
"Problems" in Inverse Semigroups

Fábio Silva

Lisbon Mathematics PhD Seminar

May 8, 2015



First results on the word problem

Anisimov’s theorem for groups

Anisimov’s theorem first generalization to inverse semigroups

Anisimov’s theorem second generalization to inverse semigroups

2/30



Description of the word problem in different structures

In the first section we are going to study the word problem and its
decidability in different structures. To do that, first we need to
introduce some ideas and definitions.
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Description of the word problem in different structures

Turing Machine

Definition (X+)
For a set X (alphabet), X+ denotes the set of finite sequences
(words) of elements of X.

If ε denotes the empty word, then X∗ = X+ ∪ {ε}.

Example
If X = {x1, x2}, then X+ = {x1, x2, x12, x1x2, x2x1, x22, . . . }.
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Description of the word problem in different structures

Definition (Recursively Enumerable set)
A subset E ⊆ X+ is recursively enumerable if there is a Turing
Machine T whose alphabet contains X and T accepts w iff w ∈ E.

Definition (Recursive set)
A set R ⊆ X+ is recursive if both R and X+ \R are recursively
enumerable subsets of X+.

Idea (Word problem)
A semigroup/group S with generators X = {x1, . . . , xn, . . . } has a
solvable word problem if there is a “decision process” to determine,
for an arbitrary pair of words w, z ∈ X+, whether they are equal in S.
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Description of the word problem in different structures

For example,

(Zn, ·) = 〈x : xn = 1〉 = {1, x, x2, . . . , xn−1} =
{x}+

〈(xn, 1)〉
,

xn+1 ≡ x

T = 〈x, y : x2 = x, yx = y〉 =
{x, y}+

〈(x2, x), (yx, y)〉

xnyxy2 ≡ xy3 ≡ x2yxyxy

Notation
I If X = {x1, . . . , xn, . . . }, X−1 denotes the set {x−1

1 , . . . , x−1
n , . . . }

with X ∩X−1 = ∅.
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Decidability of the word problem in different structures

Definition (Word problem for a semigroup)
A semigroup S generated by X = {x1, . . . , xn, . . . } has a solvable
word problem if the set

{(w, z) ∈ X+ ×X+ : w = z in S} is recursive.

Definition (Word problem for a group)
If G is a group with generators X = {x1, . . . , xn, . . . }, then G has a
solvable word problem if the set

{w ∈ (X ∪X−1)+ : w = 1 in G} is recursive.
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Decidability of the word problem in different structures

Theorem (Markov-Post, 1947)
There exists a semigroup (finitely presented) with an unsolvable word
problem.

The proof relies on a theorem of Kleene which asserts that exists a
recursively enumerable subset of the natural numbers that is not
recursive and

Turing Machine −→ Semigroup (finitely presented)

Theorem (Novikov-Boone-Britton, 1954-1958)
There exists a group (finitely presented) with an unsolvable word
problem.
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Word problem for an inverse semigroup

Definition (Inverse Semigroup)
A semigroup S is inverse if

∀x ∈ S, ∃!x−1 ∈ S, xx−1x = x ∧ x−1xx−1 = x−1.

Groups ↪→ Sym(X) (Cayley’s theorem)

Inverse semigroups ↪→ I(X) (Wagner-Preston’s theorem).

I(X) - injective partial transformations on X.

Definition (Word problem for an inverse semigroup)
An inverse semigroup S generated by X = {x1, . . . , xn, . . . }, has a
solvable word problem with respect to X, if the set

{(w, z) ∈ (X ∪X−1)+ × (X ∪X−1)+ : w = z in S} is recursive.
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The word problem for the free group

The free group FGX on a set X 6= ∅, as a solvable word problem.

Sketch of a decision process:

· Input w ;

· Compute w ;

· If w = ε, write w = 1 in FGX and stop
else write w 6= 1 in FGX and stop .
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The word problem for the free inverse semigroup

The free inverse semigroup FISX on a set X 6= ∅, as a solvable word
problem.

