Symmetric functions in noncommuting variables and supercharacters of unitriangular groups

Filipe Gomes

Faculdade de Ciências da Universidade de Lisboa

LisMath Seminar May 15th, 2014

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

- Symmetric functions in noncommuting variables (NCSym) and set partitions
- Group representations and characters
- Supercharacter theories
- A supercharacter theory for the unitriangular group

ション ふゆ く 山 マ チャット しょうくしゃ

- The algebra of superclass functions SC
- The isomorphism $SC \simeq NCSym$

Symmetric functions in noncommuting variables

We denote by $\mathbb{C}\langle\langle X\rangle\rangle$ the \mathbb{C} -algebra of formal power series in the noncommuting variables $X = \{x_1, x_2, \ldots\}$.

The symmetric group S_n acts on $\mathbb{C}\langle\langle X \rangle\rangle$ by permutation of the variables:

$$\sigma \cdot f(x_1, x_2, \ldots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \ldots), \quad \sigma \in S_n.$$

Definition

The algebra of symmetric function in noncommuting variables is the subalgebra of $\mathbb{C}\langle\langle X\rangle\rangle$ formed by all formal power series of bounded degree that are invariant for the action of S_n , for all $n \in \mathbb{N}$. We denote this algebra by **NCSym**.

Set partitions

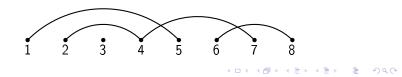
Definition

A set partition of $[n] = \{1, ..., n\}$ is a family $\pi = \{B_1, ..., B_\ell\}$ of nonempty and mutually disjoint subsets of [n] whose union is [n]. We write $\pi = B_1/B_2/\cdots/B_\ell \vdash [n]$.

The set of arcs of π is $\mathcal{D}(\pi) = \{(i,j) \in [n] \times [n] : i < j, i \text{ and } j \text{ are in the same block } B_s \text{ and}$ there is no $k \in B_s$ such that $i < k < j\}$

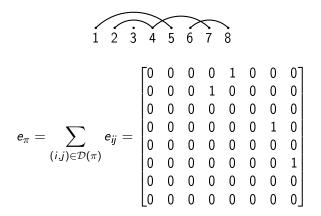
Example

Let $\pi = 15/247/3/68 \vdash [8]$. We can represent π by the following diagram:



Set partitions

From the diagram representation of $\pi = 15/247/3/68 \vdash [8]$ we can get a matrix representation:



This gives a bijection between set partitions of [n] and $n \times n$ matrices with entries equal to 0 or 1 and at most one 1 in each row and column.

Some operations on set partitions

"Concatenation" of set partitions: Let $\pi = B_1/B_2/\cdots/B_s \vdash [m], \sigma = C_1/C_2/\cdots/C_r \vdash [n]$. We define $\pi/\sigma \vdash [m+n]$ as

$$\pi/\sigma = B_1/B_2/\cdots/B_s/C_1 + m/C_2 + m/\cdots/C_r + m.$$

(We place the diagram of σ after the diagram of π and relabel the vertices.)

"Reduction" of a set partition:

Let $\pi \vdash [n]$ and let $I \subseteq [n]$ such that |I| = m. We denote by π_I the set partition of [m] that is obtained in the following way:

- in the arc diagram of π, delete points that are not in I and arcs that connect to at least one such point;
- relabel the remaining points in increasing order with the elements of [m].

The monomial basis of NCSym

Let $\pi \vdash [n]$. A monomial of shape π is a product of indeterminates

 $x_{i_1}x_{i_2}\cdots x_{i_n}$,

where $i_r = i_s$ if and only if r and s are in the same block of π . The monomial symmetric function $m_{\pi} \in \mathbf{NCSym}$ is the sum of all monomials of shape π .

We denote by $NCSym_n$ the vector space of symmetric functions of degree n.

Theorem

The set $\{m_{\pi} : \pi \vdash [n]\}$ is a basis for the vector space $NCSym_n$.

The Hopf algebra **NCSym**

Theorem Let $\pi \vdash [m]$ and $\sigma \vdash [n]$. We have

$$m_{\pi} \cdot m_{\sigma} = \sum_{\substack{ au \vdash [m+n] \ au \wedge (\hat{1}_m/\hat{1}_n) = \pi/\sigma}} m_{ au}.$$

We can also define a *coproduct* Δ : NCSym \rightarrow NCSym \otimes NCSym on NCSym as follows: if $\pi \vdash [n]$, then

$$\Delta(m_{\pi}) = \sum_{I \subseteq [n]} m_{\pi_I} \otimes m_{\pi_{I^c}}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem **NCSym** *is a Hopf algebra.*

Definition

A representation of a group G is a group homomorphism

 $\rho: \mathcal{G} \to \mathcal{GL}(n,\mathbb{C}).$

We are especially interested in *irreducible* representations: these are, in some sense, the simplest representations of G and the building blocks for all the other representations of G.

