TensorFlow Quantum:

An open-source library for
quantum machine learning

Google Al
Quantum

Masoud Mohseni
MPML, July 30, 2020

“Nature isn’t classical, dammit, and if you want to
make a simulation of nature, you'd better make it
quantum mechanical!”

- Richard Feynman

“Nature isn’t classical, dammit, and if you want to
learn a model of nature, you'd better make it
quantum mechanical!”

TFQ team

Quantum mechanics, quantum computing, and
quantum machine learning

In the next slide!

Double-slit experiment at the heart of qguantum

mechanics

$
ma |

Particle source

.
D N
.
-
BN

Slits

Detector

Probabilities for
classical particles
are additive

P(z) = p1(z) + p2(x)

Probability

Double-slit experiment at the heart of qguantum

mechanics
Quantum particles
1 7 interfere, and can
= cancel out
3 o P(z) = |¢1(z) + ¢a(z)|?
—] o ;12 2
o = [1]" + | ¢2|
2 = . .
= +|¢1 |l [ez(ol—oz) P e—z(01~ez)]
— _
——
| Quantum interference

Particle source Slits Detector Probability

Double-slit experiments as quantum computing

1 - > =t .
=3 | Quantum computing
] o is about creating
$ _ ® oo — constructive
C] - interference for
- correct answer(s)
2 | %
_

_ Quantum computation N
Particle source Detector Probability

Double-slit experiments as quantum computing

$
ma |

—

Quantum computation

Particle source

—
i
—_—
—

Quantum computing is
about engineering
constructive interference
for correct answer(s)

\

161]162] [ei(el—oz) % e—i(el—oz)]

Probability

Congratulations! You have just learned quantum computing!

Random double-slit experiments as random quantum

operations

$
ma |

Particle source

Quantum computation

Randomly separated walls with randomly placed slits

Detector

A distribution that is
exponentially hard to
sample classically

Probability

This particular implementation does not lead to quantum supremacy, as it is not scalable !

Iterative double-slit experiments as quantum ML

Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs

!
H0, >

e i l Quantum machine
— = 0 learning is about
3 - oo o iterative creation of
m— T constructive
. interference for

=0, _ correct answers

_ Quantum machine learning N
Particle source Detector Probability

Iterative double-slit experiments as quantum ML

Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs

1 j j | Quantum machine
] i 1k learning is about
0/
3 - ‘e 0 ® iterative creation of
—]

constructive

1
) j interference for
- 0, correct answers

_ Quantum machine learning N
Particle source Detector Probability

Iterative double-slit experiments as quantum ML

$
ma |

Particle source

Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs

Il

_0I2

U g,

T

Quantum machine learning

T
»
|

Detector

<
e
<
—

Quantum machine
learning is about
iterative creation of
constructive
interference for
correct answers

Probability

You have just learned what is quantum machine learning!

The rest of talk are just detalls
for scalable implementations!

Google Sycamore processor

2o 3 x‘ OxQ Oxb 0830 Oxb OxQ

2t 1176 i @ R IGPE I I I Q¢

x’ OxO Oxb OxQ OxQ OxQ

Oxb OxO OxO OxO OxQ Ox

% X

Quantum Bits (Qubits)

Classical Bit: Always has a value of O or 1
A bit can be copied,
Doesn’t change if measured,
Measuring a bit doesn't affect other unmeasured bits.

Quantum Bit (qubit): None of the above holds in general!

e How should we manipulate quantum information?

e How can we achieve universal quantum computation?

Single Qubit Gates

Arbitrary
single-qubit
rotations

“Arbitrary” or “Universal” Quantum Computation

1- Ability to perform arbitrary single qubit rotations
2- Any nontrivial two-qubit rotations

5.+ E

Understanding quantum circuits

Quantum circuit: sequence of evolutions of a quantum

state
gates measurement
O ? HH XN ——
Registers R (R, (65) e Probabilistic
(qubits) I Outcomes
Rz(01)iRz(02) PN ——

time

P, =la,[;2 P, =1

0

Near-term Quantum Computing Landscape

107" =
% Grad school
- °
0107 b e e e e e == - .
= ® Error correction
g Sycamore threshold
c
- — -3 -
-"é 10 Classically
= simulatable Useful error
A X corrected QC
10" — (e.g. Shor)
| | | | | | | | |
109 10’ 102 103 10* 10° 10° 107 108
Number of Qubits
Google Al |
Quantum ® TensorFlow Quantum

