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“Nature isn’t classical, dammit, and if you want to 
make a simulation of nature, you’d better make it 
quantum mechanical!”

- Richard Feynman



“Nature isn’t classical, dammit, and if you want to 
learn a model of nature, you’d better make it 
quantum mechanical!”

TFQ team



Quantum mechanics, quantum computing, and 
quantum machine learning 

in the next slide! 



Double-slit experiment at the heart of quantum 
mechanics 
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SlitsParticle source Detector Probability

Quantum particles 
interfere, and can 

cancel out
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Quantum interference

Double-slit experiment at the heart of quantum 
mechanics 

 



Particle source Detector Probability

Quantum computing 
is about creating 

constructive 
interference for 

correct answer(s) 
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Quantum computation

Double-slit experiments as quantum computing  
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Quantum computation

Congratulations! You have just learned quantum computing!

Double-slit experiments as quantum computing  



Random double-slit experiments as random quantum 
operations

Particle source Detector Probability

A distribution that is 
exponentially hard to 

sample classically 
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...

Randomly separated walls with randomly placed slits

Quantum computation

This particular implementation does not lead to quantum supremacy, as it is not scalable !
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Particle source Detector Probability

Quantum machine 
learning is about 

iterative creation of 
constructive 

interference for 
correct answers 
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Quantum machine learning

Start with randomly separated walls with randomly 
placed slits, iteratively change to get the correct outputs

Iterative double-slit experiments as quantum ML
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You have just learned what is quantum machine learning!



The rest of talk are just details 
for scalable implementations! 



Google uses superconducting qubits

 



Google Sycamore processor 



Classical Bit:  Always has a value of 0 or 1
                           A bit can be copied, 
                           Doesn’t change if measured, 
                           Measuring a bit doesn’t affect other unmeasured bits.

Quantum Bits (Qubits)

Quantum Bit (qubit): None of the above holds in general! 

● How should we manipulate quantum information? 

● How can we achieve universal quantum computation?

 



Single Qubit Gates

Arbitrary 
single-qubit 
rotations

+ =

 



“Arbitrary” or “Universal” Quantum Computation

1- Ability to perform arbitrary single qubit rotations 
2- Any nontrivial two-qubit rotations 

  
  +

 



Understanding  quantum circuits
Quantum circuit: sequence of evolutions of a quantum 
state

time

Registers
(qubits)

gates measurement

Probabilistic 
Outcomes 
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TensorFlow Quantum marks another important milestone for 
Quantum at Google 

Cirq and 
OpenFermion 

Launch

Quantum 
Supremacy

Announcement

TF Quantum
Launch

2018 Oct 2019 Mar 2020

Quantum Engine 
Early Acces 

Partners (EAP) 

2020

Google AI Quantum Launch Roadmap



Main Objectives for TF Quantum 

● A software framework  for hybrid quantum-classical machine 
learning under TensorFlow and Cirq 

● Fast prototyping, training, inference, and testing of quantum 
models over quantum data

● Discovering new quantum algorithms for NISQ devices or 
error-corrected quantum computers 



● Representation power (efficiently representing data)

● Optimization power (efficient iterations)

● Generalization power (minimizing the error in prediction)s)

Three main features of machine learning



Three main features of machine learning

● Representation power (efficiently representing data)

● Optimization power (efficient iterations)

● Generalization power (minimizing the error in prediction)s)

Can we improve any (combinations) of these features quantum mechanically?



Types of Quantum machine learning

● Quantizing classical neural networks (pre-history 90s)

● Accelerated linear algebra on quantum computers (2013) 
○ First generation of QML
○ Only applies to fault-tolerant quantum computers

● Low-depth Quantum circuit learning or “Quantum Neural Networks”
○ Second generation of QML
○ Applicable to Noisy-Intermediate Quantum (NISQ) processors 



qPCA:

Lloyd, Mohseni, Rebnetrost,
qK-mean, arXiv:1307.0411
qPCA, Nature Physics (2014), qSVM, 
PRL (2014)



Types of Quantum machine learning

● Quantizing classical neural networks (pre-history 90s)

● Accelerated linear algebra on quantum computers (2013) 
○ First generation of QML
○ Only applies to fault-tolerant quantum computers

● Low-depth Quantum circuit learning or “Quantum Neural Networks”
○ Second generation of QML
○ Applicable to Noisy-Intermediate Quantum (NISQ) processors 
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Quantum  Models

