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“Nature isn’t classical, dammit, and if you want to
make a simulation of nature, you'd better make it
quantum mechanical!”

- Richard Feynman



“Nature isn’t classical, dammit, and if you want to
learn a model of nature, you'd better make it
quantum mechanical!”

TFQ team



Quantum mechanics, quantum computing, and
quantum machine learning

In the next slide!
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Double-slit experiment at the heart of qguantum
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Double-slit experiments as quantum computing
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Double-slit experiments as quantum computing
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Congratulations! You have just learned quantum computing!



Random double-slit experiments as random quantum

operations
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This particular implementation does not lead to quantum supremacy, as it is not scalable !



Iterative double-slit experiments as quantum ML

Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs
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Iterative double-slit experiments as quantum ML

Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs
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Iterative double-slit experiments as quantum ML
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Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs
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You have just learned what is quantum machine learning!




The rest of talk are just detalls
for scalable implementations!
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Quantum Bits (Qubits)

Classical Bit: Always has a value of O or 1
A bit can be copied,
Doesn’t change if measured,
Measuring a bit doesn't affect other unmeasured bits.

Quantum Bit (qubit): None of the above holds in general!

e How should we manipulate quantum information?

e How can we achieve universal quantum computation?



Single Qubit Gates

Arbitrary
single-qubit
rotations




“Arbitrary” or “Universal” Quantum Computation

1- Ability to perform arbitrary single qubit rotations
2- Any nontrivial two-qubit rotations
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Understanding quantum circuits

Quantum circuit: sequence of evolutions of a quantum

state
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Near-term Quantum Computing Landscape
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Near-term Quantum Computing Landscape
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T

TensorFlow Quantum marks another important milestone for
Quantum at Google

Google Al Quantum Launch Roadmap

2018 Oct 2019 Mar 2020 2020

Cirg and Quantum Quantum Engine
. TF Quantum
OpenFermion Supremacy Launch Early Acces
Launch Announcement Partners (EAP)




1F TensorFlow

Main Objectives for TF Quantum

e A software framework for hybrid quantum-classical machine
learning under TensorFlow and Cirq

e Fast prototyping, training, inference, and testing of quantum
models over quantum data

e Discovering new quantum algorithms for NISQ devices or
error-corrected quantum computers



e Representation power (efficiently representing data)
e Optimization power (efficient iterations)

e Generalization power (minimizing the error in prediction)




e Representation power (efficiently representing data)
e Optimization power (efficient iterations)

e Generalization power (minimizing the error in prediction)

Can we improve any (combinations) of these features quantum mechanically?



e Quantizing classical neural networks (pre-history 90s)

e Accelerated linear algebra on quantum computers (2013)
o First generation of QML
o Only applies to fault-tolerant quantum computers

e Low-depth Quantum circuit learning or “Quantum Neural Networks”

o Second generation of QML
o Applicable to Noisy-Intermediate Quantum (NISQ) processors

TensorFlow Quantum



gPCA: Efficient diagonalization of low-rank density matrices
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e Quantizing classical neural networks (pre-history 90s)

e Accelerated linear algebra on quantum computers (2013)
o First generation of QML
o Only applies to fault-tolerant quantum computers

e Low-depth Quantum circuit learning or “Quantum Neural Networks”

o Second generation of QML
o Applicable to Noisy-Intermediate Quantum (NISQ) processors

TensorFlow Quantum
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Quantum Data
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Hybrid classical
quantum models for
quantum data
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Classical control of quantum circuits (all guantum computers are hybrid!)
Classical preprocessing or post-processing

Classical algorithms with quantum subroutines

Classical variational outer loops for optimizing quantum circuits
Classical-Quantum co-processors / hybrid quantum-classical models

TensorFlow Quantum



e Data in quantum communication networks:
o quantum key distribution
o quantum repeaters
o quantum receivers

Micius — Nanshan, China

Date Sitedkey QBER Finalkey 4 | *V _
05/06/2017. -~ 1329kb ., 1:0% 305 k.
Qi7 b0~ 1.7% 308K =R
T

