Rigidity problems for the lengths of geodesics in Riemannian geometry

Colin Guillarmou

CNRS and Univ. Paris Sud

July 21, 2020

Introduction

We will discuss two types of (related) rigidity problems:

- 1) Riemannian invariants: marked length spectrum rigidity
- 2) Inverse problems/tomography: boundary/lens rigidity problem

Kac Problem

- \bullet (M,g) closed Riemannian manifold (possibly with boundary)
- ullet $\operatorname{Sp}(\Delta_g)=\{\lambda_i\geq 0; \ker(\Delta_g-\lambda_i)
 eq 0\}$ the Laplace spectrum

Kac problem: Does $Sp(\Delta_g)$ determine g up to isometry?

Before I go any further, let me say that as far as I know the problem is still unsolved. Personally, I believe that one cannot "hear" the shape of a tambourine but I may well be wrong and I am not prepared to bet large sums either way.

Answer: No in general, \exists counter examples:

Milnor '64 - flat torii with dim = 16

Vignéras '80, Sunada '85: hyperbolic closed manifolds

Gordon-Webb-Wolpert '92: domains with (non-convex, non smooth) boundary

Positive results:

- The disc in \mathbb{R}^2 is spectrally rigid (Kac '66)
- $\not\exists$ 1—parameter family of isospectral metrics with $K_g \le 0$ (Guillemin-Kazhdan '80, Croke-Sharafutdinov '98, Paternain-Salo-Uhlmann '13)
- Compactness of isospectral sets in C^{∞} (Melrose '83, Osgood-Phillips-Sarnak '88, Brooks-Perry-Petersen '92) in dim 2 and 3.
- Ellipses with small eccentricity are spectrally rigid (Hezari-Zelditch '19)

Tools:

- Heat trace invariants: $\operatorname{Tr}(e^{-t\Delta_g}) = \sum_j e^{-t\lambda_j}$ as $t \to 0$),
- $\det(\Delta_g)$,
- singularities of wave trace $\operatorname{Tr}(e^{-it\sqrt{\Delta_g}}) = \sum_j e^{-it\sqrt{\lambda_j}}$ in t > 0.

Isospectral local rigidity (negative curvature)

Osgood-Phillips-Sarnak problem:

If g and g_0 are close enough with $K_{g_0}<0$ and $\mathrm{Sp}(\Delta_g)=\mathrm{Sp}(\Delta_{g_0})$, then g isometric to g_0 ?

Consequences: That would imply finiteness of isospectral sets (up to isometry)

Positive result: True if g_0 satisfies $K_{g_0} = -1$ (Sharafutdinov '09).

Length spectrum rigidity

- \bullet (M,g) closed Riemannian manifold with $K_g < 0$
- LS(g) = $\{\ell_g(\gamma); \gamma \text{ closed geodesic}\}\$ the length spectrum
- wave-trace singularities at LS(g) (Balian-Bloch '71, Colin de Verdière '73, Chazarain '74, Duistermaat-Guillemin '75):

$$(t-\ell_\gamma) ext{Tr}(e^{-it\sqrt{\Delta_g}}) \sim rac{1}{2\pi} \ell_\gamma^\sharp |\det(1-P_\gamma)|^{-1/2}$$

Length spectrum rigidity problem: Does LS(g) determine g up to isometry?

Answer: No! counter examples as for $Sp(\Delta_g)$

Length spectrum local rigidity: If g and g_0 are close enough and $LS(g) = LS(g_0)$, then g isometric to g_0 ?

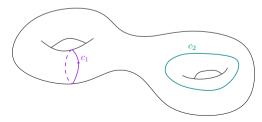
No known results.

Marked length spectrum rigidity

- ullet (M,g) closed Riemannian manifold with $K_g < 0$
- C := set of free homotopy classes on M
- ullet each $c \in \mathcal{C}$ contains a unique closed geodesic γ_c
- marked length spectrum (= length spectrum with ordering):

$$L_{\mathbf{g}}: \mathcal{C} \to \mathbb{R}^+, \qquad L_{\mathbf{g}}(c) := \ell_{\mathbf{g}}(\gamma_c)$$

Conjecture (Burns-Katok '85): $L_g = L_{g'}$ implies g isometric to g'.



