A brief introduction to groupoids

Juan Quijano
LisMath Seminar
Universidade de Lisboa

May 22, 2015

A roapmap of this talk:

- How groupoids describe symmetry (Symmetry beyond groups).
- Groupoids in topology:
- Fundamental groupoid.
- Van Kampen's theorem.
- Applications.

Motivation

Symmetry Groupoids

Many objects which we recognize as symmetric admit few or no non-trivial symmetries. Groupoids allow to fix this.

Recall that a group is a set G together with a multiplication

$$
G \times G \rightarrow G::\left(g_{1}, g_{2}\right) \mapsto g_{1} g_{2}
$$

satisfying:

- Associativity: For all $g_{i} \in G, i \in\{1,2,3\}$:

$$
\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)
$$

- Identity: There exists an element $e \in G$:

$$
g e=e g=g
$$

- Inverse: For all $g \in G$ there exists $g^{-1} \in G$

$$
g g^{-1}=g^{-1} g=e
$$

Main example: Group of isometries of \mathbb{R}^{n}

If $x, y \in \mathbb{R}^{n}$

$$
d(x, y)=\|x-y\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)}
$$

The Euclidean group is:

$$
E(n)=\left\{\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: d(\phi(x), \phi(y))=d(x, y), \forall x, y \in \mathbb{R}^{n}\right\}
$$

with multiplication: $E(n) \times E(n) \rightarrow E(n)::\left(\phi_{1}, \phi_{2}\right) \mapsto \phi_{1} \circ \phi_{2}$.

Every isometry $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is of the form:

$$
\phi(x)=A x+b
$$

where $b \in \mathbb{R}^{n}$ and A is an orthogonal matrix:

$$
A A^{t}=A^{t} A=I
$$

isometry $=$ orthogonal transformation + translation.
A proper isometry is an isometry which preserves orientation iff $\phi(x)=A x+b$ with $\operatorname{det}(A)=1$.

The Euclidean group has some familiar subgroups:

- The group of translations:

$$
\mathbb{R}^{n}=\{\phi \in E(n): \phi \text { is a translation }\} \cong\left\{b \in \mathbb{R}^{n}\right\}
$$

- The orthogonal group:

$$
\begin{aligned}
O(n) & =\{\phi \in E(n): \phi \text { is an orthogonal transf. }\} \\
& \cong\left\{A: A A^{t}=I=A^{t} A\right\}
\end{aligned}
$$

- The special orthogonal group "rotations":

$$
\begin{aligned}
S O(n) & =\{\phi \in E(n): \phi \text { is proper }\} \\
& \cong\left\{A: A A^{t}=I=A^{t} A, \operatorname{det}(A)=1\right\}
\end{aligned}
$$

If $\Omega \subset \mathbb{R}^{n}$, the group of symmetries of Ω is:

$$
G_{\Omega}=\{\phi \in E(n): \phi(\Omega)=\Omega\}
$$

the group of proper symmetries:

$$
\tilde{G}_{\Omega}=\{\phi \in E(n): \phi(\Omega)=\Omega, \phi \text { is proper }\}
$$

Example

$$
\tilde{G}_{S^{1}}=S O(2)=\left\{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]: \in \theta \in \mathbb{R}\right\}
$$

Tiling by rectangles of \mathbb{R}^{2}

Take $\Omega \subset \mathbb{R}^{2}$ the tiling of \mathbb{R}^{2} by 2×1 rectangles

What is the group of symmetries of G_{Ω} ?

Tiling by rectangles of \mathbb{R}^{2} (cont...)

The group G_{Ω} consists of:

- Translations by elements of $\Gamma=2 \mathbb{Z} \times \mathbb{Z}$:

$$
(x, y) \mapsto(x, y)+(2 n, m) \quad n, m \in \mathbb{Z}
$$

- Reflections through points in $\frac{1}{2} \Gamma=\mathbb{Z} \times \frac{1}{2} \mathbb{Z}$:

$$
(x, y) \mapsto(n-x, m / 2-y), \quad n, m \in \mathbb{Z}
$$

- Reflections through horizontal and vertical lines:

$$
\begin{aligned}
(x, y) & \mapsto(x, m / 2-y) \\
(x, y) & \mapsto(n-x, y), \quad n, m \in \mathbb{Z}
\end{aligned}
$$

This tiling has a lot of symmetry!

Instead of tiling, take B a real bathroom floor:

The group of symmetries shrinks drastically:

$$
G_{B}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \quad \text { and } \quad\left|G_{B}\right|=4
$$

However, we can still recognize a repetitive pattern...

