Vertex coupling and spectra of periodic quantum graphs

Pavel Exner

Doppler Institute
for Mathematical Physics and Applied Mathematics
Prague

A talk at the Lisbon Webinar in Analysis in Differential Equations
July 14, 2020

What is this talk about

Our topic here will be quantum graphs, in particular, those having a periodic structure and a nontrivial vertex coupling

What is this talk about

Our topic here will be quantum graphs, in particular, those having a periodic structure and a nontrivial vertex coupling

Let us introduce the main characters

What is this talk about

Our topic here will be quantum graphs, in particular, those having a periodic structure and a nontrivial vertex coupling

Let us introduce the main characters: we will deal with metric graphs understood as a collection of vertices and edges

What is this talk about

Our topic here will be quantum graphs, in particular, those having a periodic structure and a nontrivial vertex coupling

Let us introduce the main characters: we will deal with metric graphs understood as a collection of vertices and edges the each of which is homothetic to a (finite or semi-infinite) interval

What is this talk about

Our topic here will be quantum graphs, in particular, those having a periodic structure and a nontrivial vertex coupling

Let us introduce the main characters: we will deal with metric graphs understood as a collection of vertices and edges the each of which is homothetic to a (finite or semi-infinite) interval

Such a graph will support differential operators

What is this talk about

Our topic here will be quantum graphs, in particular, those having a periodic structure and a nontrivial vertex coupling

Let us introduce the main characters: we will deal with metric graphs understood as a collection of vertices and edges the each of which is homothetic to a (finite or semi-infinite) interval

Such a graph will support differential operators: we associate with it the Hilbert space $\mathcal{H}=\bigoplus_{j} L^{2}\left(e_{j}\right)$ and consider a Schrödinger operator acting on $\psi=\left\{\psi_{j}\right\}$ that are locally H^{2} as $H \psi=\left\{\left(-i \psi^{\prime}-A \psi\right)^{2}+V \psi\right\}$

What is this talk about

Our topic here will be quantum graphs, in particular, those having a periodic structure and a nontrivial vertex coupling

Let us introduce the main characters: we will deal with metric graphs understood as a collection of vertices and edges the each of which is homothetic to a (finite or semi-infinite) interval

Such a graph will support differential operators: we associate with it the Hilbert space $\mathcal{H}=\bigoplus_{j} L^{2}\left(e_{j}\right)$ and consider a Schrödinger operator acting on $\psi=\left\{\psi_{j}\right\}$ that are locally H^{2} as $H \psi=\left\{\left(-i \psi^{\prime}-A \psi\right)^{2}+V \psi\right\}$
In this talk we consider mostly the simplest case, $A=0$ and $V=0$, that is, we suppose that $H \psi=\left\{-\psi^{\prime \prime}\right\}$

Vertex coupling

To make such an H a self-adjoint operator we have to match the functions ψ_{j} properly at each graph vertex

Vertex coupling

To make such an H a self-adjoint operator we have to match the functions ψ_{j} properly at each graph vertex. Denoting $\psi=\left\{\psi_{j}\right\}$ and $\psi^{\prime}=\left\{\psi_{j}^{\prime}\right\}$ the boundary values of functions and (outward) derivatives at a given vertex of degree n, respectively

Vertex coupling

To make such an H a self-adjoint operator we have to match the functions ψ_{j} properly at each graph vertex. Denoting $\psi=\left\{\psi_{j}\right\}$ and $\psi^{\prime}=\left\{\psi_{j}^{\prime}\right\}$ the boundary values of functions and (outward) derivatives at a given vertex of degree n, respectively, the most general self-adjoint matching conditions read

$$
(U-I) \psi\left(v_{k}\right)+i(U+I) \psi^{\prime}\left(v_{k}\right)=0
$$

where U is any $n \times n$ unitary matrix.

Vertex coupling

To make such an H a self-adjoint operator we have to match the functions ψ_{j} properly at each graph vertex. Denoting $\psi=\left\{\psi_{j}\right\}$ and $\psi^{\prime}=\left\{\psi_{j}^{\prime}\right\}$ the boundary values of functions and (outward) derivatives at a given vertex of degree n, respectively, the most general self-adjoint matching conditions read

$$
(U-I) \psi\left(v_{k}\right)+i(U+I) \psi^{\prime}\left(v_{k}\right)=0
$$

where U is any $n \times n$ unitary matrix.
Such a coupling depends on n^{2} real parameters; the number is reduced dramatically if we require continuity at the vertex, then we are left with

$$
\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)
$$

depending on a single parameter $\alpha \in \mathbb{R}$ which we call the δ coupling; the corresponding unitary matrix is $U=\frac{2}{n+i \alpha} \mathcal{J}-I$, where \mathcal{J} is the $n \times n$ matrix whose all entries are equal to one.