The linearised marked length operator

- $\mathcal{G} = \mathsf{set}$ of closed geodesics γ on $M \simeq \mathcal{C}$
- linearisation of $g \mapsto L_g/L_{g_0} \in L^{\infty}(\mathcal{G})$ at g_0 : the X-ray transform on 2-tensors

$$I_2:C^0(M;S^2T^*M) o L^\infty(\mathcal{G}), \ I_2f(\gamma):=rac{1}{\ell_{\sigma_0}(\gamma)}\int_0^{\ell_{g_0}(\gamma)}f_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))dt$$

Linearised problem:

- s-injectivity: ker $I_2 = \{ \mathcal{L}_V g_0; V \in C^1(M; TM) \}$?
- Stability estimates: $||I_2f|| \ge C||f||$ for $f \perp \ker I_2$?

Positive results (marked length spectrum rigidity)

Non-linear problem:

- dim 2: Otal '90, Croke '90
- dim n > 2 and g is conformal to g': Katok '88
- dim n > 2 when (M, g) is a locally symmetric space and $K_g < 0$, Besson-Courtois-Gallot '95, Hamenstädt '99

Linearised problem:

- ullet s-injectivity of I_2 when $K_g < 0$: Guillemin-Kazhdan '80, Croke-Sharafutdinov '98
- \bullet dim 2: s-injectivity of I_2 when g has Anosov geodesic flow: Paternain-Salo-Uhlmann '14

Local rigidity of marked length spectrum

Theorem (G-Lefeuvre '18)

Let (M,g) be either

- a closed surface with Anosov geodesic flow, or
- a closed manifold of dim n > 2 with $K_g \le 0$ and Anosov geodesic flow.

There is a C^k neighborhood U of g such that if $g' \in U$ and $L_g = L_{g'}$, then g' is isometric to g.

Thurston distance

Thurston distance: g_1, g_2 negatively curved metrics,

$$d_T(g_1,g_2) := \limsup_{j \to \infty} \log \frac{L_{g_2}(c_j)}{L_{g_1}(c_j)}$$

Theorem (Thurston '98)

On Teichmüller space $\mathcal{T}_M := \{g \mid K_g = -1\}/\mathrm{Diff}_0(M), \ d_T \text{ is an asymmetric distance: } d_T(g_1, g_2) > 0 \text{ unless } g_1 = g_2.$

Stability and Thurston distance

Theorem (G-Knieper-Lefeuvre '19)

Let (M, g_0) be as in previous theorem. Then $\exists k \in \mathbb{N}$, $\varepsilon > 0$ and $C_{g_0} > 0$ such that for all g_1, g_2 metrics such that $\|g_1 - g_0\|_{C^k} \le \varepsilon$, $\|g_2 - g_0\|_{C^k} \le \varepsilon$, there is a C^k - diffeomorphism $\psi : M \to M$ such that

$$\|\psi^*g_2-g_1\|_{H^{-\frac{1}{2}}(M)} \leq C_{g_0}|d_T(g_1,g_2)|^{\frac{1}{2}}$$

In particular $L_{g_1}=L_{g_2}$ implies g_2 isometric to g_1 , and d_T symmetrized defines a distance near the diagonal of

$$\{Isometry\ classes\} \times \{Isometry\ classes\}.$$

Remark: using interpolation, can be upgraded to

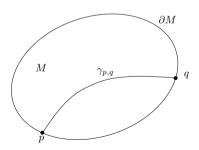
$$\|\psi^* g_1 - g_2\|_{C^{k'}} \le C_{g_0} |d_T(g_1, g_2)|^{\delta}$$

for some $\delta > 0$ depending on k' < k.