Near-term Quantum Computing Landscape

1071 =
% Grad school
- °
0107 b e e e e e == - .
= ® Error correction
g Sycamore threshold
c
-"é 107 - Classically .
"5 simulatable Useful error
X corrected QC
10 = (e.g. Shor)

I I I I I I I I I
100 10° 102 103 10* 10° 10° 107 108
Number of Qubits Always 10+ years away!?

Google Al
Quantum ® TensorFlow Quantum

Near-term Quantum Computing Landscape

10" =
% Grad school
- [
0102 b - e e e e e - — e e e o = =
- ® Error correction
g Sycamore threshold
= 107
= ~] Classically —
= simulatable o Useful error
~ Y Near-term applications? corrected QC
10 — b (e.g. Shor)
I I I I I I I I I
100 10° 102 10° 104 10° 106 107 108

Number of Qubits Always 10+ years away!?

Google Al
Quantum ® TensorFlow Quantum

1 —

" 10

®

- ® Grad school

6 102 L - & o o e e e e e e e — = — e - -

= ® Error correction

g’ Sycamore threshold

.E 1 0-3

X ~] Classically i

E simulatable - Useful error

— ¥ Near-term applications? corrected QC
104 — Quantum machine learning (e.g. Shor)

| | | | | | |
10° 10" 102 103 10* 10° 10° 107 108

Number of Qubits Always 10+ years away!?

Google Al
Quantum ® TensorFlow Quantum

T

TensorFlow Quantum marks another important milestone for
Quantum at Google

Google Al Quantum Launch Roadmap

2018 Oct 2019 Mar 2020 2020

Cirg and Quantum Quantum Engine
. TF Quantum
OpenFermion Supremacy Launch Early Acces
Launch Announcement Partners (EAP)

1F TensorFlow

Main Objectives for TF Quantum

e A software framework for hybrid quantum-classical machine
learning under TensorFlow and Cirq

e Fast prototyping, training, inference, and testing of quantum
models over quantum data

e Discovering new quantum algorithms for NISQ devices or
error-corrected quantum computers

e Representation power (efficiently representing data)
e Optimization power (efficient iterations)

e Generalization power (minimizing the error in prediction)

e Representation power (efficiently representing data)
e Optimization power (efficient iterations)

e Generalization power (minimizing the error in prediction)

Can we improve any (combinations) of these features quantum mechanically?

e Quantizing classical neural networks (pre-history 90s)

e Accelerated linear algebra on quantum computers (2013)
o First generation of QML
o Only applies to fault-tolerant quantum computers

e Low-depth Quantum circuit learning or “Quantum Neural Networks”

o Second generation of QML
o Applicable to Noisy-Intermediate Quantum (NISQ) processors

TensorFlow Quantum

gPCA: Efficient diagonalization of low-rank density matrices

-ipnAt __ ipnAt

=€ oe

Eigenvalues

Lloyd, Mohseni, Rebnetrost,
gK-mean, arXiv:1307.0411
gPCA, Nature Physics (2014), gSVM,

PRL (2014) o) YilVi)|A n=0(logd)

Y Google Al Eigenvectors Eigenvalues
Quantum

e Quantizing classical neural networks (pre-history 90s)

e Accelerated linear algebra on quantum computers (2013)
o First generation of QML
o Only applies to fault-tolerant quantum computers

e Low-depth Quantum circuit learning or “Quantum Neural Networks”

o Second generation of QML
o Applicable to Noisy-Intermediate Quantum (NISQ) processors

TensorFlow Quantum

Quantum Data

Classical Data

QC

~

(S
-

CC

_

%
<

QQ

)

~

(S
-

(&

CQ?

%
=<

)

Classical Models

Quantum Models

>

® TensorFlow Quantum

Quantum Data

Classical Data

QC

~

(S
-

_

CC

%
<

)

(S

~

QQ~

e

(&

<

CQ?