But, things get more complicated. . .

reduced words on X  Munn trees on X (MTX )

q0 q1

q2

q3

q4
a

b

c

a

Munn tree of both w = aaa−1cc−1b and z = abb−1cc−1aa−1b.
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The word problem for the free inverse semigroup

Theorem (Munn, 1974)
There exists an isomorphism between FISX and MTX .

Sketch of a decision process:

· Input (w, z) ;

· Compute Munn trees of w and z ;

· Compare the respective Munn trees ;
If they are equal write w = z in FISX and stop

else, write w 6= z in FISX and stop .
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Anisimov’s theorem original statement

Up to now, we have been working on the decidability of the word
problem in certain algebraic structures by Turing Machines.

From now on, we are going to think about the question: how does the
word problem decidability by a “weaker” Turing Machine (automaton)
interacts with the finiteness of the algebraic structure?

We will present some concepts to state Anisimov’s theorem, which
relates both.
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Anisimov’s theorem original statement

Definition (Finite State Automaton (FSA))
A Finite State Automaton A is a tuple A = 〈Q,X, q0, F, δ〉, with:

I Q a finite set of states;
I X an alphabet;
I q0 ∈ Q an initial state;
I F ⊆ Q a set of final states;
I δ ⊆ Q× (X ∪ {ε})×Q a transition relation.

Examples
Munn trees are automata;

The automaton given by: Q = {q0, q1}, X = {x, y}, F = {q1} and
δ = {(q0, x, q1), (q0, y, q1), (q1, y, q1)}.

q0 q1
x, y

y
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Anisimov’s theorem original statement

q0 q1
x, y

y

Definitions
I A computation on A from q1 to qn+1 is a finite sequence of

transitions:

q1
x1−→ q2

x2−→ q3 . . .
xn−1−−−→ qn

xn−−→ qn+1

I A word w = x1x2 . . . xn−1xn is accepted by A if in the above
computation q1 = q0 and qn+1 ∈ F .

For example, w = xy is accepted by the above automaton.
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Anisimov’s theorem original statement

A language L is a subset of X∗.

If G is a group generated by X, then its word problem,
{w ∈ (X ∪X−1)+ : w = 1 in G} is a language on X.

Definition (Regular Language)
A language is regular if there is an FSA accepting precisely its words.

Theorem (Anisimov, 1971)
A finitely generated group has a regular word problem iff it is finite.
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Generalizations to inverse semigroups

Is Anisimov’s theorem true for inverse semigroups?

The word problem for groups can be stated in two equivalent ways:

w = z (1)

u = 1 (2)

For inverse semigroups (1) was mentioned before and (2) is
generalized by the idempotent problem

w2 = w

observing that idempotents in inverse semigroups are closely related
with the identity on groups.

Analogous of Anisimov’s theorem will be considered for these two
different problems.
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First generalization to inverse semigroups
N. D. Gilbert, R. N. Heale & M. Kambites’ view (w ≡ e)

When does a word represent an idempotent?

Definition (Idempotent problem)
For an inverse semigroup S generated by X, the idempotent problem
of S with respect to X is regular, if the language

{w ∈ (X ∪X−1)+ : w2 = w in S} is regular.

Proposition (Gilbert & Heale, 2013)
If S is a finite inverse semigroup generated by X, then its idempotent
problem is regular.

The proof relies on the construction of the Cayley graph Cay(S,X),
which is then converted into an automaton.
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First generalization to inverse semigroups
N. D. Gilbert, R. N. Heale & M. Kambites’ view (w ≡ e)

Question (Gilbert & Heale)
Is the converse of the above proposition true? Yes!

Theorem (Kambites, 2013)
If S is a finitely generated inverse semigroup with regular idempotent
problem, then S is finite.

