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Objective

Explain to a wide audience:

How to design adaptive optimal controllers by combining optimal control
with reinforcement learning, approximate dynamic programming, and
artificial neural networks?

RL based
Adaptive

Optimal Control

Optimal
Control

Learning
RL, ADP, ANN

Q-Learning
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Presentation road map

What is adaptive control?

Approaches to adaptive control

Early Reinforcement Learning based controllers

RL based linear Model Predictive Control (MPC)

How to tackle adaptive nonlinear optimal control?

Approximate Dynamic Programming (ADP)

Q-Learning

Conclusions
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What is control?

Stimulate a system such that it behaves in a specified way.

Controller
Agent Actuator Sensor

Disturbances

EnvironmentMeasured variables
State
Reward

Reference

Plant

Manipulated
variable
Action

Physical system (good old gravity law!)

Control modifies dynamic behaviour (Cyber-Physical Systems)

Cyber-physical system

Help of Paula and Francisco kindly acknowledged.
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What is control? An example: anesthesia

Controlling neuromuscular blockade for a patient subject to general
anesthesia

manipulated
commands

controller

measurement
data

sensor

actuator

Source: Project GALENO, Photo taken at Hospital de S. António, Porto, Portugal.
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Uncertainty

Uncertainty: Unpredictable variability in plant dynamics.
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Robustness

Robustness: Design the controller for a nominal model, but it works with
nearby systems (with graceful degradation in performance)
Example: control of the level of self-unconsciousness in patients subject to
general anesthesia Clinical results
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J. M. Lemos, D. V. Caiado, B. A. Costa, L. A. Paz, T. F. Mendonça, R. Rabiço, S. Esteves and M. Seabra (2014). Robust

Control of Maintenance Phase Anesthesia. IEEE Control Systems, 34(6):24-38.
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What is adaptive control?

Modify the control law (= control policy) to make it match the plant.
Learn the ”best” control policy. Not merely the plant inverse.

Controller
Agent Actuator Sensor

Disturbances

EnvironmentMeasured variables
State
Reward

Reference

Plant
Manipulated
variable
Action

Adaptation

Changes in
control policy

Plant data
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Two time-scales system

Control action
Fast

Adaptation
Learning

Slow

Plant
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Why use adaptive control?

Controlling time varying processes.
Controlling processes with big variability.

Source: Hizook, 2012

KIVA robots for automatic
warehouses (now Amazon
robotics)

Use low cost components
causes big variability

Use adaptive control to
compensate uncertainty.
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Approaches to adaptive control

Joint parameter and state nonlinear estimation

Certainty equivalence

SMMAC - Supervised Multiple Model Adaptive Control

Model falsification

Reinforcement Learning (RL)

Control Lyapunov Functions (CLF)
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Joint parameter and state nonlinear control

dx

dt
= f (x , θ)

Stochastic control of the hyperstate untractable in
computational terms.
Need for approximate solutions.

Augment the state:

z(t) =

[
x(t)
θ

]
dz =

[
f (x , θ)
θ

]
dt +

[
0
σ

]
dw

For a given parameter, the state has a well defined evolution. If the
parameter is a r.v. with a known distribution, how can we compute the
state pdf?

x

timet

x(t,θ)

x

timet

p(x,t)

Each solution is generated for a
different value of the parameter
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Suboptimal solution: Joint state-parameter estimation

dzt = f (zt)dt + σdwt

p(z , t) satisfies the Fokker-Planck
equation (scalar case for simplicity)

∂p

∂t
= −fz(z)p − f (z)

∂p

∂z
+
σ2

2

∂2p

∂z2

Example with an unknown gain.
Cautious adaptive control.

