"Problems" in Inverse Semigroups

Fábio Silva

Lisbon Mathematics PhD Seminar
May 8, 2015

First results on the word problem

Anisimov's theorem for groups

Anisimov's theorem first generalization to inverse semigroups

Anisimov's theorem second generalization to inverse semigroups

In the first section we are going to study the word problem and its decidability in different structures. To do that, first we need to introduce some ideas and definitions.

Description of the word problem in different structures

Turing Machine

Definition (X^{+})
For a set X (alphabet), X^{+}denotes the set of finite sequences (words) of elements of X.

If ε denotes the empty word, then $X^{*}=X^{+} \cup\{\varepsilon\}$.
Example
If $X=\left\{x_{1}, x_{2}\right\}$, then $X^{+}=\left\{x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2} x_{1}, x_{2}^{2}, \ldots\right\}$.

Description of the word problem in different structures

Turing Machine

Definition $\left(X^{+}\right)$

For a set X (alphabet), X^{+}denotes the set of finite sequences (words) of elements of X.

If ε denotes the empty word, then $X^{*}=X^{+} \cup\{\varepsilon\}$.
\square

Description of the word problem in different structures

Turing Machine

Definition (X^{+})

For a set X (alphabet), X^{+}denotes the set of finite sequences (words) of elements of X.

If ε denotes the empty word, then $X^{*}=X^{+} \cup\{\varepsilon\}$.

Description of the word problem in different structures

Turing Machine

Definition $\left(X^{+}\right)$

For a set X (alphabet), X^{+}denotes the set of finite sequences (words) of elements of X.

If ε denotes the empty word, then $X^{*}=X^{+} \cup\{\varepsilon\}$.
Example
If $X=\left\{x_{1}, x_{2}\right\}$, then $X^{+}=\left\{x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2} x_{1}, x_{2}^{2}, \ldots\right\}$.

Description of the word problem in different structures

Definition (Recursively Enumerable set)
A subset $E \subseteq X^{+}$is recursively enumerable if there is a Turing Machine T whose alphabet contains X and T accepts w iff $w \in E$.

Definition (Recursive set)
A set $R \subseteq X^{+}$is recursive if both R and $X^{+} \backslash R$ are recursively
enumerable subsets of X^{+}
Idea (Word problem)
A semigroup/group S with generators $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ has a
solvable word problem if there is a "decision process" to determine,
for an arbitrary pair of words $w, z \in X^{+}$, whether they are equal in S

Description of the word problem in different structures

Definition (Recursively Enumerable set)
A subset $E \subseteq X^{+}$is recursively enumerable if there is a Turing Machine T whose alphabet contains X and T accepts w iff $w \in E$.

Definition (Recursive set)
A set $R \subseteq X^{+}$is recursive if both R and $X^{+} \backslash R$ are recursively enumerable subsets of X^{+}.

Idea (Word problem)
A semigroup/group S with generators $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ has a solvable word problem if there is a "decision process" to determine, for an arbitrary pair of words $w, z \in X^{+}$, whether they are equal in S

Description of the word problem in different structures

Definition (Recursively Enumerable set)

A subset $E \subseteq X^{+}$is recursively enumerable if there is a Turing Machine T whose alphabet contains X and T accepts w iff $w \in E$.

Definition (Recursive set)
A set $R \subseteq X^{+}$is recursive if both R and $X^{+} \backslash R$ are recursively enumerable subsets of X^{+}.

Idea (Word problem)
A semigroup/group S with generators $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ has a solvable word problem if there is a "decision process" to determine, for an arbitrary pair of words $w, z \in X^{+}$, whether they are equal in S.

Description of the word problem in different structures

For example,

$$
\begin{aligned}
\left(\mathbb{Z}_{n}, \cdot\right)=\left\langle x: x^{n}=1\right\rangle= & \left\{1, x, x^{2}, \ldots, x^{n-1}\right\}=\frac{\{x\}^{+}}{\left\langle\left(x^{n}, 1\right)\right\rangle} \\
& x^{n+1} \equiv x
\end{aligned}
$$

