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Understanding machine learning with deep neural nets

weight matrices
Wy Wy Ws Wy

> Supervised learning with neural networks
input x

> trainingdata D = {y(k)ax(k)}lljzl hidden layers

> fit with class of parametrized functions y = f(W,f(Wr_1 ... f(W1x)))

> Impressive performances (automatic vision, natural language processing etc.)

y(z,0) actual
. good fit

> Interesting properties
> universal approximators

> not prone to overfitting

> train with local descent algorithm despite of non-convexity




Statistical mechanics of learning, initiated in the 80s

> Focus on simple (solvable) models

x teacher training data x  student
w’ W g
pe(x) = iid O P OO .
Pw (W*) = jid
N

p(D|w) pu (W)
p(D)

> Consider the Bayesian posterior statistics p(w|D) =

e.g. Bayes optimal estimator (minimum mean square error)

mﬁin/dw (W — W)2ps (WD) e WirMSE = /dWWpS(W|D)

> The thermodynamic limit = infinitely large model
-> typical cases concentrate at the average N — o0 a= P/N

Mean-field tools from the stat. phys. of disordered systems:

1
e.g. Bayes optimal square error MMSE(a) = lim N /dw (W — Wammse)? ps(w|D)

N—o0

Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985) Amit, D. J., Hanoch, G., & Sompolinsky, H. (1986) Gardner, E. (1987) E. Gardner, B. Derrida, P. Mottishaw (1987),
B. Derrida, J.P. Nadal (1987), Peterson, C., & Anderson, J. R. (1987), W. Krauth, M. Mézard (1987), Gardner, E. (1988), Mézard, M. (1989). Gyorgyi, G. (1990). Opper,
M., & Haussler, D. (1991) H.S. Seung, H. Sompolinsky, N. Tishby (1992), T.L.H. Watkin, A. Rau, M. Biehl. (1993), Monasson, R., Zecchina, R. (1995) etc..



Starting point:
Perceptron a.k.a Generalized Linear Model (GLM)

(stochastic)
activation fucntion

x| w
-, on
A%\%
sample ... m= fg( rem ¥ E )
P known known
X N N
A%\%
: %
y X w
Psamples * E = fg( X )
training set @4— w
P PxN N
known known

known known



Statistical mechanics of the Perceptron

first order phase transition

. €g<a) perfect generalization W=Ww
Px (X) Pw (W ) 1 :
i.i.d. Rademacher " i.i.d. binary /
e 0.8 | ;
y X W f
= 0.6 j’i. [ ] |
| |
= X
f 0.4 | |
o= s E ) S
| Optimal
0.2 4
AMP,N=10
P PxN N . Logistic,N=10* = e oo
0 0.5 1 1.5 2

1. Teacher-student / planted problem teacher  student

generalization error:

2. Bayesian optimal eg(N, P) — EW|D [(g — Q(W))2]
3. Mean-field analysis / typical case €g(a) = lim %69 (N, P) a= P/N
N — 00

v Information theoretic analysis with mean-field replica method [1]
v/ Rigorously proven [2]

v (Generalized) Approximate Message Passing (AMP) algorithm [3]
v/ State evolution statistical analysis of algorithm performance [3]

[1] Gyorgyi (1990). First-order transition to perfect generalization in a neural network with binary synapses
[2] Barbier, et al. (2018). Phase Transitions, Optimal Errors and Optimality of Message-Passing in Generalized Linear Models
[3] Rangan (2011) Generalized Approximate Message Passing for Estimation with Random Linear Mixing.



Mean-Field methods for statistical inference analysis
The tools

Information theoretic analysis Algorithms

Message passing algorithms

Non-rigorous computations of : - )
& P for inference on finite size models

asymptotic posterior statistics

belief propagation (BP),
approximate message passing (AMP),
expectation propagation (EP)

replica method

high temperature expansions
(naive MF, TAP)

Mathematical rigorous proofs Statistical analysis of
of the conjecture asymptotic performance
i of message passing algorithms
Guerra interpolation, |
Adaptive interpolation state evolution (SE)




“Mean-field approximations” in deep learning literature

- more general than tools above
- neglect correlations thanks to randomness in the thermodynamic (large-size) limit

nop.-
* Analysis of statistical of inference ... Focus of this talk ha Ustive,

Reviews: - Zdeborova & Krzakala (2016) Statistical physics of inference: Thresholds and algorithms.
- Gabrié. (2020) Mean field inference methods for neural networks.