Not surprising! There are very few symmetry groups:

Theorem

The possible finite proper symmetry groups of a bounded region
$\Omega \subset \mathbb{R}^{3}$ are:

- The group C_{n} of rotations by $2 \pi / n$ around an axis.

- The group D_{n} of symmetries of a regular n-side polyhedron.

- The 3 groups of symmetries of platonic solids.

Symmetry Groupoids

To distinguish the football ball from the icosahedron, to describe the symmetry of a bathroom floor, and in many other problems, we need groupoids

$$
\rightarrow \Rightarrow
$$

(They have the same symmetry group)

Symmetry Groupoids (cont...)

Look at the tiling Ω : Define

$$
\mathcal{G}_{\Omega}=\left\{(x, \phi, y): x, y \in \mathbb{R}^{2}, \phi \in G_{\Omega}, x=\phi(y)\right\}
$$

with the partially defined multiplication:

$$
(x, \phi, y)(y, \psi, z)=(x, \phi \circ \psi, z)
$$

We can see every $g=(x, \phi, y) \in \mathcal{G}_{\Omega}$ as an arrow: $:_{x} \stackrel{g}{\leftrightharpoons} \cdot y$
Then, we have:

- Source and target maps: $s, t: \mathcal{G}_{\Omega} \rightarrow \mathbb{R}^{2}$:

$$
s(x, \phi, y)=y, \quad t(x, \phi, y)=x
$$

Symmetry Groupoids (cont...)

- Identity arrows, $1_{x}=(x, I, x)$: $\cdot x \bigcirc 1_{x}$
- Inverse arrows, $g^{-1}=\left(y, \phi^{-1}, x\right): \quad \cdot x \stackrel{g}{g^{-1}} \cdot y$

They satisfy the group like properties:
(1) Multip: $(g, h) \mapsto g h$, defined iff $s(g)=t(h)$.
(2) Associa: $(g h) k=g(h k)$ whenever is defined.
(3) Iden: $1_{x} g=g=g 1_{y}$ if $t(g)=x, s(g)=y$.
(9) Inv: $g g^{-1}=1_{x}$ and $g^{-1} g=1_{y}$.

Definition (Groupoids from an algebraic vision)

A groupoid with base B is a set \mathcal{G} with map $s, t: \mathcal{G} \rightarrow B$ and a partially defined operation satisfying $1-4$.

Symmetry Groupoids (cont...)

We can restrict the symmetry groupoid \mathcal{G}_{Ω} of the tiling to the real bathroom floor $B \subset \mathbb{R}^{2}$:

$$
\mathcal{G}_{B}=\left\{(x, \phi, y): x, y \in B, \phi \in G_{\Omega}, x=\phi(y)\right\}
$$

The groupoid \mathcal{G}_{B} captures the symmetry of the real bathroom floor. We need two elementary concepts from groupoid theory:

- Two elements $x, y \in B$ belong to the same orbit of \mathcal{G} if they can be connected by an arrow: $\cdot x<{ }_{g} \cdot y$
- The isotropy group of $x \in B$ is the set of arrows $g \in \mathcal{G}$ from x to x.

Symmetry Groupoids (cont...)

For the symmetry groupoid \mathcal{G}_{B} of the real bathroom floor: the orbits consist of points similarly place within their tile, or within the grout.

The only points with non-trivial isotropy are those in $\left(\mathbb{Z} \times \frac{1}{2} \mathbb{Z}\right) \cap B$. For these, the isotropy group is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Groupoids in Topology

Groupoids play an important role in many other contexts, not related symmetry...

Definition (Groupoids from a categorical vision)

A groupoid is a category where every morphism is invertible. A category \mathcal{C} consists of a collection of objects $(\operatorname{Obj}(\mathcal{C}))$, and also for any two objects X and Y a collection of morphism $\left(\operatorname{Hom}_{\mathcal{C}}(X, Y)\right)$ $f: X \rightarrow Y$ such that for every X, There exists id $X: X \rightarrow X$ and for every $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, there is a $g \circ f: X \rightarrow Z$ such that $(f g) h=f(g h)$, id $\circ f=f$ and $g \circ i d=g$.

Notice that the two definitions of groupoid given are equivalent! Categories and morphisms are as follows: set (functions), group (homomorphisms), vector space (linear transformation), topological spaces (continuous functions). A group is a 1 -object groupoid!