Boundary rigidity problem (Michel conjecture)

- (M,g): smooth compact manifold with ∂M strictly convex
- $d_g: M \times M \to \mathbb{R}^+$ the Riemannian distance
- $\beta_g := d_g|_{\partial M \times \partial M}$ the restriction to ∂M

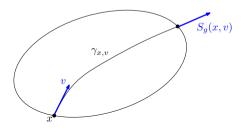
Boundary rigidity pb: does β_g determine g up to isometries fixing ∂M ?



Lens rigidity problem

- (M,g): smooth compact manifold with ∂M strictly convex
- $SM := \{(x, v) \in TM \mid g_x(v, v) = 1\}$
- $\varphi_t : SM \to SM$ geodesic flow
- for $(x, v) \in \partial SM$, let $\ell_g(x, v) := \text{length of geodesic } \gamma_{(x,v)}$
- for $(x, v) \in \partial SM$, let $S_g(x, v) := \varphi_{\ell_g(x, v)}(x, v)$ scattering map

Lens rigidity prb: does (ℓ_g, S_g) determine g up to isometries fixing ∂M ?



The linearised operator in the boundary case - X ray transform

We linearise the non-linear map $g \mapsto \beta_g$ at g_0 :

- \mathcal{G} =set of geodesics γ (for g_0) with endpoints on ∂M
- linearised operator: X-ray transform on 2-tensors:

$$I_2: C^0(M; S^2T^*M) \to L^\infty_{\mathrm{loc}}(\mathcal{G}),$$

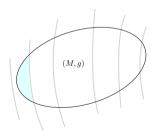
$$I_2 f(\gamma) := \int_{\gamma} f = \int_{0}^{\ell_{g_0}(\gamma)} f_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) dt$$

Linearised pb:

- s-injectivity: $\ker I_2 = \{ \mathcal{L}_V g_0 \mid V \in C^1(M; TM), V|_{\partial M} = 0 \}$?
- Stability estimates: $||I_2f|| \ge C||f||$ for $f \perp \ker I_2$?

Positive results - boundary/lens rigidity

- dim 2: Otal ('90), Croke ('90) if $K_g \le 0$ & simply connected. Pestov-Uhlmann ('03) if no conjugate points & simply connected (simple metrics).
- dim n > 2: Stefanov-Uhlmann-Vasy ('17) if strictly convex foliation. Satisfied if (M, g)=topological ball and $K_g \le 0$

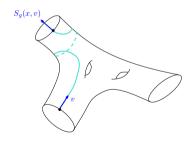


• s-Injectivity of I_2 with stability in cases above: Pestov-Sharafutdinov '88, Stefanov-Uhlmann-Vasy '14, Paternain-Salo-Uhlmann '13.

Our contribution - lens rigidity

Theorem (G'17)

On negatively curved surfaces with ∂M convex, S_g determines (M,g) up to conformal diffeomorphisms fixing ∂M . Moreover I_2 is s-injective with stability estimates.



Remark: First general result for non simply connected manifolds.

Main difficulty: some geodesics are trapped.

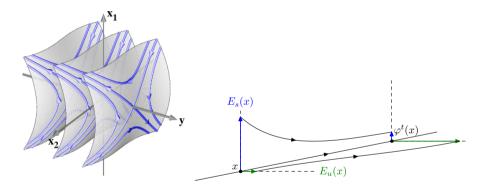
Axiom A and Anosov flows

- ullet ${\cal M}$ a smooth compact manifold with or without boundary
- X a smooth non-vanishing vector field on \mathcal{M} , with flow φ_t , such that $\partial \mathcal{M}$ is strictly convex for the flow lines of X (or $\partial \mathcal{M} = \emptyset$).
- $K := \cap_{t \in \mathbb{R}} \varphi_t(\mathcal{M}^\circ)$ the *trapped set*, is closed flow-invariant, contains the closed orbits $(K = \mathcal{M} \text{ if } \partial \mathcal{M} = \emptyset)$
- Assume K is hyperbolic for φ_t : i.e. flow-invariant splitting

$$\exists \nu > 0, \quad T_{K}\mathcal{M} = \mathbb{R}X \oplus E_{s} \oplus E_{u}$$

$$\|d\varphi_t|_{E_s}\| \le Ce^{-\nu t}, \ \forall t \gg 1, \quad \|d\varphi_t|_{E_u}\| \le Ce^{-\nu |t|}, \ \forall t \ll -1$$

• if $\partial \mathcal{M} = \emptyset$, the flow is said Anosov



Examples: geodesic flow on $\mathcal{M}=SM$ if (M,g) has negative curvature and either ∂M strictly convex or empty.