Vertex coupling

To make such an H a self-adjoint operator we have to match the functions ψ_{j} properly at each graph vertex. Denoting $\psi=\left\{\psi_{j}\right\}$ and $\psi^{\prime}=\left\{\psi_{j}^{\prime}\right\}$ the boundary values of functions and (outward) derivatives at a given vertex of degree n, respectively, the most general self-adjoint matching conditions read

$$
(U-I) \psi\left(v_{k}\right)+i(U+I) \psi^{\prime}\left(v_{k}\right)=0
$$

where U is any $n \times n$ unitary matrix.
Such a coupling depends on n^{2} real parameters; the number is reduced dramatically if we require continuity at the vertex, then we are left with

$$
\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)
$$

depending on a single parameter $\alpha \in \mathbb{R}$ which we call the δ coupling; the corresponding unitary matrix is $U=\frac{2}{n+i \alpha} \mathcal{J}-I$, where \mathcal{J} is the $n \times n$ matrix whose all entries are equal to one.
In particular, the case with $\alpha=0$ is often called Kirchhoff coupling.

Quantum graph spectra

Spectral properties of quantum graph operators have been studied by many authors and a lot is known about them.
G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

Quantum graph spectra

Spectral properties of quantum graph operators have been studied by many authors and a lot is known about them.
G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

Most attention is traditionally paid to the Kirchhoff case

Quantum graph spectra

Spectral properties of quantum graph operators have been studied by many authors and a lot is known about them.
G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

Most attention is traditionally paid to the Kirchhoff case; our aim here is to elucidate effects coming from a nontrivial vertex coupling

Quantum graph spectra

Spectral properties of quantum graph operators have been studied by many authors and a lot is known about them.
G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

Most attention is traditionally paid to the Kirchhoff case; our aim here is to elucidate effects coming from a nontrivial vertex coupling

Note that the spectra we are interested in may differ from those of the 'usual' Schrödinger operators

Quantum graph spectra

Spectral properties of quantum graph operators have been studied by many authors and a lot is known about them.
G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

Most attention is traditionally paid to the Kirchhoff case; our aim here is to elucidate effects coming from a nontrivial vertex coupling

Note that the spectra we are interested in may differ from those of the 'usual' Schrödinger operators. For instance, they do not have the unique continuation property which means, in particular, that they can have compactly supported eigenfunctions

Quantum graph spectra

Spectral properties of quantum graph operators have been studied by many authors and a lot is known about them.
G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

Most attention is traditionally paid to the Kirchhoff case; our aim here is to elucidate effects coming from a nontrivial vertex coupling

Note that the spectra we are interested in may differ from those of the 'usual' Schrödinger operators. For instance, they do not have the unique continuation property which means, in particular, that they can have compactly supported eigenfunctions

This is easily seen: a graph with a δ coupling which contains a loop with rationally related edges has the so-called Dirichlet eigenvalues

Periodic graphs

We restrict our attention to graphs which are periodic in one or more directions

Periodic graphs

We restrict our attention to graphs which are periodic in one or more directions. In such a case, one can study its spectrum using Floquet decomposition,

$$
H=\int_{Q^{*}} H(\theta) \mathrm{d} \theta
$$

with the fiber operator $H(\theta)$ acting on $L^{2}(Q)$, where $Q \subset \mathbb{R}^{d}$ is period cell and Q^{*} is the dual cell (or Brillouin zone)

Periodic graphs

We restrict our attention to graphs which are periodic in one or more directions. In such a case, one can study its spectrum using Floquet decomposition,

$$
H=\int_{Q^{*}} H(\theta) \mathrm{d} \theta
$$

with the fiber operator $H(\theta)$ acting on $L^{2}(Q)$, where $Q \subset \mathbb{R}^{d}$ is period cell and Q^{*} is the dual cell (or Brillouin zone)
From what was said about the uniform continuation property, the spectrum clearly need not be purely absolutely continuous