Description of the word problem in different structures

For example,

$$
\begin{gathered}
\left(\mathbb{Z}_{n}, \cdot\right)=\left\langle x: x^{n}=1\right\rangle=\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}=\frac{\{x\}^{+}}{\left\langle\left(x^{n}, 1\right)\right\rangle} \\
x^{n+1} \equiv x \\
T=\left\langle x, y: x^{2}=x, y x=y\right\rangle=\frac{\{x, y\}^{+}}{\left\langle\left(x^{2}, x\right),(y x, y)\right\rangle} \\
x^{n} y x y^{2} \equiv x y^{3} \equiv x^{2} y x y x y
\end{gathered}
$$

Description of the word problem in different structures

For example,

$$
\begin{gathered}
\left(\mathbb{Z}_{n}, \cdot\right)=\left\langle x: x^{n}=1\right\rangle=\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}=\frac{\{x\}^{+}}{\left\langle\left(x^{n}, 1\right)\right\rangle} \\
x^{n+1} \equiv x \\
T=\left\langle x, y: x^{2}=x, y x=y\right\rangle=\frac{\{x, y\}^{+}}{\left\langle\left(x^{2}, x\right),(y x, y)\right\rangle} \\
x^{n} y x y^{2} \equiv x y^{3} \equiv x^{2} y x y x y
\end{gathered}
$$

Notation

- If $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}, X^{-1}$ denotes the set $\left\{x_{1}^{-1}, \ldots, x_{n}^{-1}, \ldots\right\}$ with $X \cap X^{-1}=\emptyset$.

Definition (Word problem for a semigroup)
A semigroup S generated by $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ has a solvable word problem if the set

$$
\left\{(w, z) \in X^{+} \times X^{+}: w=z \text { in } S\right\} \text { is recursive. }
$$

Definition (Word problem for a group)
If G is a group with generators $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, then G has a solvable word problem if the set

Definition (Word problem for a semigroup)
A semigroup S generated by $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ has a solvable word problem if the set

$$
\left\{(w, z) \in X^{+} \times X^{+}: w=z \text { in } S\right\} \text { is recursive. }
$$

Definition (Word problem for a group)

If G is a group with generators $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, then G has a solvable word problem if the set

$$
\left\{w \in\left(X \cup X^{-1}\right)^{+}: w=1 \text { in } G\right\} \text { is recursive. }
$$

Theorem (Markov-Post, 1947)
There exists a semigroup (finitely presented) with an unsolvable word problem.

The proof relies on a theorem of Kleene which asserts that exists a recursively enumerable subset of the natural numbers that is not recursive and

Turing Machine \longrightarrow Semigroup (finitely presented)
Theorem (Novikov-Boone-Britton, 1954-1958)
There exists a group (finitely presented) with an unsolvable word problem.

Decidability of the word problem in different structures

Theorem (Markov-Post, 1947)
There exists a semigroup (finitely presented) with an unsolvable word problem.

The proof relies on a theorem of Kleene which asserts that exists a recursively enumerable subset of the natural numbers that is not recursive and

Turing Machine \longrightarrow Semigroup (finitely presented)
Theorem (Novikov-Boone-Britton, 1954-1958) There exists a group (finitely presented) with an unsolvable word problem.

Decidability of the word problem in different structures

Theorem (Markov-Post, 1947)
There exists a semigroup (finitely presented) with an unsolvable word problem.

The proof relies on a theorem of Kleene which asserts that exists a recursively enumerable subset of the natural numbers that is not recursive and

Turing Machine \longrightarrow Semigroup (finitely presented)
Theorem (Novikov-Boone-Britton, 1954-1958) There exists a group (finitely presented) with an unsolvable word problem.

Decidability of the word problem in different structures

Theorem (Markov-Post, 1947)
There exists a semigroup (finitely presented) with an unsolvable word problem.

The proof relies on a theorem of Kleene which asserts that exists a recursively enumerable subset of the natural numbers that is not recursive and

Turing Machine \longrightarrow Semigroup (finitely presented)
Theorem (Novikov-Boone-Britton, 1954-1958)
There exists a group (finitely presented) with an unsolvable word problem.

