase is more difficult to analyze but looking at the
neighborhood of the critical area, we could show that:

62 |Og ZYM
OA?

o 82 |Og ZYM

A2 — 0

A<Acr

A>Acy

— The phase transition is third order (as in Douglas-Kazakov). See the
technical details in a dedicated talk by Leo (or slides).

Thus, the TT-deformation introduced a nontrivial dependence on (A, ), but
In such a way that it does not affect the order of the phase transition.

It is known that the DK phase transition is induced by instantons, we can
also reproduce that analysis in the deformed theory. For example, looking at
the suppression factor of the one-instanton contribution, we will see that it
decays faster with the area, explaining why the critical area is lowered.



INSTANTON ANALYSIS IN 2D YM

Partition function of 2dYM represented as sum over instanton contributions
[Witten '92]:
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INSTANTON ANALYSIS IN 2D YM

Partition function of 2dYM represented as sum over instanton contributions
[Witten '92]:

2N
ZQdYM = Z Winst.(e) exp _ﬂ-T Zglz

eeczN j=1

The weight winst. (£) can be computed via Poisson resummation
[Minahan-Polychronakos '93]. Instanton contributions are exponentially
suppressed at large N, e.g. first instanton suppressed as:

Winst. (1,0, . . ., O)e—sinst.(T,O,...,o) _ﬁ/\w(i)
= const. xe A 2
Winst.(o, O, boog O)e_sinst.(o,o,...,()) ,
X T+V1—x
X)=vV1—x—Zlog | ——=2) .
7(X) 5 log (1 - m)

Phase transition is induced by instantons [Gross-Matytsin '94].
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Full Poisson resummation is hard in the TT-deformed case, instead we can
focus on the first instanton correction £ = (1,0,...,0).



INSTANTONS IN THE TT-DEFORMED THEORY

Full Poisson resummation is hard in the TT-deformed case, instead we can
focus on the first instanton correction £ = (1,0,...,0).

We obtained that the first instanton correction is suppressed as:

Z(1,0,...,0) / 27 Abso
—2r =C —N 5
Z(o,...,0) =P Abs |\ 72 ’ ®)

where the function is the same as in the undeformed case. (bo, > 1if+ > 0).

. . 2
In particular, not suppressed if 7 > —#.

Let us see two plots showing that the same suppression occurs at a lower
area, hence the same instanton contribution happens earlier when
Increasing the area from zero, explaining the lowering of the critical area.



EXPONENTIAL SUPPRESSION OF INSTANTONS, 7 = 0.1

r=0.1
(1/x) y(x/rrr2)
0.0005

0.0004 [
0.0003 |
0.0002 [

0.0001 |

A o0.0000k
9.5

Figure 1: ~ <%) deformed (blue) and undeformed (orange) case. On the right: a

zoom on the tail of )1—<’y (%) The plots are at 7 = 0.1



EXPONENTIAL SUPPRESSION OF INSTANTONS, 7 = 0.5

t=0.5 1=0.5
(1/x)y(x/rrA2) (1/x)y(x/rrr2)
10 0.0005 | ~_

0.8 0.0004 [
06| 0.0003 |
0.4l 0.0002 |
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OC- L 1 L 1
0 2 4 6 8

A o0.0000k
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Figure 2: ~ (%) deformed (blue) and undeformed (orange) case. On the right: a

zoom on the tail of )1—<’y (%) The plots are at = = 0.5. We see how the suppression
factor vanishes at earlier values of A as 7 is increased.
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SUMMARY

Summary of the 2d YM results:

- Yang-Mills on S? undergoes a large N phase transition. So does its
TT-deformed version (x);

- the phase transition is induced by instantons. The same happens in the
TT-deformed version (x);

- the theory is well-defined for all A > 0.The same holds true for the
TT-deformed version.

+ : the critical value is lowered, and eventually only one phase exists for
large values of the deformation parameter 7. This is because, at a certain
value of 7, instanton sectors cease to be suppressed.
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