Periodic graphs

We restrict our attention to graphs which are periodic in one or more directions. In such a case, one can study its spectrum using Floquet decomposition,

$$
H=\int_{Q^{*}} H(\theta) \mathrm{d} \theta
$$

with the fiber operator $H(\theta)$ acting on $L^{2}(Q)$, where $Q \subset \mathbb{R}^{d}$ is period cell and Q^{*} is the dual cell (or Brillouin zone)
From what was said about the uniform continuation property, the spectrum clearly need not be purely absolutely continuous
In fact, it can be even pure point as the following example of a magnetic quantum graph shows

Periodic graphs

We restrict our attention to graphs which are periodic in one or more directions. In such a case, one can study its spectrum using Floquet decomposition,

$$
H=\int_{Q^{*}} H(\theta) \mathrm{d} \theta
$$

with the fiber operator $H(\theta)$ acting on $L^{2}(Q)$, where $Q \subset \mathbb{R}^{d}$ is period cell and Q^{*} is the dual cell (or Brillouin zone)
From what was said about the uniform continuation property, the spectrum clearly need not be purely absolutely continuous

In fact, it can be even pure point as the following example of a magnetic quantum graph shows: we take a loop array

A magnetic loop chain example

The Hamiltonian acts as $\psi_{j} \mapsto-\mathcal{D}^{2} \psi_{j}$ on each edge, $\mathcal{D}:=-i \nabla-\mathbf{A}$

A magnetic loop chain example

The Hamiltonian acts as $\psi_{j} \mapsto-\mathcal{D}^{2} \psi_{j}$ on each edge, $\mathcal{D}:=-i \nabla-\mathbf{A}$, and we assume δ-coupling in the vertices, i.e. the domain consists of functions from $H_{\text {loc }}^{2}(\Gamma)$ satisfying

$$
\psi_{i}(0)=\psi_{j}(0)=: \psi(0), \quad i, j=1, \ldots, n, \quad \sum_{i=1}^{n} \mathcal{D} \psi_{i}(0)=\alpha \psi(0)
$$

where $\alpha \in \mathbb{R}$ is the coupling constant and $n=4$ holds in our case
\qquad V. Kostrykin, R. Schrader: Quantum wires with magnetic fluxes, Commun. Math. Phys. 237 (2003), 161-179.

A magnetic loop chain example

The Hamiltonian acts as $\psi_{j} \mapsto-\mathcal{D}^{2} \psi_{j}$ on each edge, $\mathcal{D}:=-i \nabla-\mathbf{A}$, and we assume δ-coupling in the vertices, i.e. the domain consists of functions from $H_{\text {loc }}^{2}(\Gamma)$ satisfying

$$
\psi_{i}(0)=\psi_{j}(0)=: \psi(0), \quad i, j=1, \ldots, n, \quad \sum_{i=1}^{n} \mathcal{D} \psi_{i}(0)=\alpha \psi(0)
$$

where $\alpha \in \mathbb{R}$ is the coupling constant and $n=4$ holds in our case
V. Kostrykin, R. Schrader: Quantum wires with magnetic fluxes, Commun. Math. Phys. 237 (2003), 161-179.

If $A_{j}=A, j \in \mathbb{Z}$, we can perform Floquet analysis on the period cell

writing $\psi_{L}(x)=\mathrm{e}^{-i A x}\left(C_{L}^{+} \mathrm{e}^{i k x}+C_{L}^{-} \mathrm{e}^{-i k x}\right)$ for $x \in[-\pi / 2,0]$ and energy $E:=k^{2} \neq 0$, and similarly for the other three components

A magnetic loop chain example

The Hamiltonian acts as $\psi_{j} \mapsto-\mathcal{D}^{2} \psi_{j}$ on each edge, $\mathcal{D}:=-i \nabla-\mathbf{A}$, and we assume δ-coupling in the vertices, i.e. the domain consists of functions from $H_{\text {loc }}^{2}(\Gamma)$ satisfying

$$
\psi_{i}(0)=\psi_{j}(0)=: \psi(0), \quad i, j=1, \ldots, n, \quad \sum_{i=1}^{n} \mathcal{D} \psi_{i}(0)=\alpha \psi(0)
$$

where $\alpha \in \mathbb{R}$ is the coupling constant and $n=4$ holds in our case
V. Kostrykin, R. Schrader: Quantum wires with magnetic fluxes, Commun. Math. Phys. 237 (2003), 161-179.

If $A_{j}=A, j \in \mathbb{Z}$, we can perform Floquet analysis on the period cell

writing $\psi_{L}(x)=\mathrm{e}^{-i A x}\left(C_{L}^{+} \mathrm{e}^{i k x}+C_{L}^{-} \mathrm{e}^{-i k x}\right)$ for $x \in[-\pi / 2,0]$ and energy $E:=k^{2} \neq 0$, and similarly for the other three components; for $E<0$ we put instead $k=i \kappa$ with $\kappa>0$.