Joint work with António Silva
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Certainty equivalence

Assume the estimated model to be the true model

Parameter
estimator

Plant data

Control policy
redesign

Controller
Plant data Control action

Parameter 
estimates

Controller
gains

Adaptation
Kalman, 1958 Self-optimizing
controller

Åstrom and Wittenmark, 1972
Self-tuning controller
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Issues with Certainty equivalence: Complex dynamics (1)

Plant dynamics (linear)

y(t) + a1y(t − 1) + a2y(t − 2) = Ku(t − 1)

Controller

θ(t) = θ(t − 1) + py(t − 1)[y(t)− θ(t − 1)y(t − 1)− K̂u(t − 1)],

u(t) = (r − θ(t)y(t))/K̂

The plant is assumed to be 1st order although it is of 2nd order
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Issues with Certainty equivalence: Complex dynamics (2)

With moderate un-modelled dynamics, the output converges to the
reference.
Increase the level of un-modelled dynamics causes a sequence of
bifurcations that leads to chaos
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B. E. Ydstie (1986). Bifurcations and complex dynamics in adaptive control systems. Proc. 25th CDC, Athens, 2232 - 2236

B. E. Ydstie and M. P. Golden (1987). Chaos and strange attractors in adaptive control systems. Proc. 10th IFAC World
Congress, Munich, 10: 127-132.

B. E, Ydstie (1991). Stability of the Direct Self-Tuning Regulator. in P. V. Kokotovic (ed.), Foundations of Adaptive Control,

Springer, 1992, 201-237.
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Issues with Certainty equivalence: Equivocation

Maximum entropy approach to control, Saridis, 1988

Equivalence between optimal cost
and entropy.

Describe the possible controls by a
pdf p.

Maximize the entropy subject to∫
Ω
p = 1, E(J(u)) = J(u∗)

Linear case: Separation theorem

Non-linear case: There is no
separation theorem

Hctrl

Hest
Hequiv

Hopt

Use good adaptation and good
control to reduce equivocation
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SMMAC - Supervised Multiple Model Adaptive Control

Lainiotis 1974 Partitioning (lots of critics at the time)
Morse, Hespanha, Mosca, ... (1997 - present)
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T. Mendonça, J. M. Lemos, H. Magalhães, P. Rocha and S. Esteves (2009). Drug delivery for neuromuscular blockade with

supervised multimodel adaptive control. IEEE Trans. Control Systems Technology, 17(6):1237-1244.
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Model falsification

Based on Karl Popper falsification approach to Philosophy.
Carve the model bank by eliminating models incompatible with data.
Computationally very heavy.

Architecture based on Set-Value Observers Experimental results – fan with varying flow

P. Rosa, T. Simão, C. Silvestre, J. M. Lemos (2016). Fault tolerant control of an air heating fan using set-value observers: an

experimental evaluation. Int. J. Adaptive Control and Signal Proc., 30(2):336-358
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Control Lyapunov Functions (CLF)

V

x1

x2

x(0)

V(x(0))

x(t)

V(x(t))

In adaptive control: Postulate a Lyapunov
function for the hyperstate.
Choose the adaptation law such as to force the
LF time derivative to be negative semi-definite.

Convergence follows the set-invariant theorem.

Parks, 1966 and many others since then

Alexander Lyapunov
(1857-1918)
Lyapunov, 1892
Lasalle, 1950
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Example: Lyapunov adaptation of a solar field

u y

y0R

Collector field

Feedback
Linearization

CLF based
adaptation

r K
+

-

α̂

Inlet oil
temperature

Solar
radiation

Outlet oil
temperature

Virtual
control
variable

Oil
flow

Experimental results
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Barão, M., J. M. Lemos e R. N. Silva (2002). Reduced

complexity adaptive nonlinear control of a distributed collector

solar field. J. Process Control,12:131-141
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Control Lyapunov Functions and Reinforcement Learning

Control Lyapunov functions play a
key role in control using
reinforcement learning.

See the recent book (2018) and
many papers on the subject.