The Micius satellite, by MIT Technology review.

n Google Al Quantum
® TensorFlow Quantum



Different Kinds of Quantum Data

e Data in quantum metrology:
o nuclear magnetic resonance detection, NV centers, Rydberg atoms,...
o quantum sensing
o quantum imaging

protein

I[jl Google Al Quantum I. Lovchinsky, et. al. Science, 351(6275), pp.836-841. ® TensorFlow Quantum



e Control and calibration of quantum processors:
o Quantum measurement and parameter estimation
o Quantum control and calibration
o Quantum tomography

n Google Al Quantum
© TensorFlow Quantum



e Output states of quantum computers:
o quantum verification, quantum (nonlocal) inference
o Simulation of chemical systems, material science, pharmaceutical
o Simulation of quantum matter (classification and generative models for
guantum many-body systems, quantum critical systems, e.g., high T
superconductivity).
o quantum algorithm discovery

n Google Al Quantum

© TensorFlow Quantum
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4 Qubit Array

Quantum data
Preparation

N __/ Circuit Depth
Quantum circuit learning




Parameterized Quantum Circuits

Output

Input quantum
quantum state

state

e Sequence of continuously-parameterized “rotations”
e Forms a parameterized quantum circuit, also known as a quantum neural network
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Variational Quantum Algorithms

Iterative quantum-classical optimization

e Execute parametric quantum circuit on QPU

e Measure observable expectation value <L>
over multiple runs

e Relay information to classical processing
unit (CPU)

e CPU optimization algorithm suggests new
parameters




Hybrid quantum-classical learning
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e Cirq
o Quantum circuit construction and simulation language
o Focused on NISQ devices

e TensorFlow
o One of the most widely used machine learning platform
o Designed for heterogeneous computation

Can we combine them?
TensorFlow Quantum



How can build hybrid models by combining
TF and Cirg?




Technical Hurdle 1

e Quantum data cannot be imported
m Quantum data must be prepared
on the fly
m Both data and the model are layers
in the quantum circuit
m Graph is highly dynamic

Classical data

Trainable
parameters

()

0




Technical Hurdle 2

m QPU run is a few microseconds

m Relatively high latency CPU-QPU (ms)

m Batches of jobs are relayed to quantum
computer
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Our design principles

Differentiability: Must support differentiation of quantum circuits and
hybrid backpropagation.

Circuit Batching: Quantum data loaded as quantum circuits, training
over many different quantum circuits in parallel.

Execution Backend Agnostic: Switch from a simulator to a real device
easily with few changes.

Minimalism: A bridge between Cirg and TF; does not require users to
re-learn how interface with quantum computers or solve problems
using machine learning.




Software architecture

e Circuits are TENSORS, use Cirg constructs to generate these tensors

e Converting circuits to classical data (aka running or simulating them) can
be done by OPs




Software stack

Classical Data: Quantum Data:
integers/floats/strings Circuits/Operators

TF Keras Models

TF Layers TFQ Layers TFQ Differentiators

TF Execution Engine TFQgsim




TFQ pipeline for a hybrid discriminative model

Evaluate Gradients &
Update Parameters

Evaluate
Cost
Function
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You can use TFQ to
perform a ‘hello world'-type
task; Binary classification
of quantum states for a
single qubit

arXiv:2003.02989



https://arxiv.org/abs/2003.02989

Quantum dataset for a single qubit




import cirq, random, sympy
import numpy as np

import tensorflow as tf

import tensorflow_quantum as tfq

qubit = cirq.GridQubit(e, 0)
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import cirq, random, sympy
import numpy as np

import tensorflow as tf

import tensorflow_quantum as tfq

qubit = cirq.GridQubit(e, 0)

# Quantum data labels
expected_labels = np.array([[1, ©], [0, 1]])

# Random rotation of X and Z axes
angle = np.random.uniform(@, 2 * np.pi)
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import cirq, random, sympy
import numpy as np

import tensorflow as tf

import tensorflow_quantum as tfq

qubit = cirq.GridQubit(e, 0)