The example, continued

The functions have to be matched through (a) the δ-coupling and

The example, continued

The functions have to be matched through (a) the δ-coupling and (b) Floquet conditions. This yields equation for the phase factor $\mathrm{e}^{i \theta}$,

$$
\sin k \pi \cos A \pi\left(\mathrm{e}^{2 i \theta}-2 \xi(k) \mathrm{e}^{i \theta}+1\right)=0
$$

with the discriminant $D=4\left(\xi(k)^{2}-1\right)$, where $\xi(k):=\frac{\eta(k)}{4 \cos A \pi}$ and

$$
\eta(k):=4 \cos k \pi+\frac{\alpha}{k} \sin k \pi
$$

for any $k \in \mathbb{R} \cup i \mathbb{R} \backslash\{0\}$ and $A-\frac{1}{2} \notin \mathbb{Z}$

The example, continued

The functions have to be matched through (a) the δ-coupling and (b) Floquet conditions. This yields equation for the phase factor $\mathrm{e}^{i \theta}$,

$$
\sin k \pi \cos A \pi\left(\mathrm{e}^{2 i \theta}-2 \xi(k) \mathrm{e}^{i \theta}+1\right)=0
$$

with the discriminant $D=4\left(\xi(k)^{2}-1\right)$, where $\xi(k):=\frac{\eta(k)}{4 \cos A \pi}$ and

$$
\eta(k):=4 \cos k \pi+\frac{\alpha}{k} \sin k \pi
$$

for any $k \in \mathbb{R} \cup i \mathbb{R} \backslash\{0\}$ and $A-\frac{1}{2} \notin \mathbb{Z}$. Apart from $A-\frac{1}{2} \in \mathbb{Z}$ and $k \in \mathbb{N}$ we have thus $k^{2} \in \sigma\left(-\Delta_{\alpha}\right)$ iff the condition $|\eta(k)| \leq 4|\cos A \pi|$ is satisfied.

The example, continued

The functions have to be matched through (a) the δ-coupling and (b) Floquet conditions. This yields equation for the phase factor $\mathrm{e}^{i \theta}$,

$$
\sin k \pi \cos A \pi\left(\mathrm{e}^{2 i \theta}-2 \xi(k) \mathrm{e}^{i \theta}+1\right)=0
$$

with the discriminant $D=4\left(\xi(k)^{2}-1\right)$, where $\xi(k):=\frac{\eta(k)}{4 \cos A \pi}$ and

$$
\eta(k):=4 \cos k \pi+\frac{\alpha}{k} \sin k \pi
$$

for any $k \in \mathbb{R} \cup i \mathbb{R} \backslash\{0\}$ and $A-\frac{1}{2} \notin \mathbb{Z}$. Apart from $A-\frac{1}{2} \in \mathbb{Z}$ and $k \in \mathbb{N}$ we have thus $k^{2} \in \sigma\left(-\Delta_{\alpha}\right)$ iff the condition $|\eta(k)| \leq 4|\cos A \pi|$ is satisfied.
In the Kirchhoff case, $\alpha=0$, the spectrum is 'trivial, $\sigma(H)=[0, \infty)$, provided $A \in \mathbb{Z}$

The example, continued

The functions have to be matched through (a) the δ-coupling and (b) Floquet conditions. This yields equation for the phase factor $\mathrm{e}^{i \theta}$,

$$
\sin k \pi \cos A \pi\left(\mathrm{e}^{2 i \theta}-2 \xi(k) \mathrm{e}^{i \theta}+1\right)=0
$$

with the discriminant $D=4\left(\xi(k)^{2}-1\right)$, where $\xi(k):=\frac{\eta(k)}{4 \cos A \pi}$ and

$$
\eta(k):=4 \cos k \pi+\frac{\alpha}{k} \sin k \pi
$$

for any $k \in \mathbb{R} \cup i \mathbb{R} \backslash\{0\}$ and $A-\frac{1}{2} \notin \mathbb{Z}$. Apart from $A-\frac{1}{2} \in \mathbb{Z}$ and $k \in \mathbb{N}$ we have thus $k^{2} \in \sigma\left(-\Delta_{\alpha}\right)$ iff the condition $|\eta(k)| \leq 4|\cos A \pi|$ is satisfied.
In the Kirchhoff case, $\alpha=0$, the spectrum is 'trivial, $\sigma(H)=[0, \infty)$, provided $A \in \mathbb{Z}$, otherwise there are always open spectral gaps as one can see from a graphical solution of the above spectral condition

Determining the spectral bands

The picture refers to the (generalized) non-magnetic case, $A \in \mathbb{Z}$.

