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Linear categories

A linear category is a category enriched in (Mod(k), ®) for some
commutative ring k, that is, hom-sets are k-modules and
composition is k-bilinear. Linear categories constitute the
framework for homological algebra. Examples:

» A k-algebra (A, +,-) considered as category with a single
object *, Hom(x*,*) = (A, +) and composition -
» The category Mod(A) of (left) A-modules

» Grothendieck abelian categories, by the Gabriel-Popescu
theorem these are precisely localisations of module categories
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Quasi-categories

A quasi-category is a simplicial set satisfying the weak Kan
condition, that is, inner horns can be filled. Originally due to
Boardman-Vogt, the theory was later developed by Joyal, Lurie in
the context of higher categories.

Enriched oo-categories considered by Gepner-Haugseng, Lurie:

» Describe linear stable co-categories
» Enrichment in oco-categories of chain complexes
» Based upon the theory of quasi-categories
Linear quasi-categories in today's talk:
» Describe linear oo-categories including “nerves’ of algebras
» Enrichment in (Mod(k), ®)

» Theory of enriched quasi-categories which returns ordinary
quasi-categories for (Set, x)

Future: establish linear co-topoi recovering Grothendieck
categories as truncations
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Simplicial objects

Let A be the simplex category:
» objects: the posets [n] = {0,...,n} with n >0
» order morphisms f : [n] — [m] (i <j = f(i) < f()))
The category A is generated by
» coface maps d; : [n — 1] — [n] (which “misses j") (0 < j < n)
» codegeneracy maps o; : [n+ 1] — [n] (which “doubles /")
(0<i<n)
Let V be a category. The category of simplicial V-objects is

SV = Fun(A, V).

An important special case is the category of simplicial sets
SSet = S Set.



Simplicial objects

Consider SV = Fun(A°P, V) for a category V as above.
A simplicial V-object X € SV with X, = X([n]) is uniquely
determined by

» face maps dj = X(6;) : Xp — Xp—1 (0 </ < n)

» degeneracy maps s; = X(0j) : Xp — Xpp1 (0 < < n)

satisfying the simplicial identities
didj =dj_1d; <]
Sisj = sjy18; 1<

Sj_ld,' i<j
disj = 1 id i=jori=j+1
de,',l i>j+1
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Nerve functors

Consider the Yoneda embedding
Y : A — SSet: [n] — A" = A(—, [n]).

Then A" is the standard simplicial n-simplex.

The importance of SSet in algebraic topology and homological
algebra stems from realisations of A inside other categories C of
interest through functors

pc: A —C:[n— A
Such a cosimplicial C-object p¢ gives rise to a nerve functor
Ne :C —SSet: C— Nc(C) = C(pc(—), C)

with Ne(C), = C(AL, C).
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In C = Top, consider the standard topological n-simplices ATOP:

1
1 1
[ J
0
0 3
0
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The corresponding p1op 1 A — Top : [n] — Af,, gives rise to the
singular simplicial set functor Sing = N, with

Smg(X)n = Top(Apl—opv X)
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Categorical nerve
In C = Cat the category AZ,, has Ob(AZ,,) = [n] and
* 1<

HomAEat(i,j) = {

@ else

The corresponding pcat : A — Cat : [n] — AZ,, gives rise to the
categorical nerve functor N = Nc,¢ with

N(A), = IT A4 A) x .. x A(An-1, An)
Ag,...,An€0b(A)

U:(AO Al An—l

f

» di(v)=(A,...,figx1fi,..., fp) for 1 <i<n-—1
> do(u) = (fay...,fn), dn(u)="(f,...,F-1)
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Let k be a commutative ground ring. For C = A..- Cat, consider
the composition pa___cat:

A ﬁ Cat W Cat(k) E— Aoo_ Cat : [n] — Ago
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Dg and A,.-nerve

Let k be a commutative ground ring. For C = A..- Cat, consider
the composition pa___cat:

A ﬁ Cat W Cat(k) E— Aoo_ Cat : [n] — Ago

This gives rise to the As-nerve and its restriction, the dg nerve:

Ngg : dg Cat(k) — A Cat — SSet : A — Aso-Fun(AZ, A).