Disentangling quantum
—— data could be
exponentially hard for
classical models in
worse cases (e.g., near a
quantum critical point)

)

Classical Models

Quantum Models

>

® TensorFlow Quantum

Hybrid classical
quantum models for
quantum data

t\lm Data

Quan

Classical Data

_

=

QC

CC

)

QQ

CQ?

\

Disentangling quantum
data could be
exponentially hard for
classical models in
worse cases (e.g., near a
quantum critical point)

)

Classical Models

Quantum Models

>

® TensorFlow Quantum

Classical control of quantum circuits (all guantum computers are hybrid!)
Classical preprocessing or post-processing

Classical algorithms with quantum subroutines

Classical variational outer loops for optimizing quantum circuits
Classical-Quantum co-processors / hybrid quantum-classical models

TensorFlow Quantum

e Data in quantum communication networks:
o quantum key distribution
o quantum repeaters
o quantum receivers

Micius — Nanshan, China

Date Sitedkey QBER Finalkey 4 | *V _
05/06/2017. -~ 1329kb ., 1:0% 305 k.
Qi7 b0~ 1.7% 308K =R
T

The Micius satellite, by MIT Technology review.

n Google Al Quantum
® TensorFlow Quantum

Different Kinds of Quantum Data

e Data in quantum metrology:
o nuclear magnetic resonance detection, NV centers, Rydberg atoms,...
o quantum sensing
o quantum imaging

protein

I[jl Google Al Quantum I. Lovchinsky, et. al. Science, 351(6275), pp.836-841. ® TensorFlow Quantum

e Control and calibration of quantum processors:
o Quantum measurement and parameter estimation
o Quantum control and calibration
o Quantum tomography

n Google Al Quantum
© TensorFlow Quantum

e Output states of quantum computers:
o quantum verification, quantum (nonlocal) inference
o Simulation of chemical systems, material science, pharmaceutical
o Simulation of quantum matter (classification and generative models for
guantum many-body systems, quantum critical systems, e.g., high T
superconductivity).
o quantum algorithm discovery

n Google Al Quantum

© TensorFlow Quantum

Number of A
required
experimental | o 4 ‘ Standard state/process
settings: K tomography
Machine learning for quantum
data, estimating a few v
t ith minimal shot
parametes with minimafshots = Q Partial tornography
/1 | N >>1
7 >
Single shot Number of shots N (repetitions)

estimation

Quantum

n Google Al parameter for a given accuracy

© TensorFlow Quantum

4 Qubit Array

Quantum data
Preparation

N __/ Circuit Depth
Quantum circuit learning

Parameterized Quantum Circuits

Output

Input quantum
quantum state

state

e Sequence of continuously-parameterized “rotations”
e Forms a parameterized quantum circuit, also known as a quantum neural network

P

fx, @)

Variational Quantum Algorithms

Iterative quantum-classical optimization

e Execute parametric quantum circuit on QPU

e Measure observable expectation value <L>
over multiple runs

e Relay information to classical processing
unit (CPU)

e CPU optimization algorithm suggests new
parameters

Hybrid quantum-classical learning

el
-

e Cirq
o Quantum circuit construction and simulation language
o Focused on NISQ devices

e TensorFlow
o One of the most widely used machine learning platform
o Designed for heterogeneous computation

Can we combine them?
TensorFlow Quantum

How can build hybrid models by combining
TF and Cirg?

Technical Hurdle 1

e Quantum data cannot be imported
m Quantum data must be prepared
on the fly
m Both data and the model are layers
in the quantum circuit
m Graph is highly dynamic

Classical data

Trainable
parameters

()

0

Technical Hurdle 2

m QPU run is a few microseconds

m Relatively high latency CPU-QPU (ms)

m Batches of jobs are relayed to quantum
computer

AN

/W AWy, 4

i
‘d-\agi LIRSS o
e B = ¥
j e L
b3

Our design principles

Differentiability: Must support differentiation of quantum circuits and
hybrid backpropagation.