Word problem for an inverse semigroup

Definition (Inverse Semigroup)
A semigroup S is inverse if

$$
\forall x \in S, \exists!x^{-1} \in S, \quad x x^{-1} x=x \quad \wedge \quad x^{-1} x x^{-1}=x^{-1} .
$$

Groups $\hookrightarrow \operatorname{Sym}(X)$ (Cayley's theorem)
Inverse semigroups $\hookrightarrow I(X)$ (Wagner-Preston's theorem).
$I(X)$ - injective partial transformations on X.
Definition (Word problem for an inverse semigroup)
An inverse semigroup S generated by $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, has a
solvable word problem with respect to X, if the set
$\left\{(w, z) \in\left(X \cup X^{-1}\right)^{+} \times\left(X \cup X^{-1}\right)^{+}: w=z\right.$ in $\left.S\right\}$ is recursive.

Word problem for an inverse semigroup

Definition (Inverse Semigroup)
A semigroup S is inverse if

$$
\forall x \in S, \exists!x^{-1} \in S, \quad x x^{-1} x=x \quad \wedge \quad x^{-1} x x^{-1}=x^{-1} .
$$

$$
\text { Groups } \hookrightarrow \operatorname{Sym}(X) \text { (Cayley’s theorem) }
$$

Inverse semigroups $\hookrightarrow I(X)$ (Wagner-Preston's theorem). $I(X)$ - injective partial transformations on X.

Definition (Word problem for an inverse semigroup)
An inverse semigroup S generated by $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, has a solvable word problem with respect to X, if the set

Word problem for an inverse semigroup

Definition (Inverse Semigroup)
A semigroup S is inverse if

$$
\forall x \in S, \exists!x^{-1} \in S, \quad x x^{-1} x=x \quad \wedge \quad x^{-1} x x^{-1}=x^{-1} .
$$

$$
\text { Groups } \hookrightarrow \operatorname{Sym}(X) \text { (Cayley’s theorem) }
$$

Inverse semigroups $\hookrightarrow I(X)$ (Wagner-Preston's theorem).
$I(X)$ - injective partial transformations on X.
Definition (Word problem for an inverse semigroup)
An inverse semigroup S generated by $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, has a
solvable word problem with respect to X, if the set

Word problem for an inverse semigroup

Definition (Inverse Semigroup)
A semigroup S is inverse if

$$
\forall x \in S, \exists!x^{-1} \in S, \quad x x^{-1} x=x \quad \wedge \quad x^{-1} x x^{-1}=x^{-1} .
$$

$$
\text { Groups } \hookrightarrow \operatorname{Sym}(X) \text { (Cayley’s theorem) }
$$

Inverse semigroups $\hookrightarrow I(X)$ (Wagner-Preston's theorem). $I(X)$ - injective partial transformations on X.

Definition (Word problem for an inverse semigroup)
An inverse semigroup S generated by $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, has a solvable word problem with respect to X, if the set

Word problem for an inverse semigroup

Definition (Inverse Semigroup)
A semigroup S is inverse if

$$
\forall x \in S, \exists!x^{-1} \in S, \quad x x^{-1} x=x \quad \wedge \quad x^{-1} x x^{-1}=x^{-1} .
$$

$$
\text { Groups } \hookrightarrow \operatorname{Sym}(X) \text { (Cayley's theorem) }
$$

Inverse semigroups $\hookrightarrow I(X)$ (Wagner-Preston's theorem). $I(X)$ - injective partial transformations on X.

Definition (Word problem for an inverse semigroup)

An inverse semigroup S generated by $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, has a solvable word problem with respect to X, if the set

$$
\left\{(w, z) \in\left(X \cup X^{-1}\right)^{+} \times\left(X \cup X^{-1}\right)^{+}: w=z \text { in } S\right\} \text { is recursive. }
$$

The word problem for the free group

The free group $F G_{X}$ on a set $X \neq \emptyset$, as a solvable word problem.

Sketch of a decision process:

The word problem for the free group

The free group $F G_{X}$ on a set $X \neq \emptyset$, as a solvable word problem.
Sketch of a decision process:

The word problem for the free group

The free group $F G_{X}$ on a set $X \neq \emptyset$, as a solvable word problem.
Sketch of a decision process:

- Input w;
- Compute \bar{w};
- If $\bar{w}=\varepsilon$, write $w=1$ in $F G_{X}$ and stop else write $w \neq 1$ in $F G_{X}$ and stop .

The word problem for the free inverse semigroup

The free inverse semigroup $F I S_{X}$ on a set $X \neq \emptyset$, as a solvable word problem.