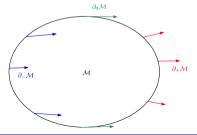
Analytic methods for the previous problems

- M: smooth compact manifold with boundary
- X: smooth vector field on \mathcal{M} with flow φ_t
- $\partial \mathcal{M}$ strictly convex for the flow lines of X (or $\partial \mathcal{M} = \emptyset$)

$$\partial_0 \mathcal{M} = \{ y \in \partial \mathcal{M}; X(y) \text{ tangent to } \partial \mathcal{M} \}$$

 $\partial_- \mathcal{M} = \{ y \in \partial \mathcal{M}; X(y) \text{ pointing inside } \mathcal{M} \}$

 $\partial_+ \mathcal{M} = \{ y \in \partial \mathcal{M}; X(y) \text{ pointing outside } \mathcal{M} \}$



Boundary value problems, well-posedness

Let μ be a smooth measure invariant by φ_t , $V \in C^{\infty}(\mathcal{M})$ a potential.

Question: for $f \in C^{\infty}(\mathcal{M})$ (or $L^p(\mathcal{M}), H^s(\mathcal{M}),...$), can we solve the linear PDE (transport equation)

$$(X+V)u=f, \quad u|_{\partial_-\mathcal{M}}=0$$

in a given functional space? Is the solution unique? singularities of u?

Remark:

- In $\mathcal{D}'(\mathcal{M})$, no uniqueness: if V=0 and X has a periodic orbit γ not intersecting $\partial \mathcal{M}$, then $X\delta_{\gamma}=0$.
- if $\partial \mathcal{M} = \emptyset$ and φ_t is ergodic, $\ker X \cap L^p(\mathcal{M}) = \mathsf{R}$

Trapped sets

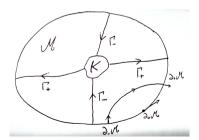
Define the exit times from \mathcal{M}

$$\ell_+: \mathcal{M} \to [0, \infty], \quad \ell_+(y) = \sup\{\{t \geq 0; \varphi_t(y) \in \mathcal{M}^\circ\} \cup \{0\}\}$$

 $\ell_-: \mathcal{M} \to [-\infty, 0], \quad \ell_-(y) = \inf\{\{t \leq 0; \varphi_t(y) \in \mathcal{M}^\circ\} \cup \{0\}\}.$

Introduce the

- forward/backward trapped set $\Gamma_{\mp} := \{ y \in \mathcal{M}; \ell_{\pm} = \pm \infty \}$,
- trapped set $K := \Gamma_- \cap \Gamma_+$



Resolvents (case V = 0)

Add a damping: let $\lambda \in \mathbb{C}$, $\operatorname{Re}(\lambda) > 0$ and define the operators

$$R_+(\lambda)f(y) = \int_0^{\ell_+(y)} e^{-\lambda t} f(\varphi_t(y)) dt,$$

$$R_{-}(\lambda)f(y) = -\int_{\ell_{-}(y)}^{0} e^{\lambda t} f(\varphi_{t}(y)) dt.$$

bounded on $L^2(\mathcal{M}, \mu)$. They solve the boundary value pb

$$\begin{cases} (-X - \lambda)R_{-}(\lambda)f = f \\ (R_{-}(\lambda)f)|_{\partial_{-}\mathcal{M}} = 0 \end{cases}, \begin{cases} (-X + \lambda)R_{+}(\lambda)f = f \\ (R_{+}(\lambda)f)|_{\partial_{+}\mathcal{M}} = 0 \end{cases}$$