This is an heavy proof, that is basically the paper of Kambites. It
relies on a theorem of Billhardt, which allows to embed an inverse
semigroup S into a λ-semidirect product of a quotient of S by a
certain semilattice related to S and on the characterization of the
syntactic monoid of the idempotent problem of S with respect to X.
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Second generalization to inverse semigroups
M. Neunhöffer, M. Pfeiffer, N. Ruškuc & T. Brough’s view (w ≡ z)

When do w and z are equal in the inverse semigroup?

To take an FSA is no longer enough, one must require two tapes.

Definition (Asynchronous FSA (AFSA))
An AFSA A is a tuple A = 〈Q,X, Y, q0, F, δ〉, with:

I Q a finite set of states;
I X and Y alphabets;
I q0 ∈ Q an initial state;
I F ⊆ Q a set of final states;
I δ ⊆ Q× (X ∪ {ε})× (Y ∪ {ε})×Q a transition relation.
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Second generalization to inverse semigroups
M. Neunhöffer, M. Pfeiffer, N. Ruškuc & T. Brough’s view (w ≡ z)

Definitions
I A computation on A from q1 to qn+1 is a finite sequence of

transitions:

q1
(x1,y1)−−−−→ q2

(x2,y2)−−−−→ q3 . . .
(xn−1,yn−1)−−−−−−−−→ qn

(xn,yn)−−−−−→ qn+1

I A pair of words (x1x2 . . . xn, y1y2 . . . yn) is accepted by A if there
is a computation like above, where q1 = q0 and qn+1 ∈ F .

A relation R is a subset of X∗ × Y ∗.

Definition (Rational relation)
A relation is rational if there is an AFSA accepting exactly its pairs of
words.
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Second generalization to inverse semigroups
M. Neunhöffer, M. Pfeiffer, N. Ruškuc & T. Brough’s view (w ≡ z)

Definition (Rational word problem)
A semigroup S with generating set X has a rational word problem
with respect to X if the set

{(w, z) ∈ X+ ×X+ : w = z in S}

is a rational relation.

Is Anisimov’s theorem true replacing regular with rational for
semigroups in general? No!
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Second generalization to inverse semigroups
M. Neunhöffer, M. Pfeiffer, N. Ruškuc & T. Brough’s view (w ≡ z)

Proposition (Neunhöffer, Pfeiffer & Ruškuc, 2013)
Let T = 〈x, y : x2 = x, yx = y〉 and S = 〈x, y : (xynx = xyx)n≥2〉.
These semigroups are infinite and the respective word problems are
rational.

The following automaton decides the word problem of T with respect
to {x, y}:

q0 q1
(x, x), (y, y)

(y, y),(x, ε), (ε, x)

For example, the pairs (x2, x) and (xyx, xy) are accepted.
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to {x, y}:

q0 q1
(x, x), (y, y)

(y, y),(x, ε), (ε, x)

For example, the pairs (x2, x) and (xyx, xy) are accepted.
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Second generalization to inverse semigroups
M. Neunhöffer, M. Pfeiffer, N. Ruškuc & T. Brough’s view (w ≡ z)

But it is true for inverse semigroups.

Theorem (Neunhöffer, Pfeiffer & Ruškuc, 2013)
If S is a finite semigroup, then S has a rational word problem with
respect to all its generating sets.

The proof relies again on the construction of an automaton based on
a Cayley graph type of argument.
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Second generalization to inverse semigroups
M. Neunhöffer, M. Pfeiffer, N. Ruškuc & T. Brough’s view (w ≡ z)

Question
When is the converse of the above proposition true?

Theorem (Brough, 2013)
If S is a finitely generated inverse semigroup with rational word
problem, then S is finite.

Again, the proof is heavy, being the goal of the article and relies on
the characterization of monogenic inverse semigroups due to Preston
and on the results of Neunhöffer, Pfeiffer and Ruškuc about rational
relations.
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