But, things get more complicated.

reduced words on $X \rightsquigarrow$ Munn trees on $X\left(M T_{X}\right)$

Munn tree of both $w=a a a^{-1} c c^{-1} b$ and $z=a b b^{-1} c c^{-1} a a^{-1} b$.

The word problem for the free inverse semigroup

The free inverse semigroup $F I S_{X}$ on a set $X \neq \emptyset$, as a solvable word problem.

But, things get more complicated. . .
reduced words on $X \rightsquigarrow$ Munn trees on $X\left(M T_{X}\right)$

The word problem for the free inverse semigroup

The free inverse semigroup $F I S_{X}$ on a set $X \neq \emptyset$, as a solvable word problem.

But, things get more complicated. . . reduced words on $X \rightsquigarrow$ Munn trees on $X\left(M T_{X}\right)$

The word problem for the free inverse semigroup

The free inverse semigroup $F I S_{X}$ on a set $X \neq \emptyset$, as a solvable word problem.

But, things get more complicated. . . reduced words on $X \rightsquigarrow$ Munn trees on $X\left(M T_{X}\right)$

Munn tree of both $w=a a a^{-1} c c^{-1} b$ and $z=a b b^{-1} c c^{-1} a a^{-1} b$.

The word problem for the free inverse semigroup

Theorem (Munn, 1974)
There exists an isomorphism between $F I S_{X}$ and $M T_{X}$.
Sketch of a decision process:

```
Input (w,z);
Compute Munn trees of w and z
Compare the respective Munn trees
If they are equal write }w=z\mathrm{ in FISS
    else, write w\not=z in FIS S and stop
```


The word problem for the free inverse semigroup

Theorem (Munn, 1974)
There exists an isomorphism between $F I S_{X}$ and $M T_{X}$.
Sketch of a decision process:

The word problem for the free inverse semigroup

Theorem (Munn, 1974)
There exists an isomorphism between $F I S_{X}$ and $M T_{X}$.
Sketch of a decision process:

- Input (w, z) ;
- Compute Munn trees of w and z;
- Compare the respective Munn trees;

If they are equal write $w=z$ in $F I S_{X}$ and stop else, write $w \neq z$ in $F I S_{X}$ and stop .

Anisimov's theorem original statement

Up to now, we have been working on the decidability of the word problem in certain algebraic structures by Turing Machines.

From now on, we are going to think about the question: how does the word problem decidability by a "weaker" Turing Machine (automaton) interacts with the finiteness of the algebraic structure?

We will present some concepts to state Anisimov's theorem, which relates both.

Anisimov's theorem original statement

Definition (Finite State Automaton (FSA))

A Finite State Automaton \mathcal{A} is a tuple $\mathcal{A}=\left\langle Q, X, q_{0}, F, \delta\right\rangle$, with:

- Q a finite set of states;
- X an alphabet;
- $q_{0} \in Q$ an initial state;
- $F \subseteq Q$ a set of final states;
- $\delta \subseteq Q \times(X \cup\{\varepsilon\}) \times Q$ a transition relation.

Examples
Munn trees are automata;
The automaton given by: $Q=\left\{q_{0}, q_{1}\right\}, X=\{x, y\}, F=\left\{q_{1}\right\}$ and
$\delta=\left\{\left(q_{0}, x, q_{1}\right),\left(q_{0}, y, q_{1}\right),\left(q_{1}, y, q_{1}\right)\right\}$

Anisimov's theorem original statement

Definition (Finite State Automaton (FSA))

A Finite State Automaton \mathcal{A} is a tuple $\mathcal{A}=\left\langle Q, X, q_{0}, F, \delta\right\rangle$, with:

- Q a finite set of states;
- X an alphabet;
- $q_{0} \in Q$ an initial state;
- $F \subseteq Q$ a set of final states;
- $\delta \subseteq Q \times(X \cup\{\varepsilon\}) \times Q$ a transition relation.

Examples
Munn trees are automata;
The automaton given by: $Q=\left\{q_{0}, q_{1}\right\}, X=\{x, y\}, F=\left\{q_{1}\right\}$ and
\square

Anisimov's theorem original statement

Definition (Finite State Automaton (FSA))

A Finite State Automaton \mathcal{A} is a tuple $\mathcal{A}=\left\langle Q, X, q_{0}, F, \delta\right\rangle$, with:

- Q a finite set of states;
- X an alphabet;
- $q_{0} \in Q$ an initial state;
- $F \subseteq Q$ a set of final states;
- $\delta \subseteq Q \times(X \cup\{\varepsilon\}) \times Q$ a transition relation.