The long term reward can be used to
build Lyapunov functions.
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A priori information versus performance

Increasing a priori information on plant dynamics increases performance
but reduces the range of possible applications

Usability with
different plants

Performance

Data
driven

Model
driven

Qualitative plot

Increase a priori
information

Lemos, Neves Silva, Igreja Adaptive Control of Solar Energy Collector Systems, Springer, 2014
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Reinforcement Learning

Perception causes action

Action influences perception

Learn the optimal action by trial
and error to maximize a reward

Apply non-optimal actions with
a low probability to learn by
exploiting different regions of
the state space

Exploitation and exploration

What is an adequate reward for
control design?

How can exploitation be made in
control?

Early roots: Pavlov’s (1849-1936)
experiments on reflex conditioning

Countless works since then.
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Early RL based adaptive controllers

Whitaker, 1958 MIT rule

A gradient rule to maximize the
instantaneous squared tracking error
e of a Model Reference Adaptive
Controller (MRAC) by adjusting a
gain:

dθ

dt
= −γe ∂e

∂θ

Due to technology limitations they
used

dθ

dt
= −γe sign

[
∂e

∂θ

] Crash of the X-15 aircraft in 15 Nov.
1967, that caused the death of the
pilot Michael J. Adams.
A lot of enthusiasm, poor technology,
and no theory at all.
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The road to Predictive Adaptive Control (Adaptive MPC)

Self-tuning regulator, Åstrom
and Wittenmark, 1972, RLS +
Minimum variance. Unable to
stabilize non-minimum-phase
plants

Detuned Self-tuning regulator,
Clarke and Gawthrop, 1974,
Include a penalty on the action
Unable to stabilize
non-minimum-phase plants that
are also unstable

GPC, Clarke, Mohtadi and
Tufts, 1980, Stabilizes any linear
plant for a sufficiently large
horizon

time

Present time

Nearby future time

How to choose
the present time

action?

time

Present time

How to choose
the present time

action?

Look at an extended horizon
that slides with the present time

.......

Key ideas

Enlarge the horizon

Receding horizon control

J. M. Lemos (INESC-ID, IST/Univ. Lisboa ) Adaptive Control and RL MPML, July 16, 2020 26 / 40



RL based linear adaptive MPC

time

Present time

How to choose
the present time

action?

Look at an extended horizon
that slides with the present time

Future controlactions assumed
to be a constant state feedback

Fk = Fk−1 − γR−1
s ∇J

May start from a non-stabilizing gain.
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Example 1: Steam temperature control in a boiler
Experimental results

19.8 20 20.2 20.4 20.6 20.8 21
530

531

532

533

534

535

536

537

538

S
te

am
 T

em
pe

ra
tu

re
 [o C

]

Adaptation starts ρ decreases

Time [hour]

A

B

T
B
* −T

A
*

T
A
* T

B
* T

s
T

max

Silva, R. N., P. O. Shirley, J. M. Lemos and A. C. Gonçalves (2000). Adaptive regulation of super-heated steam temperature: a

case study in an industrial boile. Control Engineering Practice, 8:1405-1415
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Example 2: Rate of cooling in arc-welding
Experimental results
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Santos, T. O., R. B. Caetano, J. M. Lemos and F. J. Coito (2000). Multipredictive Adaptive Control of Arc Eelding Trailing

Centerline Temperature. IEEE Trans. Control Systems Technology, 8(1):159-169
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Dual control and persistency of excitation

Duality: Learning implies exploitation
and conflicts with optimal control.

Feldbaum, 1961

Optimal dual controller impossible to
design, except in very simple cases.
Need to resort to suboptimal dual
strategies.
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Dual adaptive MPC

Temperature control of solar field

Use a multicriterion approach to
adjust the action, reaching a balance
between persistency of excitation and
good control performance.

Optimize the exploitation to improve
learning.