Definition (Functor)

For $F: \mathcal{C} \rightarrow \mathcal{D}$, where \mathcal{C} and \mathcal{D} are categories, a functor consists of $F: \operatorname{Obj}(\mathcal{C}) \rightarrow \operatorname{Obj}(\mathcal{D}):: C \mapsto F(C)$ and for all $C_{1}, C_{2} \in \operatorname{Obj}(\mathcal{C})$, $F: \operatorname{Hom}_{\mathcal{C}}\left(C_{1}, C_{2}\right) \rightarrow \operatorname{Hom}_{\mathcal{D}}\left(F\left(C_{1}\right), F\left(C_{2}\right)\right): F\left(i d_{C}\right)=i d_{F(C)}$ and $F(g \circ f)=F(g) \circ F(f)$.

Example

The power set functor $P:$ Set \rightarrow Set maps each set to its power set and each function $f: X \rightarrow Y$ to the map which sends $U \subseteq X$ to its image $f(U) \subseteq Y$. One can also consider the contravariant power set functor which sends $f: X \rightarrow Y$ to the map which sends $V \subseteq Y$ to its inverse image $f^{-1}(V) \subseteq X$.

Fundamental Groupoid of a space

Let X be a topological space. Look at continuous curves
$\gamma:[0,1] \rightarrow X$ (paths)

$[\gamma]=$ homotopy class of $\gamma\left(\left[\gamma_{0}\right]=\left[\gamma_{1}\right]\right.$ but $\left.\left[\gamma_{0}\right] \neq[\eta]\right)$

Fundamental Groupoid of a space (cont...)

The fundamental groupoid of X with base $B=X$ (points of the space) is

$$
\Pi(X)=\{[\gamma]: \gamma:[0,1] \rightarrow X\}
$$

the structure maps are:

- source and target give initial and final points:

$$
s([\gamma])=\gamma(0), \quad t([\gamma])=\gamma(1)
$$

- product is concatenation of curves: $[\gamma] \cdot[\eta]=[\gamma \cdot \eta]$.
- units are the constant curves: $1_{x}=[\gamma]$ where $\gamma(t)=x$.
- inverse is the opposite curve: $[\gamma]^{-1}=[\bar{\gamma}]$ where $\bar{\gamma}(t)=\gamma(1-t)$.

Fundamental Groupoid of a space (cont...)

The fundamental groupoid $\Pi(X)=\{[\gamma]: \gamma:[0,1] \rightarrow X\}$ one has:

- One orbit for each connected component of X.
- Isotropy group of $x \in X$ is the fundamental group

$$
\Pi(X, x)=\{[\gamma]: \gamma \quad \text { is a loop based at } x\} .
$$

Remark

Notice that $\Pi:$ Top \rightarrow Grpd is a functor: For any continuous map $f: X \rightarrow Y$ we have the corresponding map $f_{*}: \Pi(X) \rightarrow \Pi(Y)$ such that $x \mapsto f(x)$ and $[\alpha] \mapsto[f \circ \alpha]$

Van Kampen's Theorem

Theorem (Van Kampen)

If $X=U \cup V$ is a space with U and V open sets. Then

is a pushout square.

Warning!

Recall the classical VKT for fundamental groups:

Theorem (VKT for fundamental groups)

If $X=U \cup V$, with U and V are open and path-connected, and $U \cap V$ path-connected, then the induced homomorphism $\phi: \Pi(U, x) * \Pi(U \cap V, x) \Pi(V, x) \rightarrow \Pi(X, x)$ is an isomorphism.

Remark

The classical VKT can't be used to compute $\Pi\left(S^{1}, x\right)$!. Notice that in a non-trivial decomposition of S^{1} into two connected open sets, the intersection is not path connected.

Again, Groupoids allow us to fix this!

Pushout squares are special commutative diagrams:

Definition (Pushout on a category \mathcal{C})

The pushout of f and g consists of an object P and two morphism $i_{1}: X \rightarrow P$ and $i_{2}: Y \rightarrow P$ for which the following diagram commutes:

Moreover, $\left(P, i_{1}, i_{2}\right)$ must be universal with respect to this diagram:

Some examples:

Example

- In $\mathcal{C}=$ Sets: the pushout is $D=B \amalg E / \sim$, where \sim is the equivalence relation generated by $f(a) \sim g(a)$ for all $a \in A$.
- In $\mathcal{C}=G r p$: the pushout $D=B *_{A} E$ is called amalgamated product. This can be describe as $(B * E) /\left\langle f(a)^{-1} g(a): a \in A\right\rangle$.

Sketch of the proof of VKT:

Let's show directly that $\Pi(X)$ satisfies the universal property.
Consider a commutative square of groupoids

where G is an arbitrary groupoid. Goal: $\exists!\Phi: \Pi(X) \rightarrow G$.

- An object in $\Pi(X)$ is a point $x \in X$. Then either $x \in U$ or $x \in V$ (or both). If $x \in U$ then $\Phi(x)=\Gamma(x)$. Similarly if $x \in V, \Phi(x)=\Lambda(x)$. If $x \in U \cap V$, these definitions agree by the commutative square above.

