
TensorFlow Quantum:
An open-source library for
quantum machine learning

Masoud Mohseni
MPML, July 30, 2020

“Nature isn’t classical, dammit, and if you want to
make a simulation of nature, you’d better make it
quantum mechanical!”

- Richard Feynman

“Nature isn’t classical, dammit, and if you want to
learn a model of nature, you’d better make it
quantum mechanical!”

TFQ team

Quantum mechanics, quantum computing, and
quantum machine learning

in the next slide!

Double-slit experiment at the heart of quantum
mechanics

SlitsParticle source Detector Probability

Probabilities for
classical particles

are additive
1

2

SlitsParticle source Detector Probability

Quantum particles
interfere, and can

cancel out
1

2

Quantum interference

Double-slit experiment at the heart of quantum
mechanics

Particle source Detector Probability

Quantum computing
is about creating

constructive
interference for

correct answer(s)

1

2

...

Quantum computation

Double-slit experiments as quantum computing

Particle source Detector Probability

Quantum computing is
about engineering

constructive interference
for correct answer(s)

1

2

...

Quantum computation

Congratulations! You have just learned quantum computing!

Double-slit experiments as quantum computing

Random double-slit experiments as random quantum
operations

Particle source Detector Probability

A distribution that is
exponentially hard to

sample classically

1

2

...

Randomly separated walls with randomly placed slits

Quantum computation

This particular implementation does not lead to quantum supremacy, as it is not scalable !

...

Particle source Detector Probability

Quantum machine
learning is about

iterative creation of
constructive

interference for
correct answers

1

2

Quantum machine learning

Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs

Iterative double-slit experiments as quantum ML

...

Particle source Detector Probability

Quantum machine
learning is about

iterative creation of
constructive

interference for
correct answers

1

2

Quantum machine learning

Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs

Iterative double-slit experiments as quantum ML

...

Particle source Detector Probability

Quantum machine
learning is about

iterative creation of
constructive

interference for
correct answers

1

2

Quantum machine learning

Start with randomly separated walls with randomly
placed slits, iteratively change to get the correct outputs

Iterative double-slit experiments as quantum ML

You have just learned what is quantum machine learning!

The rest of talk are just details
for scalable implementations!

Google uses superconducting qubits

Google Sycamore processor

Classical Bit: Always has a value of 0 or 1
 A bit can be copied,
 Doesn’t change if measured,
 Measuring a bit doesn’t affect other unmeasured bits.

Quantum Bits (Qubits)

Quantum Bit (qubit): None of the above holds in general!

● How should we manipulate quantum information?

● How can we achieve universal quantum computation?

Single Qubit Gates

Arbitrary
single-qubit
rotations

+ =

“Arbitrary” or “Universal” Quantum Computation

1- Ability to perform arbitrary single qubit rotations
2- Any nontrivial two-qubit rotations

 +

Understanding quantum circuits
Quantum circuit: sequence of evolutions of a quantum
state

time

Registers
(qubits)

gates measurement

Probabilistic
Outcomes

100 101 102 103 104 105 106 107 108

Number of Qubits

10-1

10-2

10-3

10-4

Li
m

iti
ng

 e
rr

or
 ra

te

Useful error
corrected QC
(e.g. Shor)

Classically
simulatable ✔
✘

Error correction
thresholdSycamore

Grad school

Near-term Quantum Computing Landscape

100 101 102 103 104 105 106 107 108

Number of Qubits

10-1

10-2

10-3

10-4

Li
m

iti
ng

 e
rr

or
 ra

te

Useful error
corrected QC
(e.g. Shor)

Classically
simulatable ✔
✘

Error correction
thresholdSycamore

Grad school

Near-term Quantum Computing Landscape

Always 10+ years away!?

100 101 102 103 104 105 106 107 108

Number of Qubits

10-1

10-2

10-3

10-4

Li
m

iti
ng

 e
rr

or
 ra

te

Useful error
corrected QC
(e.g. Shor)

Near-term applications?

Classically
simulatable ✔
✘

Error correction
thresholdSycamore

Grad school

Near-term Quantum Computing Landscape

Always 10+ years away!?

