TensorFlow Quantum: An open-source library for quantum machine learning

Masoud Mohseni MPML, July 30, 2020

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical!"

- Richard Feynman

"Nature isn't classical, dammit, and if you want to learn a model of nature, you'd better make it quantum mechanical!"

TFQ team

Quantum mechanics, quantum computing, and quantum machine learning in the next slide!

Double-slit experiment at the heart of quantum mechanics

Double-slit experiment at the heart of quantum mechanics

Double-slit experiments as quantum computing

Quantum computing is about creating constructive interference for correct answer(s)

Double-slit experiments as quantum computing

Congratulations! You have just learned quantum computing!

Random double-slit experiments as random quantum operations

Randomly separated walls with randomly placed slits

This particular implementation does not lead to quantum supremacy, as it is not scalable !

Iterative double-slit experiments as quantum ML

Start with randomly separated walls with randomly placed slits, iteratively change to get the correct outputs

Iterative double-slit experiments as quantum ML

Start with randomly separated walls with randomly placed slits, iteratively change to get the correct outputs

Iterative double-slit experiments as quantum ML

Start with randomly separated walls with randomly placed slits, iteratively change to get the correct outputs

You have just learned what is quantum machine learning!

The rest of talk are just details for scalable implementations!

Google uses superconducting qubits

Google Sycamore processor

Quantum Bits (Qubits)

Classical Bit: Always has a value of 0 or 1 A bit can be copied, Doesn't change if measured, Measuring a bit doesn't affect other unmeasured bits.

Quantum Bit (qubit): None of the above holds in general!

- How should we manipulate quantum information?
- How can we achieve universal quantum computation?

Single Qubit Gates

"Arbitrary" or "Universal" Quantum Computation

1- Ability to perform arbitrary single qubit rotations2- Any nontrivial two-qubit rotations

Understanding quantum circuits

Quantum circuit: sequence of evolutions of a quantum state

TensorFlow Quantum marks another important milestone for Quantum at Google

Google Al Quantum Launch Roadmap

Main Objectives for TF Quantum

- A software framework for hybrid quantum-classical machine learning under TensorFlow and Cirq
- Fast prototyping, training, inference, and testing of quantum models over quantum data
- Discovering new quantum algorithms for NISQ devices or error-corrected quantum computers

Three main features of machine learning

- Representation power (efficiently representing data)
- Optimization power (efficient iterations)
- Generalization power (minimizing the error in prediction)

Three main features of machine learning

- Representation power (efficiently representing data)
- Optimization power (efficient iterations)
- Generalization power (minimizing the error in prediction)

Can we improve any (combinations) of these features quantum mechanically?

Types of Quantum machine learning

- Quantizing classical neural networks (pre-history 90s)
- Accelerated linear algebra on quantum computers (2013)
 - First generation of QML
 - Only applies to fault-tolerant quantum computers
- Low-depth Quantum circuit learning or "Quantum Neural Networks"
 - Second generation of QML
 - Applicable to Noisy-Intermediate Quantum (NISQ) processors

qPCA: Efficient diagonalization of low-rank density matrices

Eigenvectors

Eigenvalues

Lloyd, Mohseni, Rebnetrost, gK-mean, arXiv:1307.0411

Types of Quantum machine learning

- Quantizing classical neural networks (pre-history 90s)
- Accelerated linear algebra on quantum computers (2013)
 - First generation of QML
 - Only applies to fault-tolerant quantum computers
- Low-depth Quantum circuit learning or "Quantum Neural Networks"
 - Second generation of QML
 - Applicable to Noisy-Intermediate Quantum (NISQ) processors

Disentangling quantum data could be exponentially hard for classical models in worse cases (e.g., near a quantum critical point)

TensorFlow Quantum

Types of hybrid quantum-classical computing

- Classical control of quantum circuits (all quantum computers are hybrid!)
- Classical preprocessing or post-processing
- Classical algorithms with quantum subroutines
- Classical variational outer loops for optimizing quantum circuits
- Classical-Quantum co-processors / hybrid quantum-classical models

Different Kinds of Quantum Data

- Data in quantum communication networks:
 - quantum key distribution
 - quantum repeaters
 - quantum receivers

The Micius satellite, by MIT Technology review.

Different Kinds of Quantum Data

• Data in quantum metrology:

- nuclear magnetic resonance detection, NV centers, Rydberg atoms,...
- quantum sensing
- quantum imaging

Gooale Al Quantum

Different Kinds of Quantum Data

- Control and calibration of quantum processors:
 - Quantum measurement and parameter estimation
 - Quantum control and calibration
 - Quantum tomography

Different Kinds of Quantum Data

• Output states of quantum computers:

- quantum verification, quantum (nonlocal) inference
- Simulation of chemical systems, material science, pharmaceutical
- Simulation of quantum matter (classification and generative models for quantum many-body systems, quantum critical systems, e.g., high T superconductivity).
- quantum algorithm discovery

Examples of QML for quantum data: parameter estimation

state discrimination, error-detection, state/procss tomography

QML on finite space-time volume of parameterized quantum circuits

Parameterized Quantum Circuits

- Sequence of continuously-parameterized "rotations"
- Forms a parameterized quantum circuit, also known as a *quantum neural network*

 \boldsymbol{x}

state

Variational Quantum Algorithms

Iterative quantum-classical optimization

- Execute parametric quantum circuit on QPU
- Measure observable expectation value <L> over multiple runs
- Relay information to classical processing unit (CPU)
- CPU optimization algorithm suggests new parameters

Hybrid quantum-classical learning

What are the existing toolboxes?