Disentangling quantum 
data could be 
exponentially hard for 
classical models in 
worse cases (e.g., near a 
quantum critical point)

Hybrid classical 
quantum  models for 
quantum data



Types of hybrid quantum-classical computing 

● Classical control of quantum circuits (all quantum computers are hybrid!)
● Classical preprocessing or post-processing 
● Classical algorithms with quantum subroutines
● Classical variational outer loops for optimizing quantum circuits 
● Classical-Quantum co-processors / hybrid quantum-classical models 

 



Different Kinds of Quantum Data
● Data in quantum communication networks:

○ quantum key distribution
○ quantum repeaters
○ quantum receivers 

The Micius satellite, by MIT Technology review.



Different Kinds of Quantum Data
● Data in quantum metrology:

○ nuclear magnetic resonance detection, NV centers, Rydberg atoms,... 
○ quantum sensing
○ quantum imaging

I. Lovchinsky, et. al. Science, 351(6275), pp.836-841.



Different Kinds of Quantum Data
● Control and calibration of quantum processors: 

○ Quantum measurement and parameter estimation 
○ Quantum control and calibration 
○ Quantum tomography 



Different Kinds of Quantum Data
● Output states of quantum computers: 

○ quantum verification, quantum (nonlocal) inference 
○ Simulation of chemical systems, material science, pharmaceutical
○ Simulation of quantum matter (classification and generative models for 

quantum many-body systems, quantum critical systems, e.g., high T 
superconductivity).

○ quantum algorithm discovery



Examples of QML for quantum data: parameter estimation
state discrimination, error-detection, state/procss tomography 

 
Number of 
required 
experimental 
settings:  K

K >> 1

Number of shots N (repetitions) 
for a given accuracy

N >> 1

Machine learning for quantum 
data, estimating a few 
parameters with minimal shots
 

Standard state/process 
tomography

Partial tomography

Single shot 
parameter 
estimation



Quantum data
Preparation Quantum circuit learning 

QML on finite space-time volume of 
parameterized quantum circuits  



Parameterized Quantum Circuits

● Sequence of continuously-parameterized “rotations”
● Forms a parameterized quantum circuit, also known as a quantum neural network

Input quantum 
state

Output 
quantum state



QNN training loop:● Execute parametric quantum circuit on QPU
● Measure observable expectation value <L> 

over multiple runs
● Relay information to classical processing 

unit (CPU)
● CPU optimization algorithm suggests new 

parameters

Variational Quantum Algorithms
Iterative quantum-classical optimization



Hybrid quantum-classical learning

 



What are the existing toolboxes?

● Cirq
○ Quantum circuit construction and simulation language 
○ Focused on NISQ devices

● TensorFlow
○ One of the most widely used machine learning platform
○ Designed for heterogeneous computation

Can we combine them?



How can build hybrid models by combining 
TF and Cirq?

+



Technical Hurdle 1

● Quantum data cannot be imported
■ Quantum data must be prepared 

on the fly
■ Both data and the model are layers 

in the quantum circuit
■ Graph is highly dynamic



Technical Hurdle 2

● QPU needs full quantum program for each run
■ QPU run is a few microseconds
■ Relatively high latency CPU-QPU (ms)
■ Batches of jobs are relayed to quantum 

computer

 



Our design principles

1. Differentiability: Must support differentiation of quantum circuits and 
hybrid backpropagation.

2. Circuit Batching: Quantum data loaded as quantum circuits, training 
over many different quantum circuits in parallel.

3. Execution Backend Agnostic: Switch from a simulator to a real device 
easily with few changes.

4. Minimalism: A bridge between Cirq and TF; does not require users to 
re-learn how interface with quantum computers or solve problems 
using machine learning.