100 101 102 103 104 105 106 107 108

Number of Qubits

10-1

10-2

10-3

10-4

Li
m

it
in

g
er

ro
r

ra
te

Useful error
corrected QC
(e.g. Shor)

Near-term applications?
Quantum machine learning

Classically
simulatable ✔
✘

Error correction
thresholdSycamore

Grad school

Near-term Quantum Computing Landscape

Always 10+ years away!?

TensorFlow Quantum marks another important milestone for
Quantum at Google

Cirq and
OpenFermion

Launch

Quantum
Supremacy

Announcement

TF Quantum
Launch

2018 Oct 2019 Mar 2020

Quantum Engine
Early Acces

Partners (EAP)

2020

Google AI Quantum Launch Roadmap

Main Objectives for TF Quantum

● A software framework for hybrid quantum-classical machine
learning under TensorFlow and Cirq

● Fast prototyping, training, inference, and testing of quantum
models over quantum data

● Discovering new quantum algorithms for NISQ devices or
error-corrected quantum computers

● Representation power (efficiently representing data)

● Optimization power (efficient iterations)

● Generalization power (minimizing the error in prediction)s)

Three main features of machine learning

Three main features of machine learning

● Representation power (efficiently representing data)

● Optimization power (efficient iterations)

● Generalization power (minimizing the error in prediction)s)

Can we improve any (combinations) of these features quantum mechanically?

Types of Quantum machine learning

● Quantizing classical neural networks (pre-history 90s)

● Accelerated linear algebra on quantum computers (2013)
○ First generation of QML
○ Only applies to fault-tolerant quantum computers

● Low-depth Quantum circuit learning or “Quantum Neural Networks”
○ Second generation of QML
○ Applicable to Noisy-Intermediate Quantum (NISQ) processors

qPCA:

Lloyd, Mohseni, Rebnetrost,
qK-mean, arXiv:1307.0411
qPCA, Nature Physics (2014), qSVM,
PRL (2014)

Types of Quantum machine learning

● Quantizing classical neural networks (pre-history 90s)

● Accelerated linear algebra on quantum computers (2013)
○ First generation of QML
○ Only applies to fault-tolerant quantum computers

● Low-depth Quantum circuit learning or “Quantum Neural Networks”
○ Second generation of QML
○ Applicable to Noisy-Intermediate Quantum (NISQ) processors

 QC QQ

 CC CQ ?

Classical Models

Types of Machine Learning

 C

la
ss

ic
al

 D
at

a

 Q
ua

nt
um

 D
at

a

Quantum Models

 QC QQ

 CC CQ ?

Classical Models

Types of Machine Learning

 C

la
ss

ic
al

 D
at

a

 Q
ua

nt
um

 D
at

a

Quantum Models

Disentangling quantum
data could be
exponentially hard for
classical models in
worse cases (e.g., near a
quantum critical point)

 QC QQ

 CC CQ ?

Classical Models

Types of Machine Learning

 C

la
ss

ic
al

 D
at

a

 Q
ua

nt
um

 D
at

a

Quantum Models

Disentangling quantum
data could be
exponentially hard for
classical models in
worse cases (e.g., near a
quantum critical point)

Hybrid classical
quantum models for
quantum data

Types of hybrid quantum-classical computing

● Classical control of quantum circuits (all quantum computers are hybrid!)
● Classical preprocessing or post-processing
● Classical algorithms with quantum subroutines
● Classical variational outer loops for optimizing quantum circuits
● Classical-Quantum co-processors / hybrid quantum-classical models

Different Kinds of Quantum Data
● Data in quantum communication networks:

○ quantum key distribution
○ quantum repeaters
○ quantum receivers

The Micius satellite, by MIT Technology review.

Different Kinds of Quantum Data
● Data in quantum metrology:

○ nuclear magnetic resonance detection, NV centers, Rydberg atoms,...
○ quantum sensing
○ quantum imaging

I. Lovchinsky, et. al. Science, 351(6275), pp.836-841.

Different Kinds of Quantum Data
● Control and calibration of quantum processors:

○ Quantum measurement and parameter estimation
○ Quantum control and calibration
○ Quantum tomography

Different Kinds of Quantum Data
● Output states of quantum computers:

○ quantum verification, quantum (nonlocal) inference
○ Simulation of chemical systems, material science, pharmaceutical
○ Simulation of quantum matter (classification and generative models for

quantum many-body systems, quantum critical systems, e.g., high T
superconductivity).