Sketch of the proof of VKT: (cont.)

- A morphism in $\Pi(X)$ is $[\alpha]$ (homotopy class) of some path α in X. If α lay solely in U, we set $\Phi(\alpha)=\Lambda(\alpha)$. Similarly if α were in V. In general, we can always split up α into a composition $\alpha_{1} \circ \ldots \circ \alpha_{n}$ of a bunch of paths, each of which lies completely in U or in V, then we can set $\Phi(\alpha)=F_{1}\left(\alpha_{1}\right) \circ \ldots \circ F_{n}\left(\alpha_{n}\right)$ where each F_{i} is either Γ or Λ.

It suffices to show that Φ is independent of the choice of decomposition, and that it really defines a functor. It is clear that it is functorial if well-defined.

Sketch of the proof of VKT: (cont.)

Say that α and β are two homotopic paths between the same pair of points in X and let $H:[0,1] \times[0,1] \rightarrow X$ be a homotopy between them.

Lemma (Lebesgue covering lemma)

Let $K \subset \mathbb{R}^{n}$ be compact, and $K=\bigcup_{i} U_{i}$ be an open cover. Then, there exist $\epsilon>0$ such that $B_{\epsilon}(x) \cap K \subset U_{j}$ for some j and $x \in K$.

By the Lemma, we can subdivide the square into little squares so that each one is sent by H to either U or V. For each little square, we get an equality in the fundamental groupoid of either U or V between composites of the paths obtained by restricting H to the sides: $\left.\left.H\right|_{\text {right }} \circ H\right|_{\text {top }}=\left.\left.H\right|_{\text {bottom }} \circ H\right|_{\text {left }}$. Applying either Γ or Λ we get an equality in G. Adding them all together proves that $\Phi(\alpha)=\Phi(\beta)$.

Actually we can define $\Pi(X, A)$ where $A \subseteq X$, which is a full subcategory of $\Pi(X)$ with objects in $A: \Pi(X, A)$ has objects just the points of A (not all X), but the morphisms are the same as before.

Theorem (Van Kampen)

If $X=U \cup V$ is a space with U and V open sets, and $A \subset X$ contains at least one point in each component of $U \cap V, U$ and V. Then

$$
\begin{gathered}
\Pi(U \cap V, A) \longrightarrow \Pi(U, A) \\
\downarrow \\
\downarrow \\
\Pi(\stackrel{V}{V}, A) \longrightarrow \\
\downarrow \\
\\
\square
\end{gathered}
$$

is a pushout square.

Some applications

We can use the van Kampen theorem to compute the fundamental groupoids of most basic spaces.

Example (The fundamental group of a circle)

Take U and V be open arcs, intersecting at two points $A=\{p, q\}$. Since each of U and V are contractible (homotopy type of a point). $\Pi(U, A)$ and $\Pi(V, A)$ are the groupoids with two objects p and q and a single isomorphism. $\Pi(U \cap V, A)$ is just the discrete groupoid on two objects. The pushout $\Pi(X, A)$ is therefore a groupoid on two objects and p and q with two isomorphisms $u, v: p \rightarrow q$.

Example (The fundamental group of a circle (cont.))

If we have an upper path u and a lower path v, we can give a full description of the groupoid:

- $p \rightarrow p:\left(v^{-1} u\right)^{n}$
- $p \rightarrow q: u\left(v^{-1} u\right)^{n}$
- $q \rightarrow q:\left(v u^{-1}\right)^{n}$
- $q \rightarrow p:\left(v^{-1} u\right)^{n} u^{-1}$.

Therefore, $\Pi\left(S^{1}, p\right)=\left\{\left(v^{-1} u\right)^{n}: n \in \mathbb{Z}\right\} \cong \mathbb{Z}$

Other applications...

- Four dimensional manifolds can have arbitrary finitely generated fundamental group.
- The Jordan curve theorem.
- Covering spaces.
- etc...

Some references

(1) R. Brown, From Groups to Groupoids: A Brief Survey, Bull. London Math. Soc. 19, 113-134 (1987).
(2) R. Brown, Topology and Groupoids, BookSurge PLC (2006).
(3) A. Palmigiano and R. Re, Relational representation of groupoid quantales, Order 30 (2013).
(9) P. Resende, Lectures on étale groupoids, inverse semigroups and quantales, Lectures Notes for the GAMAP IP Meeting, Antwerp, (2006).
(5) A. Weinstein, Groupoids: Unifying Internal and External Symmetry, Notices Amer. Math. Soc. 43 (1996).