 



● Circuits are TENSORS, use Cirq constructs to generate these tensors
● Converting circuits to classical data (aka running or simulating them) can 

be done by OPs

Software architecture 

 



Software stack 

TF Keras Models

TF Layers

 TF Execution Engine       

TPU

Cirq 

TFQ Ops

TFQ Layers TFQ Differentiators

TFQ qsim

GPU CPU QPU

TF Ops

Classical Data: 
integers/floats/strings

Quantum Data: 
Circuits/Operators

 



TFQ pipeline for a hybrid discriminative model

 



Hello 
Many-Worlds

You can use TFQ to 
perform a ‘hello world’-type 
task; Binary classification 
of quantum states for a 
single qubit

   arXiv:2003.02989

 

https://arxiv.org/abs/2003.02989


Quantum dataset for a single qubit

 



import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq

qubit = cirq.GridQubit(0, 0)



import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq

qubit = cirq.GridQubit(0, 0)

# Quantum data labels
expected_labels = np.array([[1, 0], [0, 1]])

# Random rotation of X and Z axes
angle = np.random.uniform(0, 2 * np.pi)



import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq

qubit = cirq.GridQubit(0, 0)

# Quantum data labels
expected_labels = np.array([[1, 0], [0, 1]])

# Random rotation of X and Z axes
angle = np.random.uniform(0, 2 * np.pi)

# Build the quantum data 

a = cirq.Circuit(cirq.Ry(angle)(qubit))
b = cirq.Circuit(cirq.Ry(angle + np.pi/2)(qubit))
quantum_data = tfq.convert_to_tensor([a, b])

x

y

z

a

b



# Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

q_data_input



# Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))

q_data_input

Ry(𝜃)

q_model



# Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))

expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(q_data_input)

q_data_input

Ry(𝜃)

q_model expectation

<Z>



# Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))

expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(q_data_input)

# Attach the classical SoftMax classifier
classifier = tf.keras.layers.Dense(2, activation=tf.keras.activations.softmax)
classifier_output = classifier(expectation_output)

q_data_input

Ry(𝜃)

q_model expectation

<Z> pa

pb

classifier

wa

wb

SoftMax



# Build and train the hybrid model
model = tf.keras.Model(inputs=q_data_input,

outputs=classifier_output)
model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=0.1),
     loss=tf.keras.losses.CategoricalCrossentropy())
history = model.fit(x=quantum_data, y=expected_labels,

epochs=250, verbose=0)

q_data_input

Ry(𝜃)

q_model expectation

<Z> pa

pb

classifier

wa

wb

SoftMax



# Check inference on noisy quantum datapoints
noise = np.random.uniform(-0.25, 0.25, 2)
test_data = tfq.convert_to_tensor([

cirq.Circuit(
cirq.Ry(random_angle + noise[0])(qubit)),

     cirq.Circuit(
cirq.Ry(random_angle + noise[1] + np.pi/2)(qubit))

])
predictions = model.predict(test_data)



Hybrid Quantum-Classical 

Convolutional Neural Networks (CNN)



Quantum CNN 

Quantum Data QNN

I. Cong, M. Lukin, 
Nature Physics (2019)



Cluster State Prepartion 



Hybrid Quantum-Classical CNN

Shallow QNN



Hybrid quantum-classical CNNs:
Distributed NISQ Computing 

Parallelized Shallow QNN



Hybrid CNN Results
Cong, Lukin, et al 
Nature Physics (2018)



TFQ Benefits to Researchers

1. Reduce prototyping time from weeks to hours 
a. High level API integration with Keras
b. High performance circuit simulator via qsim

2. Support for Hybrid Models & Quantum Data
a. Access to algorithmic features of TensorFlow
b. Integration with Cirq
c. Automatic differentiation of quantum circuits

3. Exposure to TensorFlow Community (Millions of Users)



Next Steps

 

Research collaborations with academia:
● Quantum Dataset Initiative
● Practical quantum supremacy for QML on quantum data 
● Novel quantum control & error mitigation schemes 

Engineering: 
● Integration with Quantum Engine

Adoption:
● Integrate more academic partners (U of Toronto / Caltech / Harvard) & 

Google Brain & Deepmind



Quantum Hardware

Quantum Engine (Cloud service)

       Cirq (Programming framework) 
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        Cirq

Running TFQ via Google’s quantum computing service

High memory machines 
support 38 qubit simulations

Quantum 
simulatorQuantum 

simulatorQuantum 
simulators

remote execution qhl

results

Quantum 
Engine

qhl results

qhl

results

qhl = quantum hardware language

20-72 qubit processors 
with high fidelity

Quantum 
simulatorQuantum 

simulatorQuantum 
simulators

Quantum 
simulatorQuantum 

simulatorQuantum 
processors

Simulators for testing execution 
via Quantum Engine
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Thank You!

https://www.tensorflow.org/quantum

arXiv:2003.02989 

https://www.tensorflow.org/quantum
https://arxiv.org/abs/2003.02989