Determining the spectral bands

The picture refers to the (generalized) non-magnetic case, $A \in \mathbb{Z}$.
For $A-\frac{1}{2} \notin \mathbb{Z}$ the strip width changes to $8|\cos A \pi|$, and for $A-\frac{1}{2} \in \mathbb{Z}$ it shrinks to a line

Determining the spectral bands

The picture refers to the (generalized) non-magnetic case, $A \in \mathbb{Z}$.
For $A-\frac{1}{2} \notin \mathbb{Z}$ the strip width changes to $8|\cos A \pi|$, and for $A-\frac{1}{2} \in \mathbb{Z}$ it shrinks to a line; then the spectrum consists of infinitely degenerate eigenvalues (or flat bands as a physicist would say)

Determining the spectral bands

The picture refers to the (generalized) non-magnetic case, $A \in \mathbb{Z}$.
For $A-\frac{1}{2} \notin \mathbb{Z}$ the strip width changes to $8|\cos A \pi|$, and for $A-\frac{1}{2} \in \mathbb{Z}$ it shrinks to a line; then the spectrum consists of infinitely degenerate eigenvalues (or flat bands as a physicist would say)

Remark: There are other situations

Determining the spectral bands

The picture refers to the (generalized) non-magnetic case, $A \in \mathbb{Z}$.
For $A-\frac{1}{2} \notin \mathbb{Z}$ the strip width changes to $8|\cos A \pi|$, and for $A-\frac{1}{2} \in \mathbb{Z}$ it shrinks to a line; then the spectrum consists of infinitely degenerate eigenvalues (or flat bands as a physicist would say)
Remark: There are other situations: for instance, if $A_{j}=\mu j+\theta$ with $\mu \in \mathbb{R} \backslash \mathbb{Q}$, the spectrum is a Cantor set of Lebesgue measure zero
P.E., D. Vašata: Cantor spectra of magnetic chain graphs, J. Phys. A: Math. Theor. 50 (2017), 165201.

Questions to be addressed

In the absence of a magnetic field the spectrum of a periodic graph has always an absolutely continuous component

Questions to be addressed

In the absence of a magnetic field the spectrum of a periodic graph has always an absolutely continuous component, and unless the vertex coupling is Kirchhhoff the spectrum has open gaps.

Questions to be addressed

In the absence of a magnetic field the spectrum of a periodic graph has always an absolutely continuous component, and unless the vertex coupling is Kirchhhoff the spectrum has open gaps.

We are interested in relations between the vertex coupling and the gap structure, specifically we ask:

Questions to be addressed

In the absence of a magnetic field the spectrum of a periodic graph has always an absolutely continuous component, and unless the vertex coupling is Kirchhhoff the spectrum has open gaps.

We are interested in relations between the vertex coupling and the gap structure, specifically we ask:

- is the number of open gaps finite or infinite?

Questions to be addressed

In the absence of a magnetic field the spectrum of a periodic graph has always an absolutely continuous component, and unless the vertex coupling is Kirchhhoff the spectrum has open gaps.

We are interested in relations between the vertex coupling and the gap structure, specifically we ask:

- is the number of open gaps finite or infinite?
- can the gap structure depend on the graph topology?

How many spectral gaps are open?

To motivate this question, recall first that for the 'usual' Schrödinger operators the dimension is known to be decisive:

How many spectral gaps are open?

To motivate this question, recall first that for the 'usual' Schrödinger operators the dimension is known to be decisive: systems which are \mathbb{Z}-periodic have generically an infinite number of open gaps,

How many spectral gaps are open?

To motivate this question, recall first that for the 'usual' Schrödinger operators the dimension is known to be decisive: systems which are \mathbb{Z}-periodic have generically an infinite number of open gaps, while \mathbb{Z}^{ν}-periodic systems with $\nu \geq 2$ have only finitely many open gaps

How many spectral gaps are open?

To motivate this question, recall first that for the 'usual' Schrödinger operators the dimension is known to be decisive: systems which are \mathbb{Z}-periodic have generically an infinite number of open gaps, while \mathbb{Z}^{ν}-periodic systems with $\nu \geq 2$ have only finitely many open gaps

This is the celebrated Bethe-Sommerfeld conjecture, rather plausible for the physicist's point of view but mathematically quite hard, to which we have nowadays an affirmative answer in a large number of cases
L. Parnovski: Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), 457-508.