○ quantum algorithm discovery

Examples of QML for quantum data: parameter estimation
state discrimination, error-detection, state/procss tomography

Number of
required
experimental
settings: K

K >> 1

Number of shots N (repetitions)
for a given accuracy

N >> 1

Machine learning for quantum
data, estimating a few
parameters with minimal shots

Standard state/process
tomography

Partial tomography

Single shot
parameter
estimation

Quantum data
Preparation Quantum circuit learning

QML on finite space-time volume of
parameterized quantum circuits

Parameterized Quantum Circuits

● Sequence of continuously-parameterized “rotations”
● Forms a parameterized quantum circuit, also known as a quantum neural network

Input quantum
state

Output
quantum state

QNN training loop:● Execute parametric quantum circuit on QPU
● Measure observable expectation value <L>

over multiple runs
● Relay information to classical processing

unit (CPU)
● CPU optimization algorithm suggests new

parameters

Variational Quantum Algorithms
Iterative quantum-classical optimization

Hybrid quantum-classical learning

What are the existing toolboxes?

● Cirq
○ Quantum circuit construction and simulation language
○ Focused on NISQ devices

● TensorFlow
○ One of the most widely used machine learning platform
○ Designed for heterogeneous computation

Can we combine them?

How can build hybrid models by combining
TF and Cirq?

+

Technical Hurdle 1

● Quantum data cannot be imported
■ Quantum data must be prepared

on the fly
■ Both data and the model are layers

in the quantum circuit
■ Graph is highly dynamic

Technical Hurdle 2

● QPU needs full quantum program for each run
■ QPU run is a few microseconds
■ Relatively high latency CPU-QPU (ms)
■ Batches of jobs are relayed to quantum

computer

Our design principles

1. Differentiability: Must support differentiation of quantum circuits and
hybrid backpropagation.

2. Circuit Batching: Quantum data loaded as quantum circuits, training
over many different quantum circuits in parallel.

3. Execution Backend Agnostic: Switch from a simulator to a real device
easily with few changes.

4. Minimalism: A bridge between Cirq and TF; does not require users to
re-learn how interface with quantum computers or solve problems
using machine learning.

● Circuits are TENSORS, use Cirq constructs to generate these tensors
● Converting circuits to classical data (aka running or simulating them) can

be done by OPs

Software architecture

Software stack

TF Keras Models

TF Layers

 TF Execution Engine

TPU

Cirq

TFQ Ops

TFQ Layers TFQ Differentiators

TFQ qsim

GPU CPU QPU

TF Ops

Classical Data:
integers/floats/strings

Quantum Data:
Circuits/Operators

TFQ pipeline for a hybrid discriminative model

Hello
Many-Worlds

You can use TFQ to
perform a ‘hello world’-type
task; Binary classification
of quantum states for a
single qubit

 arXiv:2003.02989

https://arxiv.org/abs/2003.02989

Quantum dataset for a single qubit

import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq

qubit = cirq.GridQubit(0, 0)

import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq

qubit = cirq.GridQubit(0, 0)

Quantum data labels
expected_labels = np.array([[1, 0], [0, 1]])

Random rotation of X and Z axes
angle = np.random.uniform(0, 2 * np.pi)

import cirq, random, sympy
import numpy as np
import tensorflow as tf
import tensorflow_quantum as tfq

qubit = cirq.GridQubit(0, 0)

Quantum data labels
expected_labels = np.array([[1, 0], [0, 1]])

Random rotation of X and Z axes
angle = np.random.uniform(0, 2 * np.pi)

Build the quantum data

a = cirq.Circuit(cirq.Ry(angle)(qubit))
b = cirq.Circuit(cirq.Ry(angle + np.pi/2)(qubit))
quantum_data = tfq.convert_to_tensor([a, b])

x

y

z

a

b

Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

q_data_input

Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))

q_data_input

Ry(𝜃)

q_model

Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))

expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(q_data_input)

q_data_input

Ry(𝜃)

q_model expectation

<Z>

Build the quantum model
q_data_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.Ry(theta)(qubit))

expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(q_data_input)