* Signal propagation in deep neural networks
- Trainability of very deep network at init. e.g. Schoenholz et al.(2017). Deep Information Propagation.
- Separation of structured data
e.g. Cohen, et al (2020). Separability and geometry of object manifolds in deep neural networks.
* Role of over-parametrization in trainability with Gradient Descent methods
- Convergence of SGD for 2-layers neural networks
Chizat & Bach (2018), Mei, Montanari & Nguyen (2018), Rotskoff & Vanden-Eijnden (2018)
- Neural Tangent Kernels, Equivalence to Gaussian processes, “Lazy training”
Jacot et al (2018), Lee et al (2019), review: Bahri et al (2020) Statistical Mechanics of Deep Learning

- Online lea rning e.g. Goldt, et al (2019). Dynamics of stochastic gradient descent for two-layer neural networks in the
teacher-student setup

* Gradient Descent algorithms and landscape interactions

Dauphin et al (2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
Sarao Mannelli & Zdeborova (2020). Thresholds of descending algorithms in inference problems.



From perceptron/GLM with random i.i.d. matrices

to deep neural networks ?

perceptron

X

<3

i.i.d. prior

O+

known known
i.i.d. entries

deep neural network




From perceptron/GLM with random i.i.d. matrices
to deep neural networks ?

1.

deep neural network

perceptron
X
W
Y
i.i.d. prior
O—CH®
known known known  known known known

i.i.d. entries

Inference of layers variables in deep networks (with learned weight matrices)



From perceptron/GLM with random i.i.d. matrices
to deep neural networks ?

deep neural network

perceptron
X
wW
Yy
i.i.d. prior
O—L-® O—H-O11+®
known known known known

i.i.d. entries

1. Inference of layers variables in deep networks (with learned weight matrices)

2. The challenge of weight inference and structured weights



From perceptron/GLM with random i.i.d. matrices

to deep neural networks ?

1.

deep neural network

perceptron
X
W
Y
i.i.d. prior
O—CH®
known known known  known known known

i.i.d. entries

Inference of layers variables in deep networks (with learned weight matrices)



Inferring neural networks layer states from output

Single layer = perceptron / GLM

y X W Yy %% X
=
B (g a ) o= s @ )
p PxN N P PxN N
Multi-layer ?

(0 (B )

known known known




Layers inference in deep neural network 12

with i.i.d weights

i.i.d. entries i.i.d. prior
y Ws Wi x
- | N input dim
H :fg< X fg( X ) ) K hidden dim
M output dim
/ M M x K KxN N
| known known known
decompose the problem in sub-problems N — o a3 =K/N «ay=M/N
Z ..~ hidden | tat
y W, idden layer state
(
= f B ~ GLM
= J¢ X ~ v Multi-Layer AMP (arbitrary depth) [1]
K v/ Corresponding state evolution (SE) [1]
< Z Wh X .
- V' Replica free energy (mmse, entropy) [1]
= f£ ( % X E ) ~ GLM V' Rigorously proven for 2 layers [2, 3]
.

[1] Manoel et al (2017) Multi-layer generalized linear estimation.
[2] Gabrié et al (2018) Entropy and mutual information in models of deep neural networks.
[3] Reeves (2018) Additivity of Information in Multilayer Networks via Additive Gaussian Noise Transforms.



Layers inference in deep neural network 13

with weight matrices with correlations

i _..lid. prior
y Wo Wi X
]
|
H =f£( X f&( X E ) )
1% U S VT
rotationally invariant — f x HH X

»

T arbitrary diagonal

v/ Multi-Layer Vector-AMP [1] i d. from Haar

v/ Corresponding state evolution [1]

v/ Replica free energy (mmse, entropy) [2, 3]
(extension of single layer formula by [4])

X Proof?

[1] Fletcher et al (2018) Inference in deep networks in high dimensions.

[2] Gabrié et al (2018) Entropy and mutual information in models of deep neural networks.

[3] Reeves (2018) Additivity of Information in Multilayer Networks via Additive Gaussian Noise Transforms.
[4] Shinzato & Kabashima (2009) Learning from correlated patterns by simple perceptrons



14
Explicit weight learning, empirical verification

Learning the weight matrices while remaining rotationally inv.? orthogonal & onal orthogonal
e.g. with gradient descent Wy .Ué ISI’E 14
* Initialize Gaussian i.i.d W matrices — X H:HE X ﬁ
* Singular value decomposition fied  updated o

* Only learn spectrum (N degrees of freedom instead of N?)