Question
For k-linear categories, can we define a nerve taking values in
k-modules rather than sets?



Linear nerve?

Let A be a k-linear category. Consider the k-modules

Ne(A)n= P A(A, A1) ® ... ® A(Ay_1,Ap)
Ao,...,AnEOb(.A)

u=hH® - ®f € A(Ay, A1) ® .. A(Ap—1,An)

> di(uU)=AQR - QFfix1fR - Rf,forl1<i<n-1
+
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Linear nerve?

Let A be a k-linear category. Consider the k-modules

Ni(A)n = P AlAA)© ... ® A(Ar1, Ap)
Ao,...,AnEOb(A)

u=hH® - ®f € A(Ay, A1) ® .. A(Ap—1,An)

> di(u)=A® Qfi1fi®- - Qffor 1<i<n-1
> do(u) =7  dn(u) =7

Problem
The Ni(A), do not constitute a simplicial k-module!
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The finite interval category

Let A be the finite interval category:
» objects: the posets [n] = {0,...,n} with n >0
» order morphisms f : [n] — [m] with 7(0) = 0 and f(n)

// \ T\\

The category A¢ is generated by
» inner coface maps 6; : [n — 1] — [n] (0 </ < n)

» codegeneracy maps o; : [n+ 1] — [n] (0 < i < n)
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The finite interval category

The category Ar is strict monoidal with [n] + [m] = [n+ m]. The
tensor unit is [0]. The sum of morphisms looks like this:

iFefs =17
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ce—=>00
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Colax monoidal functors

Let H:U — V be a functor between monoidal categories. A
colax monoidal structure on H consists of a natural transformation

piH(=@u =) = H(=) @y H(=)

and a morphism € : H(k;) — Iy satisfying the natural
coassociativity and counitality axioms. The structure is strong
monoidal if 11 is an isomorphism and stongly unital if € is an
isomorphism.



Colax monoidal functors
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colax monoidal structure on H consists of a natural transformation

piH(=@u =) = H(=) @y H(=)

and a morphism € : H(k;) — Iy satisfying the natural
coassociativity and counitality axioms. The structure is strong
monoidal if 11 is an isomorphism and stongly unital if € is an
isomorphism.

Proposition (Leinster)

Let (V, x,1) be a cartesian monoidal category. There is an
isomorphism of categories

Colax(A, V) ~ SV.

In particular, we have Colax(A?”, Set) ~ SSet.



Colax monoidal functors

Proposition (Leinster)

Let (V, x,1) be a cartesian monoidal category. There is an
isomorphism of categories

Colax(A%, V) ~ SV.



Colax monoidal functors

Proposition (Leinster)

Let (V, x,1) be a cartesian monoidal category. There is an
isomorphism of categories

Colax(A%, V) ~ SV.

For a colax monoidal functor (X : A?p — V, u, €) we obtain outer
face maps dy and d, respectively as:

Xn+1 WXI X Xn Txn

and

Xnt1 o Xn x Xo — = X

In general, the comultiplication i of a colax monoidal functor is a
stand-in for the outer face maps.
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Colax monoidal functors

Proposition (Leinster)

Let (V, x,1) be a cartesian monoidal category. There is an
isomorphism of categories

Colax(A%, V) ~ SV.
Inspiration: Leinster's homotopy monoids

» generalised Deligne conjecture (Shoikhet)
» Segalic approach to enriched higher categories (Bacard)
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Let (V,®, 1) be a (nice) monoidal category and S a set. A
V-quiver on vertex set S consists of V-objects Q(a, b) for a,b € S.
The category Quivs(V) of V-quivers on S is monoidal with

I ifa=b
P)( || P / =
(Q®sP)(a, b) CGSQ a,c)®P(c,b) and Is(a,b) {0 a4 b

Definition
A templicial V-object with base S is a strongly unital colax
monoidal functor X : A% — Quivs(V).

Templicial V-objects (with varying base) form a category SgV .

Proposition
We have SSet ~ S, Set.



Templicial objects

Definition
A templicial V-object with base S is a strongly unital colax
monoidal functor X : A% — Quivs(V).