ション ふゆ アメリア メリア しょうくの

Characters

Definition

Let $\rho: G \to GL(n, \mathbb{C})$ be a representation of a group G. The *character* of G afforded by ρ is the function

$$\chi: \mathcal{G} \to \mathbb{C}, \quad \chi(g) = \operatorname{tr}(\rho(g)).$$

A character is said to be *irreducible* if it is afforded by an irreducible representation of G. We denote by Irr(G) the set of irreducible characters of G.

- Characters are class functions: a character χ takes a constant value on any conjugacy class K of G.
- ► The number of irreducible characters of G is equal to the number of conjugacy classes of G.

Characters

• Given a character χ , we have

$$\chi = \sum_{\psi \in \operatorname{Irr}(G)} n_{\psi} \psi,$$

where $n_{\psi} \in \mathbb{N}_0$ are not all zero. (If $n_{\psi} \neq 0$, we say that ψ is a *constituent* of χ).

We can define an inner product on the vector space of all complexvalued functions on a group G:

$$\langle \varphi, \psi \rangle = \sum_{g \in G} \phi(g) \overline{\psi(g)}.$$

 Irreducible characters are an orthonormal basis for the vector space of class functions on G.

ション ふゆ アメリア メリア しょうくの

Supercharacter theories

Definition

A supercharacter theory of a finite group G is a pair $(\mathcal{X}, \mathcal{Y})$, where \mathcal{X} is a set partition of G and \mathcal{Y} is a set of mutually orthogonal characters of G, such that:

(i)
$$|\mathcal{X}| = |\mathcal{Y}|;$$

- (ii) every character $\chi \in \mathcal{Y}$ takes a constant value on each set $K \in \mathcal{X}$;
- (iii) each irreducible character of G is a constituent of one of the characters $\chi \in \mathcal{Y}$.

The sets $K \in \mathcal{X}$ are called *superclasses* and the characters $\chi \in \mathcal{Y}$ are called *supercharacters*.

Unitriangular group

Let \mathbb{F} be a finite field of order q and $n \in \mathbb{N}$.

The unitriangular group U_n is the group of unitriangular matrices with entries from \mathbb{F} , that is, matrices of the form

$$\begin{bmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

•

ション ふゆ アメリア メリア しょうくの

We have $U_n = 1 + u_n$, where u_n is the \mathbb{F} -algebra of strictly upper triangular matrices with entries from \mathbb{F} .

 $\mathbb{F}^{\times}\text{-coloured}$ set partitions

Definition

Let \mathbb{F} be a finite field. An \mathbb{F}^{\times} -colouring of a set partition $\pi \vdash [n]$ is a map $\phi : \mathcal{D}(\pi) \to \mathbb{F}^{\times}$.

We denote:

$$\mathcal{S}_n(\mathbb{F}) = \{(\pi, \phi) : \pi \vdash [n], \phi \text{ is a } \mathbb{F}^{\times} \text{-colouring of } \pi\}.$$

To every \mathbb{F}^{\times} -coloured partition $(\pi, \phi) \in \mathcal{S}_n(\mathbb{F})$ we associate the matrix

$$e_{\pi,\phi} = \sum_{(i,j)\in\mathcal{D}(\pi)} \phi(i,j) e_{ij}.$$

Superclasses of U_n

The group U_n acts on u_n by left and right multiplication:

$$(U_n imes U_n) imes \mathfrak{u}_n o \mathfrak{u}_n \ ((g,h),a) \mapsto gah^{-1}$$

In each orbit $U_n a U_n$, $a \in \mathfrak{u}_n$, there is exactly one matrix of the form $e_{\pi,\phi}$, for some $(\pi,\phi) \in S_n(\mathbb{F})$.

The superclasses of U_n are the sets

$$\mathcal{K}_{\pi} = \prod_{\phi} (1 + U_n e_{\pi,\phi} U_n),$$

ション ふゆ アメリア メリア しょうくの

for $\pi \vdash [n]$.

Supercharacters of U_n

The unitriangular group U_n acts on $\mathfrak{u}_n^\circ := \operatorname{Irr}(\mathfrak{u}_n^+)$:

$$(U_n imes U_n) imes \mathfrak{u}_n^{\circ}
ightarrow \mathfrak{u}_n^{\circ}$$

 $((g,h), heta) \mapsto g^{-1} heta h$
where $g heta h(a) = heta(gah^{-1})$ for all $a \in \mathfrak{u}_n$.

There is an isomorphism $\mathfrak{u}_n^+ \simeq \mathfrak{u}_n^\circ$. In particular, we can consider elements $\theta^{\pi,\phi} \in \mathfrak{u}_n^\circ$ corresponding by this isomorphism to $e_{\pi,\phi} \in \mathfrak{u}_n$.