Numerical verification? C) W <: ) W ( : ) W
- Linear networks trained i - -

- Gaussian inputs

«10-13 layer 1 %104 layer 2 %104 layer 3
1.21
8_ —e— max
2 0.9 _
g Replica correct
T ) with learned matrices
T 0.
%‘
T 0.3
0_..'.......-............--...--. 0.0_
500 1000 1500 500 1000 1500 500 1000 1500

layers size N layers size N layers size N

[1] Gabrié et al (2018) Entropy and mutual information in models of deep neural networks.



From perceptron/GLM with random i.i.d. matrices

to deep neural networks ?

1.

deep neural network

perceptron
X
w
y
i.i.d. prior i.i.d. entries
O—CH®
known known known known known known

i.i.d. entries learned diag. learned diag.

Inference of layers variables in deep networks (with learned weight matrices)



From GLM with random i.i.d. matrices 16

to deep neural networks ?

deep neural network

perceptron

X

OT® - OTOme®

known known known known

1. Inference of layers variables in deep networks (with learned weight matrices)

2. The challenge of weight inference and structured weights
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Weight inference in deep neural networks decomposed

Y WQ Wl X . .
N input dim
%Zﬁ“( ><f€< X a=as )) K hidden dim
M output dim
M x P M x K K xN N x P .
known known P sample size
First idea: decompose the inference in sub-problems
(alike Multi layer - AMP) ,
« hidden layer states
over the P samples
% Z
Wa
% _ y ~ matrix factorization
> - J¢ with rank K
known K x P
Z Wi X
- = f&( X mauE ) ~ Px GLMs
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Scaling of the size of the hidden layer?

A
Y Wo
% _ f £< % ) ~ matrix factorization
with rank K
M x P M x K K x P
known
N — 0
- K =0(1)

*  “low-rank matrix factorization”: good mean field understanding [1, 2]

* finite number of hidden units, committee machines: great body of work!
[3I 4/ 5) 6I "]

[1] Lesieur et al (2016), MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel

[2] Lesieur et al (2017), Constrained Low-rank Matrix Estimation: Phase Transitions, Approximate Message Passing and Applications
[3]Aubin et al (2018). The committee machine: Computational to statistical gaps in learning a two-layers neural network

[4] Monasson et gl (2004). Learning and Generalization Theories of Large Committee-Machines

[5] Schwarze & Hertz (1993). Generalization in Fully Connected Committee Machines.

[6] Schwarze (1993). Learning a Rule in a Multilayer Neural-Network.



Phase transitions for committee machines 19

w, X y Wy X
Yy Wo N input dim
E = s1gn [ ¥ Slgn( X BT ) ) K hidden dim
Wo .
K KxN NxP P sample size
known known known
K=2 o AMP oo — SE qoo — SE Eg(()é)
binary weights  ° AMP g1 — SE g e AMP ¢,(a)
v/ Committee-AMP [1]
= 025 wwwwer 1.0
. . = :
v/ Corresponding state evolution [1] ; 0.90 % 0.8
V' Replica free energy (mmse) [2, 3, 4 5 : S
P gy (mmse) (2,3, 4] = 0151 0.6
2 jalization ® i‘:
= specia \
v Proof [1] g 0.10- ' | L 0.4 2
E i N
teacher student = 0.05 i - 0.2
& & () 1
S U
qo0 = overlap{ (W7 )o..; (W1)o..} 0.00 0.0
. 0 1 2 perfect
qo1 = overlap{ (W] )0,. ] (Wl)l,-} a generalization

[1] Aubin et al (2018). The committee machine: Computational to statistical gaps in learning a two-layers neural network
[2] Monasson et gl (2004). Learning and Generalization Theories of Large Committee-Machines

[3] Schwarze & Hertz (1993). Generalization in Fully Connected Committee Machines.

[4] Schwarze (1993). Learning a Rule in a Multilayer Neural-Network.
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Scaling of the size of the hidden layer?

YA
Y Wo
% _ f £< % ) ~ matrix factorization
with rank K
M x P M x K K x P
known
N — 0
- K =0(1)

*  “low-rank matrix factorization”: good mean field understanding [1, 2]

* finite number of hidden units, committee machines: great body of work!
[31 4l 5) 6I "]

~ K = O(N)

*  “high-rank matrix factorization”: mean-field analysis?

* number of hidden units scaling like the inputs

[1] Lesieur et al (2016), MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel

[2] Lesieur et al (2017), Constrained Low-rank Matrix Estimation: Phase Transitions, Approximate Message Passing and Applications
[3]Aubin et al (2018). The committee machine: Computational to statistical gaps in learning a two-layers neural network

[4] Monasson et gl (2004). Learning and Generalization Theories of Large Committee-Machines

[5] Schwarze & Hertz (1993). Generalization in Fully Connected Committee Machines.