• Cirq

- Quantum circuit construction and simulation language
- Focused on NISQ devices

• TensorFlow

- One of the most widely used machine learning platform
- Designed for heterogeneous computation

Can we combine them?

How can build hybrid models by combining TF and Cirq?

Technical Hurdle 1

• Quantum data cannot be imported

- Quantum data must be prepared on the fly
- Both data and the model are layers in the quantum circuit
- Graph is highly dynamic

Technical Hurdle 2

• QPU needs full quantum program for each run

- QPU run is a few microseconds
- Relatively high latency CPU-QPU (ms)
- Batches of jobs are relayed to quantum computer

Our design principles

- 1. **Differentiability:** Must support differentiation of quantum circuits and hybrid backpropagation.
- 2. **Circuit Batching:** Quantum data loaded as quantum circuits, training over many different quantum circuits in parallel.
- 3. **Execution Backend Agnostic**: Switch from a simulator to a real device easily with few changes.
- 4. **Minimalism:** A bridge between Cirq and TF; does not require users to re-learn how interface with quantum computers or solve problems using machine learning.

Software architecture

- Circuits are **<u>TENSORS</u>**, use Cirq constructs to generate these tensors
- Converting circuits to classical data (aka running or simulating them) can be done by <u>OPs</u>

Software stack

TFQ pipeline for a hybrid discriminative model

Hello Many-Worlds

You can use TFQ to perform a 'hello world'-type task; Binary classification of quantum states for a single qubit

arXiv:2003.02989

Quantum dataset for a single qubit

import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq

qubit = cirq.GridQubit(0, 0)

import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq

qubit = cirq.GridQubit(0, 0)

```
# Quantum data labels
expected_labels = np.array([[1, 0], [0, 1]])
```

Random rotation of X and Z axes angle = np.random.uniform(0, 2 * np.pi)


```
import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq
```

```
qubit = cirq.GridQubit(0, 0)
```

```
# Quantum data labels
expected_labels = np.array([[1, 0], [0, 1]])
```

```
# Random rotation of X and Z axes
angle = np.random.uniform(0, 2 * np.pi)
```

```
# Build the quantum data
```

a = cirq.Circuit(cirq.Ry(angle)(qubit))
b = cirq.Circuit(cirq.Ry(angle + np.pi/2)(qubit))
quantum_data = tfq.convert_to_tensor([a, b])

q_data_input

Build the quantum model q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)


```
# Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)
```

```
theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))
```



```
# Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)
```

```
theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))
```

```
expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(q_data_input)
```



```
# Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)
```

```
theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))
```

```
expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(q_data_input)
```

```
# Attach the classical SoftMax classifier
classifier = tf.keras.layers.Dense(2, activation=tf.keras.activations.softmax)
classifier_output = classifier(expectation_output)
```


Build and train the hybrid model model = tf.keras.Model(inputs=q_data_input, outputs=classifier_output) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.1), loss=tf.keras.losses.CategoricalCrossentropy()) history = model.fit(x=quantum_data, y=expected_labels, epochs=250, verbose=0)

Noisy element from a: prob(0)=0.9995, prob(1)=0.0005 Noisy element from b: prob(0)=0.0025, prob(1)=0.9975

Hybrid Quantum-Classical

Convolutional Neural Networks (CNN)

Quantum CNN

Cluster State Prepartion

Hybrid Quantum-Classical CNN

Hybrid quantum-classical CNNs: Distributed NISQ Computing

Google Al

Quantum

Hybrid CNN Results

TFQ Benefits to Researchers

- 1. Reduce prototyping time from weeks to hours
 - a. High level API integration with Keras
 - b. High performance circuit simulator via qsim
- 2. Support for Hybrid Models & Quantum Data
 - a. Access to algorithmic features of TensorFlow
 - b. Integration with Cirq
 - c. Automatic differentiation of quantum circuits
- 3. Exposure to TensorFlow Community (Millions of Users)

Next Steps

Research collaborations with academia:

- Quantum Dataset Initiative
- Practical quantum supremacy for QML on quantum data
- Novel quantum control & error mitigation schemes

Engineering:

• Integration with Quantum Engine

Adoption:

 Integrate more academic partners (U of Toronto / Caltech / Harvard) & Google Brain & Deepmind

Running TFQ via Google's quantum computing service

support 38 qubit simulations

ghl = quantum hardware language
The Team

Tech Lead

Masoud Mohseni Google Al Quantum

Product Manager

<mark>Alan Ho</mark> Google Al Quantum

Theory

Guillaume Verdon Quantum @ X

Engineering

Michael Broughton Google Al Quantum

Antonio Martinez Google Al Quantum

Trevor McCourt Google Al Quantum

Philip Massey Google

Jae Yoo Tensorflow

Evan Peters UWaterloo

Murphy Niu Google Al Quantum