Examples

Munn trees are automata;
The automaton given by: $Q=\left\{q_{0}, q_{1}\right\}, X=\{x, y\}, F=\left\{q_{1}\right\}$ and $\delta=\left\{\left(q_{0}, x, q_{1}\right),\left(q_{0}, y, q_{1}\right),\left(q_{1}, y, q_{1}\right)\right\}$.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{x_{1}} q_{2} \xrightarrow{x_{2}} q_{3} \ldots \xrightarrow{x_{n-1}} q_{n} \xrightarrow{x_{n}} q_{n+1}
$$

- A word $w=x_{1} x_{2} \ldots x_{n-1} x_{n}$ is accepted by \mathcal{A} if in the above computation $q_{1}=q_{0}$ and $q_{n+1} \in F$.

For example, $w=x y$ is accepted by the above automaton.

Anisimov's theorem original statement

A language L is a subset of X^{*}.

```
If G}\mathrm{ is a group generated by }X\mathrm{ , then its word problem,
{w\in(X\cup\mp@subsup{X}{}{-1}\mp@subsup{)}{}{+}:w=1 in G} is a language on X.
Definition (Regular Language)
A language is regular if there is an FSA accepting precisely its words.
```

Theorem (Anisimov, 1971)
A finitely generated group has a regular word problem iff it is finite.

Anisimov's theorem original statement

A language L is a subset of X^{*}.
If G is a group generated by X, then its word problem, $\left\{w \in\left(X \cup X^{-1}\right)^{+}: w=1\right.$ in $\left.G\right\}$ is a language on X.

Definition (Regular Language)
A language is regular if there is an FSA accepting precisely its words.

Theorem (Anisimov, 1971)
A finitely generated group has a regular word problem iff it is finite.

Anisimov's theorem original statement

A language L is a subset of X^{*}.
If G is a group generated by X, then its word problem, $\left\{w \in\left(X \cup X^{-1}\right)^{+}: w=1\right.$ in $\left.G\right\}$ is a language on X.

Definition (Regular Language)
A language is regular if there is an FSA accepting precisely its words.

Theorem (Anisimov, 1971)
A finitely generated group has a regular word problem iff it is finite.

Anisimov's theorem original statement

A language L is a subset of X^{*}.
If G is a group generated by X, then its word problem, $\left\{w \in\left(X \cup X^{-1}\right)^{+}: w=1\right.$ in $\left.G\right\}$ is a language on X.

Definition (Regular Language)
A language is regular if there is an FSA accepting precisely its words.

Theorem (Anisimov, 1971)
A finitely generated group has a regular word problem iff it is finite.

Generalizations to inverse semigroups

Is Anisimov's theorem true for inverse semigroups?
The word problem for groups can be stated in two equivalent ways:

$$
\begin{align*}
& w=z \tag{1}\\
& u=1 \tag{2}
\end{align*}
$$

For inverse semigroups (1) was mentioned before and (2) is generalized by the idempotent problem

$$
w^{2}=w
$$

observing that idempotents in inverse semigroups are closely related with the identity on groups.

Analogous of Anisimov's theorem will be considered for these two different problems.

First generalization to inverse semigroups

N. D. Gilbert, R. N. Heale \& M. Kambites' view $(w \equiv e)$

When does a word represent an idempotent?

> Definition (Idempotent problem)
> For an inverse semigroup S generated by X, the idempotent problem of S with respect to X is regular, if the language

$$
\left\{w \in\left(X \cup X^{-1}\right)^{+}: w^{2}=w \text { in } S\right\} \text { is regular. }
$$

Proposition (Gilbert \& Heale, 2013)
If S is a finite inverse semigroup generated by X, then its idempotent problem is regular.

The proof relies on the construction of the Cayley graph $\operatorname{Cay}(S, X)$, which is then converted into an automaton.