# Quantum data labels
expected_labels = np.array([[1, @], [0, 1]])

# Random rotation of X and Z axes
angle = np.random.uniform(@, 2 * np.pi)

# Build the quantum data
a = cirqg.Circuit(cirq.Ry(angle)(qubit))

cirqg.Circuit(cirqg.Ry(angle + np.pi/2)(qubit))
quantum_data = tfq.convert_to_tensor([a, b])




q_data_input

A

# Build the quantum model
g_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)



q_data_input g_model

A

R,(0)

# Build the quantum model
g_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
g_model = cirqg.Circuit(cirq.Ry(theta)(qubit))



q_data_input g_model expectation
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# Build the quantum model
g_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
g_model = cirqg.Circuit(cirq.Ry(theta)(qubit))

expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(qg_data_input)



q_data_input g_model expectation classifier

A

<zZ> w

—RrR0) A~ SoftMax

# Build the quantum model
g_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
g_model = cirqg.Circuit(cirq.Ry(theta)(qubit))

expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(qg_data_input)

# Attach the classical SoftMax classifier
classifier = tf.keras.layers.Dense(2, activation=tf.keras.activations.softmax)
classifier_output = classifier(expectation_output)



g_data_input g_model expectation classifier

<zZ> w

—RrR0) A~ SoftMax

# Build and train the hybrid model

model = tf.keras.Model(inputs=q_data_input, | Learning to classify quantum data
outputs=classifier_output)

model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=0.1),
loss=tf.keras.losses.CategoricalCrossentropy())

history = model.fit(x=quantum_data, y=expected_labels,
epochs=250, verbose=0)
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Final loss value:
0.0007150595774874091




# Check inference on noisy quantum datapoints
noise = np.random.uniform(-6.25, 0.25, 2)
test_data = tfqg.convert_to_tensor (|

Cqu.C:!.rcu1t( : : Noisy element from a:
cirq.Ry(random_angle + noise[8])(qubit)), prob(0)=0.9995, prob(1)=0.0005

cirqg.Circuit( Noisy element from b:
cirqg.Ry(random_angle + noise[1] + np.pi/2)(qubit)) prob(0)=0.0025, prob(1)=06.9975

1)

predictions = model.predict(test_data)
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Hybrid Quantum-Classical CNN

1 X
A J
_| Prepare Qconv
Cluster + A
—~ Test M — QPool —(Z)
i H H @
Shallow QNN

Google Al
Quantum

® TensorFlow Quantum



Hybrid quantum-classical CNNs:
Distributed NISQ Computing
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Training loss

1.0

0.8

0.6 1

0.4

0.2
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Quantum vs Hybrid CNN performance
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TFQ Benefits to Researchers

1. Reduce prototyping time from weeks to hours
a. Highlevel APl integration with Keras
b. High performance circuit simulator via gsim

2. Support for Hybrid Models & Quantum Data
a. Access to algorithmic features of TensorFlow
b. Integration with Cirq
c. Automatic differentiation of quantum circuits

3. Exposure to TensorFlow Community (Millions of Users)




Next Steps

Research collaborations with academia:
e Quantum Dataset Initiative
e Practical quantum supremacy for QML on quantum data
e Novel quantum control & error mitigation schemes

Engineering:
e Integration with Quantum Engine

Adoption:
e Integrate more academic partners (U of Toronto / Caltech / Harvard) &
Google Brain & Deepmind



Software stack

Libraries and tools

Cirg (Programming framework)

Quantum Engine (Cloud service)

Quantum Hardware Simulators

92In0s uadp

Ateyanidoud



Runmng TFQ via Google’s quantum computing service

Simulators for testing execution
via Quantum Engine

O

Quantum
simulators

results

results

results

remote execution
Quantum

processors

Quantum

simulators 20-72 qubit processors

Google Cloud with high fidelity

High memory machines

i . hl = quantum hardware language
support 38 qubit simulations ani=q guag
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o~ Thank You!

https://www.tensorflow.org/quantum

arXiv:2003.02989
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https://www.tensorflow.org/quantum
https://arxiv.org/abs/2003.02989