Extension to the complex plane

Theorem (Dyatlov-G '16)

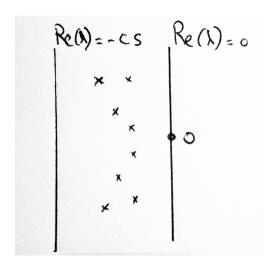
If the trapped set K is hyperbolic, there exists c>0 so that for each s>0 the operator $R_{\pm}(\lambda)$ extends to $\mathrm{Re}(\lambda)>-cs$ meromorphically in λ with finite rank poles, it maps

$$H_0^s(\mathcal{M}) \to H^{-s}(\mathcal{M}).$$

We obtain a description of wave-front set of the integral kernel $R_{\pm}(\lambda; x, x')$ in terms of stable/unstable bundles and Γ_{\pm} .

In the Anosov case:

- * meromorphic extension by Butterley-Liverani '07, Faure-Sjöstrand '11
- * the wave-front set analysis done by Dyatlov-Zworski '16.



Tools used for this result

- Microlocal calculus analysis in phase space
- Escape functions/Lyapunov functions (cf. Faure-Sjöstrand)
- use of anisotropic Sobolev spaces (cf. Kitaev, Blank, Keller, Liverani, Gouëzel, Baladi, Tsujii, Faure, Roy, Sjöstrand, etc): positive regularity in stable direction, negative in unstable.
- Set up of a Fredholm theory for the operator $X \pm \lambda$
- Propagation estimates: Hörmander propagation + propagation at radial sets (cf. Melrose, Vasy, Dyatlov-Zworski)

Applications to previous theorems (through linearized operator)

Lens rigidity problem:

- 1) let $\mathcal{M} = SM$, $\lambda = 0$: we deduce (microlocal) regularity of solutions of Xu = f with $f \in C^{\infty}(\mathcal{M})$ satisfying $u|_{\partial_{+}\mathcal{M}} = 0$. This is the key for description of ker I_{2} in trapped case.
- 2) Deduce that the operator $I_2^*I_2 = \pi_*(R_+(0) R_-(0))\pi^*$ is an elliptic pseudo-differential operator of order -1 on $(\ker I_2)^{\perp}$:

$$I_2^*I_2f\simeq \Delta_g^{-1/2}f+\mathrm{LOT}(f)\Longrightarrow$$
 stability estimates for $I_2\colon \|I_2f\|_{L^2}\geq C\|f\|_{H^{-1/2}(M)}$

$$(\pi^*: C^\infty(M; S^2T^*M) o C^\infty(SM)$$
 natural operator, π_* its adjoint)

Marked length spectrum rigidity:

Use the operator $\Pi := R_+(0) - R_-(0)$ in Anosov case.

It is related to I_2 through Livsic theorem: let $f \in C^{\alpha}(SM)$,

$$\forall \gamma \in \mathcal{G}, \int_{\gamma} f = 0 \Longrightarrow \exists u \in C^{\alpha}(SM), \ f = Xu.$$

It satisfies stability estimates: for $f \in C^{\alpha}(M; S^2T^*M)$ with $f \perp \ker I_2$

$$C\|I_2f\|_{\ell^{\infty}(\mathcal{G})}^{1/2}\|f\|_{C^{\alpha}(M)}^{1/2} \ge \|\pi_*\Pi\pi^*f\|_{L^2(M)} \ge \frac{1}{C}\|f\|_{H^{-1}(M)}.$$

Then since $0 = L(g)/L(g_0) - 1 = I_2(g - g_0) + O(\|g - g_0\|_{C^3}^2)$, we get with $f := g - g_0$

$$||f||_{H^{-1}} \le C||I_2(g)||_{\ell^{\infty}}^{1/2}||f||_{C^{\alpha}}^{1/2} \le C||f||_{C^3}^{3/2}.$$

Merci!