Circuit Batching: Quantum data loaded as quantum circuits, training
over many different quantum circuits in parallel.

Execution Backend Agnostic: Switch from a simulator to a real device
easily with few changes.

Minimalism: A bridge between Cirg and TF; does not require users to
re-learn how interface with quantum computers or solve problems
using machine learning.

Software architecture

e Circuits are TENSORS, use Cirg constructs to generate these tensors

e Converting circuits to classical data (aka running or simulating them) can
be done by OPs

Software stack

Classical Data: Quantum Data:
integers/floats/strings Circuits/Operators

TF Keras Models

TF Layers TFQ Layers TFQ Differentiators

TF Execution Engine TFQgsim

TFQ pipeline for a hybrid discriminative model

Evaluate Gradients &
Update Parameters

Evaluate
Cost
Function

. PR e s NETE g o /\—-___._0/'
|
Prepare Evaluate Sample Evaluate
Quantum Dataset ~Quantum or Classical

Model Average Model

You can use TFQ to
perform a ‘hello world'-type
task; Binary classification
of quantum states for a
single qubit

arXiv:2003.02989

https://arxiv.org/abs/2003.02989

Quantum dataset for a single qubit

import cirq, random, sympy
import numpy as np

import tensorflow as tf

import tensorflow_quantum as tfq

qubit = cirq.GridQubit(e, 0)

@ Q\/& $@ ovov

f%@?oo 0%\2 o io“
owo A s 0%0 Q\/&%\/&w
XK
o 3,% @%a%x%

Vo Y
0“3”0 S 3\% i’%

/\ /\

0
P
o
VAV
& ,é\i o
2 ¢ 5

N

import cirq, random, sympy
import numpy as np

import tensorflow as tf

import tensorflow_quantum as tfq

qubit = cirq.GridQubit(e, 0)

Quantum data labels
expected_labels = np.array([[1, ©], [0, 1]])

Random rotation of X and Z axes
angle = np.random.uniform(@, 2 * np.pi)

(£ 00080 470 070,
N D o
M VAVAVAVAY 2 W

K I I I I K
AVAVAVAVAY
XK K K K K
VAVAVAVAY 2 W

. I K I I K
VAVAVAVAVAY,
X I3 K I I K
VYl Y e
NAVAVAVAVY AV
N §/\> 2/6 </\§ O \>/\§

import cirq, random, sympy
import numpy as np

import tensorflow as tf

import tensorflow_quantum as tfq

qubit = cirq.GridQubit(e, 0)

Quantum data labels
expected_labels = np.array([[1, @], [0, 1]])

Random rotation of X and Z axes
angle = np.random.uniform(@, 2 * np.pi)

Build the quantum data
a = cirqg.Circuit(cirq.Ry(angle)(qubit))

cirqg.Circuit(cirqg.Ry(angle + np.pi/2)(qubit))
quantum_data = tfq.convert_to_tensor([a, b])

q_data_input

A

Build the quantum model
g_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

q_data_input g_model

A

R,(0)

Build the quantum model
g_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
g_model = cirqg.Circuit(cirq.Ry(theta)(qubit))

q_data_input g_model expectation

A

<zZ>

——{ro S~

Build the quantum model
g_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
g_model = cirqg.Circuit(cirq.Ry(theta)(qubit))

expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(qg_data_input)

q_data_input g_model expectation classifier

A

<zZ> w

—RrR0) A~ SoftMax

Build the quantum model
g_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
g_model = cirqg.Circuit(cirq.Ry(theta)(qubit))

expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(qg_data_input)

Attach the classical SoftMax classifier
classifier = tf.keras.layers.Dense(2, activation=tf.keras.activations.softmax)
classifier_output = classifier(expectation_output)

g_data_input g_model expectation classifier

<zZ> w

—RrR0) A~ SoftMax

Build and train the hybrid model

model = tf.keras.Model(inputs=q_data_input, | Learning to classify quantum data
outputs=classifier_output)

model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=0.1),
loss=tf.keras.losses.CategoricalCrossentropy())

history = model.fit(x=quantum_data, y=expected_labels,
epochs=250, verbose=0)

c
=]
=
o
v
=
@
n
o
]
£
5
=
i}

0 50 100 150
Iterations
Final loss value:
0.0007150595774874091

Check inference on noisy quantum datapoints
noise = np.random.uniform(-6.25, 0.25, 2)
test_data = tfqg.convert_to_tensor (|