For each $\theta \in \mathfrak{u}_n^{\circ}$, we define

$$\chi^{ heta}(g) = rac{|U_n heta|}{|U_n heta U_n|} \sum_{ au \in U_n heta U_n} au(g-1), \quad g \in U_n.$$

Lemma

For any $\theta, \theta' \in \mathfrak{u}_n^\circ$, we have

 $\chi^{\theta} = \chi^{\theta'}$ if and only if $U_n \theta U_n = U_n \theta' U_n$.

Supercharacters of U_n

We denote by $\chi^{\pi,\phi}$ the character corresponding to the two-sided orbit of $\theta^{\pi,\phi}.$

The supercharacters of U_n are

$$\chi^{\pi} = \sum_{\phi} \chi^{\pi,\phi},$$

for $\pi \vdash [n]$.

Theorem The pair $(\mathcal{X}, \mathcal{Y})$, where

$$\mathcal{X} = \{\mathcal{K}_{\pi} : \pi \vdash [n]\} \text{ and } \mathcal{Y} = \{\chi^{\pi} : \pi \vdash [n]\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

is a supercharacter theory for U_n .

The algebra \boldsymbol{SC}

For each $n \in \mathbb{N}$, we define \mathbf{SC}_n to be the complex vector space spanned by the supercharacters χ^{π} of U_n . We define $\mathbf{SC}_0 = \mathbb{C}$.

For each *n*, **SC**_{*n*} consists of superclass functions for U_n ; that is, complex-valued functions of *G* that are constant on each superclass \mathcal{K}_{π} .

The set $\{\kappa_{\pi} : \pi \vdash [n]\}$, where κ_{π} is the characteristic function of \mathcal{K}_{π} , is a basis for **SC**_n.

The space of superclass functions of U_n is defined to be

$$SC = \bigoplus_{n>0} SC_n.$$

ション ふゆ アメリア メリア しょうくの

The algebra \boldsymbol{SC}

We define a product on ${\rm SC}$ as follows: given supercharacters χ^{π} and χ^{σ}

$$\chi^{\pi} \cdot \chi^{\sigma} = \chi^{\pi/\sigma}$$

Theorem Let $\pi \vdash [m]$ and $\sigma \vdash [n]$. We have

$$\kappa_{\pi} \cdot \kappa_{\sigma} = \sum_{\substack{ au \vdash [m+n] \\ au \wedge (\hat{1}_m/\hat{1}_n) = \pi/\sigma}} \kappa_{ au}.$$

Theorem

There is an isomorphism of \mathbb{C} -algebras

$$\mathit{ch}: SC \to NCSym$$

defined by $ch(\kappa_{\pi}) = m_{\pi}$ for all $\pi \vdash [n]$ and all $n \in \mathbb{N}$.

The Hopf algebra ${\bf SC}$

Recall the coproduct in NCSym:

$$\Delta(m_{\pi}) = \sum_{I \subseteq [n]} m_{\pi_I} \otimes m_{\pi_{I^c}}.$$

Using the isomorphism ch, we can transport this coproduct to SC:

$$\Delta(\kappa_{\pi}) = \sum_{I \subseteq [n]} \kappa_{\pi_I} \otimes \kappa_{\pi_{I^c}}.$$

Theorem

There is an isomorphism of Hopf algebras

$$ch: SC \rightarrow NCSym$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

defined by $ch(\kappa_{\pi}) = m_{\pi}$ for all $\pi \vdash [n]$ and all $n \in \mathbb{N}$.

The Hopf algebra **SC**

We can give a representation theoretical interpretation of the product and coproduct in \mathbf{SC} .

Product:

$$\phi \cdot \psi = \mathsf{Inf}_{U_m \times U_n}^{U_{m+n}} (\phi \otimes \psi), \quad \phi \in \mathsf{SC}_m, \psi \in \mathsf{SC}_n$$

Coproduct:

$$\Delta(\phi) = \sum_{J \subseteq [n]} {}^{J} \operatorname{Res}_{U_{|J|} \times U_{|J^c|}}^{U_n}(\phi), \quad \phi \in \mathsf{SC}_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

- (1) Aguiar, André, et al., Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, Advances in Mathematics **229** (2012) 2310–2337.
- (2) André, Supercharacters of unitriangular groups and set partition combinatorics, ECOS2013, 2da Escuela Puntana de Combinatoria, Universidad Nacional de San Luis, Argentina, July 22-August 2, 2013.
- (3) Bergeron, Reutenauer, Rosas, Zabrocki, *Invariants and coinvariants of the symmetric groups in noncommuting variables*, Canad. J. Math. **60** (2008), no. 2, 266-296.
- (4) Diaconis, Isaacs, *Supercharacters and superclasses for algebra groups*, Trans. Amer. Math. Soc. **360** (2008), 2359-2392.
- (5) Rosas, Sagan, *Symmetric functions in noncommuting variables*, Trans Amer. Math. Soc. **358** (2006), no. 1, 215-232.