First generalization to inverse semigroups

N. D. Gilbert, R. N. Heale \& M. Kambites' view $(w \equiv e)$

When does a word represent an idempotent?
Definition (Idempotent problem)
For an inverse semigroup S generated by X, the idempotent problem of S with respect to X is regular, if the language

$$
\left\{w \in\left(X \cup X^{-1}\right)^{+}: w^{2}=w \text { in } S\right\} \text { is regular. }
$$

Proposition (Gilbert \& Heale, 2013)
If S is a finite inverse semigroup generated by X, then its idempotent problem is regular.

The proof relies on the construction of the Cayley graph $\operatorname{Cay}(S, X)$, which is then converted into an automaton.

First generalization to inverse semigroups

N. D. Gilbert, R. N. Heale \& M. Kambites' view $(w \equiv e)$

When does a word represent an idempotent?

Definition (Idempotent problem)

For an inverse semigroup S generated by X, the idempotent problem of S with respect to X is regular, if the language

$$
\left\{w \in\left(X \cup X^{-1}\right)^{+}: w^{2}=w \text { in } S\right\} \text { is regular. }
$$

Proposition (Gilbert \& Heale, 2013)
If S is a finite inverse semigroup generated by X, then its idempotent problem is regular.

The proof relies on the construction of the Cayley graph Cay (S, X), which is then converted into an automaton.

First generalization to inverse semigroups

N. D. Gilbert, R. N. Heale \& M. Kambites' view $(w \equiv e)$

When does a word represent an idempotent?

Definition (Idempotent problem)

For an inverse semigroup S generated by X, the idempotent problem of S with respect to X is regular, if the language

$$
\left\{w \in\left(X \cup X^{-1}\right)^{+}: w^{2}=w \text { in } S\right\} \text { is regular. }
$$

Proposition (Gilbert \& Heale, 2013)
If S is a finite inverse semigroup generated by X, then its idempotent problem is regular.

The proof relies on the construction of the Cayley graph $\operatorname{Cay}(S, X)$, which is then converted into an automaton.

A Cayley graph

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad X=\{\alpha, \beta\} \quad \operatorname{Cay}(S, X)
$$

A Cayley graph

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad X=\{\alpha, \beta\} \quad \operatorname{Cay}(S, X)
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

To the automaton

$$
\alpha=\binom{1}{2} \quad \beta=\binom{2}{1} \quad S=\langle\alpha, \beta\rangle \quad \beta \alpha \beta \alpha=\binom{2}{2} \text { is idempotent }
$$

First generalization to inverse semigroups

N. D. Gilbert, R. N. Heale \& M. Kambites' view $(w \equiv e)$

Question (Gilbert \& Heale)
Is the converse of the above proposition true?
Theorem (Kambites, 2013)
If S is a finitely generated inverse semigroup with regular idempotent problem, then S is finite.

This is an heavy proof, that is basically the paper of Kambites. It relies on a theorem of Billhardt, which allows to embed an inverse semigroup S into a λ-semidirect product of a quotient of S by a certain semilattice related to S and on the characterization of the syntactic monoid of the idempotent problem of S with respect to X.

First generalization to inverse semigroups

N. D. Gilbert, R. N. Heale \& M. Kambites' view $(w \equiv e)$

Question (Gilbert \& Heale)
Is the converse of the above proposition true? Yes!

Theorem (Kambites, 2013)
If S is a finitely generated inverse semigroup with regular idempotent problem, then S is finite.

This is an heavy proof, that is basically the paper of Kambites. It relies on a theorem of Billhardt, which allows to embed an inverse semigroup S into a λ-semidirect product of a quotient of S by a certain semilattice related to S and on the characterization of the syntactic monoid of the idempotent problem of S with respect to X.

First generalization to inverse semigroups

N. D. Gilbert, R. N. Heale \& M. Kambites' view $(w \equiv e)$

Question (Gilbert \& Heale)
Is the converse of the above proposition true? Yes!
Theorem (Kambites, 2013)
If S is a finitely generated inverse semigroup with regular idempotent problem, then S is finite.

This is an heavy proof, that is basically the paper of Kambites. It relies on a theorem of Billhardt, which allows to embed an inverse semigroup S into a λ-semidirect product of a quotient of S by a certain semilattice related to S and on the characterization of the syntactic monoid of the idempotent problem of S with respect to X

First generalization to inverse semigroups

N. D. Gilbert, R. N. Heale \& M. Kambites' view $(w \equiv e)$

Question (Gilbert \& Heale)
Is the converse of the above proposition true? Yes!
Theorem (Kambites, 2013)
If S is a finitely generated inverse semigroup with regular idempotent problem, then S is finite.