Cqu.C:!.rcu1t(: : Noisy element from a:
cirq.Ry(random_angle + noise[8])(qubit)), prob(0)=0.9995, prob(1)=0.0005

cirqg.Circuit(Noisy element from b:
cirqg.Ry(random_angle + noise[1] + np.pi/2)(qubit)) prob(0)=0.0025, prob(1)=06.9975

1)

predictions = model.predict(test_data)

I. Cong, M. Lukin, — o (ﬁ)_ —
Nature Physics (2019) —_l_l U6
e u(#) — o)
r 1 — HyfA\r
)A((l
N
b
! 1
_ - | |
| Prepare | I
Cluster i J
— State [I
_ - u — QPool [— (Z) wse — LOSS
________ J

Google Al Quantum Data QNN
n Quantum © TensorFlow Quantum

(0, 0):

O, 1):

0, 2):

0,3):

© TensorFlow Quantum

Hybrid Quantum-Classical CNN

1 X
A J
_| Prepare Qconv
Cluster + A
—~ Test M — QPool —(Z)
i H H @
Shallow QNN

Google Al
Quantum

® TensorFlow Quantum

Hybrid quantum-classical CNNs:
Distributed NISQ Computing

s |
E.r — Qconv
~ | H +
- QPool
L& J]

: Prepare : : Qconv

Cluster +
— State |— . QP00|
: Qconv

|| -+
| | QPool

Y Google Al
9 Parallelized Shallow QNN @ TensorFlow Quantum

Quantum

Training loss

1.0

0.8

0.6 1

0.4

0.2

Hybrid CNN Results

Quantum vs Hybrid CNN performance

— QNN —

— Hybrid CNN

Hybrid CNN
Multiple Quantum Filters

Epochs

25

Cong, Lukin, et al
Nature Physics (2018)

® TensorFlow Quantum

T

TFQ Benefits to Researchers

1. Reduce prototyping time from weeks to hours
a. Highlevel APl integration with Keras
b. High performance circuit simulator via gsim

2. Support for Hybrid Models & Quantum Data
a. Access to algorithmic features of TensorFlow
b. Integration with Cirq
c. Automatic differentiation of quantum circuits

3. Exposure to TensorFlow Community (Millions of Users)

Next Steps

Research collaborations with academia:
e Quantum Dataset Initiative
e Practical quantum supremacy for QML on quantum data
e Novel quantum control & error mitigation schemes

Engineering:
e Integration with Quantum Engine

Adoption:
e Integrate more academic partners (U of Toronto / Caltech / Harvard) &
Google Brain & Deepmind

Software stack

Libraries and tools

Cirg (Programming framework)

Quantum Engine (Cloud service)

Quantum Hardware Simulators

92In0s uadp

Ateyanidoud

Runmng TFQ via Google’s quantum computing service

Simulators for testing execution
via Quantum Engine

O

Quantum
simulators

results

results

results

remote execution
Quantum

processors

Quantum

simulators 20-72 qubit processors

Google Cloud with high fidelity

High memory machines

i . hl = quantum hardware language
support 38 qubit simulations ani=q guag

The Team

Tech Lead Engineering

Masoud Mohseni .
Google Al Quantum

Product Manager @ Trevor McCourt

Google Al Quantum
—ia Guillaume Verdon
v Quantum @ X e

Michael Broughton
Google Al Quantum

Antonio Martinez
Google Al Quantum

Philip Massey
Google

Alan Ho
Google Al Quantum

Jae Yoo
Tensorflow

Evan Peters
UWaterloo

Theory

Murphy Niu
Google Al Quantum

o~ Thank You!

https://www.tensorflow.org/quantum

arXiv:2003.02989

o o

N T

TensorFlow

DEV SUMMIT 2020

https://www.tensorflow.org/quantum
https://arxiv.org/abs/2003.02989