Experimental results
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Silva, R. N., N. Filatov, J. M. Lemos and H. Unbehauen (2005). A dual approach to start-up of an Adaptive Predictive

Controller. IEEE Trans. Control Systems Technology, 13(6):877-883.
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How to tackle adaptive nonlinear optimal control

Approximate Dynamic Programming
Computationally feasible approach to compute the long-term reward

Q-learning
Eliminate model knowledge assumptions

Recursive learning/estimation algorithms
Embed adaptation

Werbos, 1992
Sutton and Barto, 1998
Bertsekas, 1996
But much work and publications before.

See F. Lewis and D. Vrabble (2009), Reinforcement Learning and Adaptive Dynamic Programming for Feedback Control, IEEE Circuits and Systems Mag., 9(3):32-50, for a tutorial on details.
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Dynamic Programming

Bellman, 1957 (but actually since Jacob Bernouilli, XVII cent.)

Performance measure (infinite
horizon)

V (hh) =
∞∑
i=k

γ i−k r(xi , ui )

r(xk , uk) = Q(xk) + uTk Ruk

Plant state model

xk+1 = f (xk) + g(xk)uk

Control policy uk = h(xk) Minimize
the performance subject to the
dynamics

Bellman’s optimality principle

Hamilton-Jacobi-Bellman equation

V ∗(xk) = min
h(·)

(r(xk , h(x(k))+

γV ∗(hk + 1))

Optimal policy

h∗(xk) = arg min
h(·)

(r(xk , h(x(k))+

γV ∗(hk + 1))
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Policy iteration (PI)

Requires a stabilizing initial estimate of the control policy
Policy evaluation step

Vj+1(xk) = r(xk , hj(hk)) + γVj+1(xk+1)

Policy improvement step

hj+1(xk) = arg min(r(xk , h(xk)) + γVj+1(xk+1))

Corresponds to the difference Riccati equation in the LQ case.
Value iteration
At each time step do just a limited (e. g. 1) number of policy update.
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Adaptive Dynamic Programming

Temporal Difference error

ek = r(xk , h(xk)) + γVh(xk+1 − Vh(xk)

Approximate the policy by Vh(x) ≈W Tφ(x) φ estimated from data.
On-line Policy iteration algorithm
Policy evaluation step (obtain W from RLS):

W T
j+1(φ(x(k)− γφx(k + 1)) = r(xk , hj(xk))

Policy improvement step

hj+1(xk) = arg min
h

(r(xk , h(xk)) + γW T
j+1φ(xk+1))

May start from a non-stabilizing policy.
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Q-Learning

Q (quality) function

Qh(xk , uk) = r(xk , uk) + γVh(xk+1)

u is the control action.
Assume a parametric approximatior of NN of the form

Qh(x , u) = W Tφ(x , u)

The optimal value for the action may be computed from

∂

∂u
Q∗(xk , u) = 0

Does not require any derivatives involving model parameters.
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Other problems and issues

Difference and differential adaptive games (Soccer!)

Distributed adaptive control

Minimum attention and event-driven adaptive control

Forgetting and adaptation

Dynamic weights and robustness
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Conclusions

Adaptive
Control

Caos,
Complex
DynamicsMaximum

Entropy

RL

Supervised
Learning
SMMAC

Diffusion models
Fokker-Planck eq.

Path integral control

Machine
Learning

Physics

Adaptive control provides a
meeting arena for machine
learning and physics (as well
as for mathematics!).

The cross breeding between
RL, ADP and Q-Learning is
boosting algorithms with
increased performance for
adaptive nonlinear optimal
control.
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A final word

Guy de Maussant (1850 - 1893): Il fit une philosophie
comme on faitun bon roman: tout parut vraisemblable,
et rien ne fut vrais.

He did a philosophy as one writes a good novel:
everything looks plausible, but nothing is true

We can easily develop plausible algorithms for adaptive control based on
”intuition”, but that they actually do not work.

To avoid this pitfall, use the anchors provided by mathematical theories for
stability, robustness, limits of performance.

Combining machine learning and model based methods is a far reaching
ship, but the above anchors must be used to avoid shipwrecks.
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It is now time to stop and rest
Thank you for your attention
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