[6] Schwarze (1993). Learning a Rule in a Multilayer Neural-Network.



Structured weights inference K =O(N)

A
Y Wo
% — fg( X ) # parameters O(N?)
M x P M x K K x P
known

Second idea: learn structured simpler weights

Y S2 W
. ﬁ = fﬁ( # X ﬁ X ) # parameters O(N)
M x P M x M M x K K x P
known known

> Also used in deep learning literature:

* Speed / memory concerns: e.g. ACDC layers [1], Ensemble learning [2]
* Theoretical papers: e.g. Porcupine networks [3], Replica entropy [4]

> Signal processing literature: a.k.a. Blind Calibration

[1] Moczulski et al (2015), ACDC: A Structured Efficient Linear Layer

[2] Wen et al (2020), BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
[3] Feizi et al (2016) Porcupine Neural Networks: (Almost) All Local Optima are Global

[4] Gabrié et al (2018), Entropy and mutual information in models of deep neural networks

21
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Blind calibration mean field analysis

Simultaneous recovery of input signal and “calibration variables”

- . N , i.i.d. prior
i.i.d. prior i.i.d. entries ,

x X
Y S W N input dim

% — fg(# X @ X ) M output dim

P sample size

M x P M x M M x N N x P
known to be calibrated known

v/ Calibration - AMP algorithm [1, 2]
v/ Corresponding state evolution [3]
v/ Replica free energy [3]
X Rigorous proof
[1] Schulke C. et al (2013), Blind Calibration in Compressed Sensing using Message Passing Algorithms

[2] Schulke C. et al (2016), Blind sensor calibration using approximate message passing
[3] Gabrié M. et al (2020), Blind calibration for compressed sensing: State evolution and an online algorithm



Numerical results for sparse priors

Example sparse signal recovery:
output dim / input dim o = M/N
input sparsity p

P

naive count Omin = P—=——
P—-1

Cal- AMP reconstruction errors ( P = 2)

Y

%:

M x P

S error X error
20 T 1071
acs
15 i i ' Q'min 10_5
3 10 T 10—9
0.5 1 10-13
0.0 - "
0.0

Cal-AMP reconstructs efficiently
with a finite number of samples

f£<

S

£

< HHL

X

i.i.d. entries

i.i.d. prior

N x P

23

)

i.i.d. p -sparse

Cal- AMP State evolution

a = 0.50
a=0.65
a=0.75
a=0.85

2
samples P

3

Good agreement SE and Cal-AMP

[1] Gabrié M. et al (2020), Blind calibration for compressed sensing: State evolution and an online algorithm



Statistical mechanics of online learning

24

Y g 1% X
B - /< (P B -
A M x P « & 5(2) N x P
5 &M o 9K
observation  gpprox. posterior approx. posterior
1 3
y( ) ) " y(2) ) 2 y( )
ps(S) pu(x) ——sr p(S,x|y") —— (S x[YY) —  etc
prior updated prior updated prior
> Streaming AMP for GLM [1], for blind calibration [2]
Numerical results: 104 PO % 1051
. 0] \pZos0 oL Po
Example of sparse signal recovery . E§ se 10— ]
I\ —ps amp
g 10~ & 1076 4 a =2.00
X iid. p-sparse = 101 = o —6— se
E =X+ amp
10°°
o = M/N 107 4 107 5
output dim / input dim 0 =
(') 5'() 1(')() (') 2 4 fli 8
iterations ¢ samples P

[1] Manoel et al. (2018). Streaming Bayesian inference: Theoretical limits and mini-batch approximate message-passing
[2] Gabrié M. et al (2020), Blind calibration for compressed sensing: State evolution and an online algorithm
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Perspectives for weight inference in deep NNs

Y S W

e - (] -

X

Weight inference in hidden layers for the stat mech of deep learning

(offline/batch and online/mini-batch)

> Perspective: Combine Cal-AMP in layers to infer structured weights in NNs

(extensive number of hidden units!)

> Challenge: Back to the teacher-student scenario?

O

known

known
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Perspectives for mean-field methods for inference

and information/computational thresholds

> More and more complex matrix ensembles (weights, data)

> Combining solutions to more complex models

> Great open source package for algorithms H sphinxteam / tramp

Tutorial review:
Gabrié (2020), Mean field inference methods for neural networks — arXiv/1911.00890

Software:
Baker et al (2020), Compositional Inference with Tree Approximate Message Passing



Thank you!
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