Attach the classical SoftMax classifier
classifier = tf.keras.layers.Dense(2, activation=tf.keras.activations.softmax)
classifier_output = classifier(expectation_output)

q_data_input

Ry(𝜃)

q_model expectation

<Z> pa

pb

classifier

wa

wb

SoftMax

Build and train the hybrid model
model = tf.keras.Model(inputs=q_data_input,

outputs=classifier_output)
model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=0.1),
 loss=tf.keras.losses.CategoricalCrossentropy())
history = model.fit(x=quantum_data, y=expected_labels,

epochs=250, verbose=0)

q_data_input

Ry(𝜃)

q_model expectation

<Z> pa

pb

classifier

wa

wb

SoftMax

Check inference on noisy quantum datapoints
noise = np.random.uniform(-0.25, 0.25, 2)
test_data = tfq.convert_to_tensor([

cirq.Circuit(
cirq.Ry(random_angle + noise[0])(qubit)),

 cirq.Circuit(
cirq.Ry(random_angle + noise[1] + np.pi/2)(qubit))

])
predictions = model.predict(test_data)

Hybrid Quantum-Classical

Convolutional Neural Networks (CNN)

Quantum CNN

Quantum Data QNN

I. Cong, M. Lukin,
Nature Physics (2019)

Cluster State Prepartion

Hybrid Quantum-Classical CNN

Shallow QNN

Hybrid quantum-classical CNNs:
Distributed NISQ Computing

Parallelized Shallow QNN

Hybrid CNN Results
Cong, Lukin, et al
Nature Physics (2018)

TFQ Benefits to Researchers

1. Reduce prototyping time from weeks to hours
a. High level API integration with Keras
b. High performance circuit simulator via qsim

2. Support for Hybrid Models & Quantum Data
a. Access to algorithmic features of TensorFlow
b. Integration with Cirq
c. Automatic differentiation of quantum circuits

3. Exposure to TensorFlow Community (Millions of Users)

Next Steps

Research collaborations with academia:
● Quantum Dataset Initiative
● Practical quantum supremacy for QML on quantum data
● Novel quantum control & error mitigation schemes

Engineering:
● Integration with Quantum Engine

Adoption:
● Integrate more academic partners (U of Toronto / Caltech / Harvard) &

Google Brain & Deepmind

Quantum Hardware

Quantum Engine (Cloud service)

 Cirq (Programming framework)

 O
pe

nF
er

m
io

n

 T

en
so

rF
lo

w

Q

ua
nt

um

Re
C

irq

C
ert

ifi
ab

le
 R

an
do

m

N
um

be
r G

en
er

at
io

n

Software stack

Libraries and tools
O

pen source
ProprietarySimulators

Q
si

m
 S

im
ul

at
or

 Cirq

Running TFQ via Google’s quantum computing service

High memory machines
support 38 qubit simulations

Quantum
simulatorQuantum

simulatorQuantum
simulators

remote execution qhl

results

Quantum
Engine

qhl results

qhl

results

qhl = quantum hardware language

20-72 qubit processors
with high fidelity

Quantum
simulatorQuantum

simulatorQuantum
simulators

Quantum
simulatorQuantum

simulatorQuantum
processors

Simulators for testing execution
via Quantum Engine

Trevor McCourt
Google AI Quantum

Michael Broughton
Google AI Quantum

The Team

Evan PetersJae Yoo
Tensorflow

UWaterloo

Antonio Martinez

EngineeringTech Lead

Masoud Mohseni
Google AI Quantum

Alan Ho
Google AI Quantum

Theory

Guillaume Verdon
Quantum @ X

Product Manager

Google AI Quantum

Google
Philip Massey

Murphy Niu
Google AI Quantum

Thank You!

https://www.tensorflow.org/quantum

arXiv:2003.02989

https://www.tensorflow.org/quantum
https://arxiv.org/abs/2003.02989