This is an heavy proof, that is basically the paper of Kambites. It relies on a theorem of Billhardt, which allows to embed an inverse semigroup S into a λ-semidirect product of a quotient of S by a certain semilattice related to S and on the characterization of the syntactic monoid of the idempotent problem of S with respect to X.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

When do w and z are equal in the inverse semigroup?
To take an FSA is no longer enough, one must require two tapes.

Definition (Asynchronous FSA (AFSA))
An $A F S A \mathcal{A}$ is a tuple $\mathcal{A}=\left\langle Q, X, Y, q_{0}, F, \delta\right\rangle$, with:

- Q a finite set of states;
- X and Y alphabets;
- $q_{0} \in Q$ an initial state;
- $F \subseteq Q$ a set of final states;
- $\delta \subseteq Q \times(X \cup\{\varepsilon\}) \times(Y \cup\{\varepsilon\}) \times Q$ a transition relation.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

When do w and z are equal in the inverse semigroup?
To take an FSA is no longer enough, one must require two tapes.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

When do w and z are equal in the inverse semigroup?
To take an FSA is no longer enough, one must require two tapes.
Definition (Asynchronous FSA (AFSA)) An $A F S A \mathcal{A}$ is a tuple $\mathcal{A}=\left\langle Q, X, Y, q_{0}, F, \delta\right\rangle$, with:

- Q a finite set of states;
- X and Y alphabets;
- $q_{0} \in Q$ an initial state;
- $F \subseteq Q$ a set of final states;
- $\delta \subseteq Q \times(X \cup\{\varepsilon\}) \times(Y \cup\{\varepsilon\}) \times Q$ a transition relation.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{\left(x_{1}, y_{1}\right)} q_{2} \xrightarrow{\left(x_{2}, y_{2}\right)} q_{3} \ldots \xrightarrow{\left(x_{n-1}, y_{n-1}\right)} q_{n} \xrightarrow{\left(x_{n}, y_{n}\right)} q_{n+1}
$$

- A pair of words $\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)$ is accepted by \mathcal{A} if there is a computation like above, where $q_{1}=q_{0}$ and $q_{n+1} \in F$.

A relation R is a subset of $X^{*} \times Y^{*}$.
Definition (Rational relation)
A relation is rational if there is an AFSA accepting exactly its pairs of words.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{\left(x_{1}, y_{1}\right)} q_{2} \xrightarrow{\left(x_{2}, y_{2}\right)} q_{3} \ldots \xrightarrow{\left(x_{n-1}, y_{n-1}\right)} q_{n} \xrightarrow{\left(x_{n}, y_{n}\right)} q_{n+1}
$$

- A pair of words $\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)$ is accepted by \mathcal{A} if there is a computation like above, where $q_{1}=q_{0}$ and $q_{n+1} \in F$.

A relation R is a subset of $X^{*} \times Y^{*}$.
Definition (Rational relation)
A relation is rational if there is an AFSA accepting exactly its pairs of words.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Definitions

- A computation on \mathcal{A} from q_{1} to q_{n+1} is a finite sequence of transitions:

$$
q_{1} \xrightarrow{\left(x_{1}, y_{1}\right)} q_{2} \xrightarrow{\left(x_{2}, y_{2}\right)} q_{3} \ldots \xrightarrow{\left(x_{n-1}, y_{n-1}\right)} q_{n} \xrightarrow{\left(x_{n}, y_{n}\right)} q_{n+1}
$$

- A pair of words $\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)$ is accepted by \mathcal{A} if there is a computation like above, where $q_{1}=q_{0}$ and $q_{n+1} \in F$.

A relation R is a subset of $X^{*} \times Y^{*}$.

Definition (Rational relation)

A relation is rational if there is an AFSA accepting exactly its pairs of words.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Definition (Rational word problem)
A semigroup S with generating set X has a rational word problem with respect to X if the set

$$
\left\{(w, z) \in X^{+} \times X^{+}: w=z \text { in } S\right\}
$$

is a rational relation.
Is Anisimov's theorem true replacing regular with rational for semigroups in general? No!