Concretely, a templicial V-object X € S5V is given by

Xn(a,b) €V
I ifa=b
forne€N, a, b € S with Xp(a, b) ~ I .
0 ifa#b

and comultiplications

pinm : Xntm(a, b) = ] Xa(a, €) @ Xmn(c, ).
Cc



Enriched nerve

Proposition
Let C be a small V-category.

1. The V-quivers
Ny(C), = C®"

can be naturally endowed with the structure of a templicial
V-object with base Ob(C) and

p COMEM _y C8n g O

the canonical isomorphism.
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Enriched nerve

Proposition
Let C be a small V-category.
1. The V-quivers
Ny(C), = C®"

can be naturally endowed with the structure of a templicial
V-object with base Ob(C) and

p COMEM _y C8n g O

the canonical isomorphism.

2. There is a resulting fully faithful enriched nerve functor
Ny : Cat(V) — SgV.

3. A templicial V-object X is isomorphic to the nerve of a small
V-category if and only if X is strong monoidal.



Underlying simplicial set

The free-forget adjunction F :Set SV : U with F(S) =]],cs/
and U(V) =V(I, V) gives rise to a free-forget adjunction

F:SSet 5 SpV @ U with U(X), = SoV(F(A"), X).
Proposition

Consider (X, S) € SgV with underlying simplicial set J(X). An
n-simplex of U(X) is equivalent to a pair

((ai € S)o<i<n, (aiu‘ € U(Xj,-(a,-,aj))>0§<j§n>
such that for all 0 < i < k < j < n, we have

fik—ij—k(Qij) = ik ® aj

In particular, we have U(X)y ~ S.



Underlying simplicial set

Proposition

Consider (X, S) € SgV with U(X), = SgV(F(A"), X). An
n-simplex of U(X) is equivalent to a pair

((a,- € S)o<i<n; <OéiJ € U(Xj_,-(oa,-,ocj))>0§<j§n>
such that for all 0 < i < k < j < n, we have

Pi—ij—k(ij) = ik @ ayj

ce—>e—
——>e
o—>e

T e—>e—



Quasi-categories

A quasi-category X is a simplicial set satisfying the weak Kan
property, that is, inner horns can be filled. To illustrate the idea,
consider A2 C A2 and a filling 7j: A%2 — X of n: A2 — X.

1 1

n$

fg



Enriched quasi-categories

Definition
A templicial V-object (X, S) is a V-quasi-category if for all
0 < k < n, every diagram of solid arrows in SgV

F(IND) —— X

A
7
7
Ve
7

F(A™)

has a lift represented by the dotted arrow. The full subcategory of
SgV spanned by the V-quasi-categories is denoted by QCat()).



Enriched quasi-categories

Definition
A templicial V-object (X, S) is a V-quasi-category if for all
0 < k < n, every diagram of solid arrows in SgV

F(IND) —— X

[
Fan)

has a lift represented by the dotted arrow. The full subcategory of
SgV spanned by the V-quasi-categories is denoted by QCat()).

Remark
A templicial V-object X is a V-quasi-category if and only if its
underlying simplicial set U(X) is an ordinary quasi-category.
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Enriched quasi-categories

Proposition
Let C be a small V-category with underlying category C. We have

O(My(C)) = N(C).
In particular, Ny,(C) is a V-quasi-category.

Question
Let A be a quasi-category. Is F(A) a V-quasi-category?



Enriched quasi-categories

VAN
/\ %DN

e e

fg



Enriched quasi-categories

VAN
/\ /\

Observation: the 2-simplex f[Jg with dl(ng) = fg can be
extracted from a morphism

Z: X1X1 =X fRg— flg



Nonassociative Frobenius (naF) structures

Let (H:U — V, i, €) be a strongly unital colax monoidal functor.
A nonassociative Frobenius (naF) structure on H is a natural
transformation

Z: H(-)®y H(=) = H(— ®u —)
with unit €1 and such that the Frobenius identities hold:

H(A® B) @ H(C)“25 H(A) ® H(B) ® H(C) )\ ’

HA,B®C

H(A)® H(B ® C)—)H(A)® H(B) ® H(C)

ZA,B@CJ J&_B@id

H(A® B ® C) o H(A® B) ® H(C) Y ’

:’;ZB;JBM%H(A)@EZS:; Y
A

d®ug,c ‘

e



Nonassociative Frobenius (naF) structures

Let (H:U — V, i, €) be a strongly unital colax monoidal functor.
A nonassociative Frobenius (naF) structure on H is a natural
transformation

Z:H(-)®y H(=) = H(— ®y —)

with unit €71 : H(h;) — h, and such that the Frobenius identities
hold.