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Definition (Rational word problem)
A semigroup S with generating set X has a rational word problem with respect to X if the set

$$
\left\{(w, z) \in X^{+} \times X^{+}: w=z \text { in } S\right\}
$$

is a rational relation.
Is Anisimov's theorem true replacing regular with rational for semigroups in general?

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Definition (Rational word problem)
A semigroup S with generating set X has a rational word problem with respect to X if the set

$$
\left\{(w, z) \in X^{+} \times X^{+}: w=z \text { in } S\right\}
$$

is a rational relation.
Is Anisimov's theorem true replacing regular with rational for semigroups in general? No!

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Proposition (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
Let $T=\left\langle x, y: x^{2}=x, y x=y\right\rangle$ and $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$.
These semigroups are infinite and the respective word problems are rational.

The following automaton decides the word problem of T with respect to $\{x, y\}$:

For example, the pairs $\left(x^{2}, x\right)$ and $(x y x, x y)$ are accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

This decides the word problem of $S=\left\langle x, y:\left(x y^{n} x=x y x\right)_{n \geq 2}\right\rangle$ with respect to $\{x, y\}$:

The word $\left(x y^{2} x, x y x\right)$ is accepted.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

But it is true for inverse semigroups.

> Theorem (Neunhöffer, Pfeiffer \& Ruškuc, 2013) If S is a finite semigroup, then S has a rational word problem with respect to all its generating sets.

> The proof relies again on the construction of an automaton based on a Cayley graph type of argument.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

But it is true for inverse semigroups.
Theorem (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
If S is a finite semigroup, then S has a rational word problem with respect to all its generating sets.

The proof relies again on the construction of an automaton based on
a Cayley graph type of argument.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

But it is true for inverse semigroups.
Theorem (Neunhöffer, Pfeiffer \& Ruškuc, 2013)
If S is a finite semigroup, then S has a rational word problem with respect to all its generating sets.

The proof relies again on the construction of an automaton based on a Cayley graph type of argument.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Question
When is the converse of the above proposition true?

Theorem (Brough, 2013)
If S is a finitely generated inverse semigroup with rational word problem, then S is finite.

Again, the proof is heavy, being the goal of the article and relies on the characterization of monogenic inverse semigroups due to Preston and on the results of Neunhöffer, Pfeiffer and Ruškuc about rational relations.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Question
When is the converse of the above proposition true?
Theorem (Brough, 2013)
If S is a finitely generated inverse semigroup with rational word problem, then S is finite.

Again, the proof is heavy, being the goal of the article and relies on
the characterization of monogenic inverse semigroups due to Preston and on the results of Neunhöffer, Pfeiffer and Ruškuc about rational relations.

Second generalization to inverse semigroups

M. Neunhöffer, M. Pfeiffer, N. Ruškuc \& T. Brough's view $(w \equiv z)$

Question
When is the converse of the above proposition true?
Theorem (Brough, 2013)
If S is a finitely generated inverse semigroup with rational word problem, then S is finite.

Again, the proof is heavy, being the goal of the article and relies on the characterization of monogenic inverse semigroups due to Preston and on the results of Neunhöffer, Pfeiffer and Ruškuc about rational relations.

References I

囯 Mark Kambites
Anisimov＇s theorem for inverse semigroups
arXiv：1303．5239v1［math．GR］（2013）
N．D．Gilbert，R．Noonan Heale
The idempotent problem for an inverse monoid
International Journal of Algebra and Computation，Vol． 21 No． 7
（2011），1179－1194
嗇 Tara Brough
Inverse semigroups with rational word problem are finite arXiv：1311．3955v1［math．GR］（2013）
國 Max Neunhöffer，Markus Pfeiffer，Nik Ruškuc Deciding Word Problems of Semigroups using Finite State Automata
arXiv：1206．1714v1［math．GR］（2013）

References II

五
G．B．Preston
Monogenic Inverse Semigroups
J．Austral．Math．Soc．（Series A） 40 （1986），321－342
國 Mark V．Lawson
Inverse Semigroups：The Theory of Partial Symmetries World Scientific， 1998
睩 Joseph J．Rotman
An Introduction to the Theory of Groups
Springer－Verlag，New York， 1995