If Z is moreover associative, then H is a Frobenius monoidal
functor in the sense of Day-Pastro.



naF templicial objects

Definition
A naF-templicial object is a templicial object equipped with a
naF-structure.

Concretely, this means that X is endowed with additional
(nonassociative) multiplications

ZP9 1 Xp(a, c) @ Xq(c, b) = Xpiq(a, b)
such that

e 2P = (ZPk=P @ idx,)(idx, @pk_ps) if p <k
’ (idx, ©ZP ) (s pi @ idx,) if p > k

for all k,I,p,q > 0 such that k+/=p+q.



naF templicial objects (2)

Example

Let C be a small V-enriched category. Its nerve Ny,(C) is a strong
monoidal functor A" — Quivope)(V). In particular, Ny(C) is a
naF-templicial object whose multiplication is given by the inverses
of the comultiplication maps pux : CO4F = c®k g ¥/



naF templicial objects (2)

Example

Let C be a small V-enriched category. Its nerve Ny,(C) is a strong
monoidal functor A" — Quivope)(V). In particular, Ny(C) is a
naF-templicial object whose multiplication is given by the inverses
of the comultiplication maps pux : CO4F = c®k g ¥/

For example, let A be a k-algebra considered as a one-object
k-linear category. Then Ni(A), = A®" for n > 0 and

T(A) = @nzo Nk(A),,.

» comultiplication: separating tensors

» multiplication: concatenating tensors
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Proposition
A naF templicial module X is a linear quasi-category.
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naF templicial modules

Proposition
A naF templicial module X is a linear quasi-category.
Sketch:

» The multiplications ZP9 fill simplices joined in a vertex, eg.
721 X5(0,2) ® X1(2,3) — X3(0,3):

» Multiplications ZPL+P! inductively fill “necklaces”

D



naF templicial modules

» Consider the wedge W" = 0pA" U 0,A" C A". Wedges can
be filled by decomposing them into necklaces, eg:

PP



naF templicial modules

» Consider the wedge W" = 0pA" U 0,A" C A". Wedges can
be filled by decomposing them into necklaces, eg:

BP0

» In the linear case, filling horns is equivalent to filling wedges.
Note that W" C A} for 0 < k < n.

13 . 13



Linear quasi-categories

Theorem
We have a diagram of functors

u
Cat &—— Cat(k)

13

QCat < QCat(k)
F

which commutes in the sense that

N¢oF~FoN UoNg~Nold
Foh~ heoF holU~U o hy

Moreover, we have the following adjunctions:

h=IN, heAN,, FAU, FAO



The linear dg nerve

Let Séfmb Mod(k) denote the category of templicial modules with
an associative Frobenius structure.

Theorem
There is a linear dg nerve functor

N . dg Cat(k) — QCat(k)
which gives rise to an equivalence of categories

dg Catso(k) =~ SE°P Mod(k).



The linear dg nerve

Let Séfmb Mod(k) denote the category of templicial modules with
an associative Frobenius structure.

Theorem
There is a linear dg nerve functor

N . dg Cat(k) — QCat(k)
which gives rise to an equivalence of categories

dg Catso(k) =~ SE°P Mod(k).
Proof.

dg Catzo(k)g ~ Cat(5+ MOd(k))s ~ Lax(Aip, QuiVS(k)) ~
Frobs, (A%, Quivs(k)) ~ SE°P Mod(k)s



Relation with homotopy categories and dg nerve

dg
N,

QCat(k) dg Cat>o(k)

Ny L
Cat(k)



Relation with homotopy categories and dg nerve

N

QCat(k) d dg Cat>o(k)
hye Ho
Ny L

Cat(k)

Y
QCat(k) « dg Cat>o(k)

U Neg



Future directions

» basic theory, relations with other approaches
» homotopy theory (model structures, derived categories)
P relation with A,.-categories

» higher linear topos theory
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THANK YOU!