How many spectral gaps are open?

To motivate this question, recall first that for the 'usual' Schrödinger operators the dimension is known to be decisive: systems which are \mathbb{Z}-periodic have generically an infinite number of open gaps, while \mathbb{Z}^{ν}-periodic systems with $\nu \geq 2$ have only finitely many open gaps

This is the celebrated Bethe-Sommerfeld conjecture, rather plausible for the physicist's point of view but mathematically quite hard, to which we have nowadays an affirmative answer in a large number of cases
\square L. Parnovski: Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), 457-508.

Question: How the situation looks for quantum graphs which can, in a sense, are 'mixing' different dimensionalities?

How many spectral gaps are open?

To motivate this question, recall first that for the 'usual' Schrödinger operators the dimension is known to be decisive: systems which are \mathbb{Z}-periodic have generically an infinite number of open gaps, while \mathbb{Z}^{ν}-periodic systems with $\nu \geq 2$ have only finitely many open gaps

This is the celebrated Bethe-Sommerfeld conjecture, rather plausible for the physicist's point of view but mathematically quite hard, to which we have nowadays an affirmative answer in a large number of cases
\square L. Parnovski: Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), 457-508.

Question: How the situation looks for quantum graphs which can, in a sense, are 'mixing' different dimensionalities?

The standard reference, [Berkolaiko-Kuchment'13, loc.cit.], says that Bethe-Sommerfeld heuristic reasoning is applicable again

How many spectral gaps are open?

To motivate this question, recall first that for the 'usual' Schrödinger operators the dimension is known to be decisive: systems which are \mathbb{Z}-periodic have generically an infinite number of open gaps, while \mathbb{Z}^{ν}-periodic systems with $\nu \geq 2$ have only finitely many open gaps

This is the celebrated Bethe-Sommerfeld conjecture, rather plausible for the physicist's point of view but mathematically quite hard, to which we have nowadays an affirmative answer in a large number of cases
\square L. Parnovski: Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), 457-508.

Question: How the situation looks for quantum graphs which can, in a sense, are 'mixing' different dimensionalities?

The standard reference, [Berkolaiko-Kuchment'13, loc.cit.], says that Bethe-Sommerfeld heuristic reasoning is applicable again, however, the finiteness of the gap number is not a strict law

Graph decoration

An infinite number of gaps in the spectrum of a periodic graph can result from decorating its vertices by copies of a fixed compact graph

Graph decoration

An infinite number of gaps in the spectrum of a periodic graph can result from decorating its vertices by copies of a fixed compact graph. This fact was observed first in the combinatorial graph context,
\square J.H. Schenker, M. Aizenman: The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), $253-262$.

Graph decoration

An infinite number of gaps in the spectrum of a periodic graph can result from decorating its vertices by copies of a fixed compact graph. This fact was observed first in the combinatorial graph context, J.H. Schenker, M. Aizenman: The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), $253-262$. and the argument extends easily to metric graphs we consider here

Graph decoration

An infinite number of gaps in the spectrum of a periodic graph can result from decorating its vertices by copies of a fixed compact graph. This fact was observed first in the combinatorial graph context,
J.H. Schenker, M. Aizenman: The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), $253-262$. and the argument extends easily to metric graphs we consider here

Courtesy: Peter Kuchment

Thus, instead of 'not a strict law', the question rather is whether it is a 'law' at all: do infinite periodic graphs having a finite nonzero number of open gaps exist?

Graph decoration

An infinite number of gaps in the spectrum of a periodic graph can result from decorating its vertices by copies of a fixed compact graph. This fact was observed first in the combinatorial graph context,
J.H. Schenker, M. Aizenman: The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), 253-262. and the argument extends easily to metric graphs we consider here

Courtesy: Peter Kuchment

Thus, instead of 'not a strict law', the question rather is whether it is a 'law' at all: do infinite periodic graphs having a finite nonzero number of open gaps exist? From obvious reasons we would call them Bethe-Sommerfeld graphs

The answer depends on the vertex coupling

Recall that self-adjointness requires the matching conditions $(U-I) \psi+i(U+I) \psi^{\prime}=0$, where ψ, ψ^{\prime} are vectors of values and derivatives at the vertex of degree n and U is an $n \times n$ unitary matrix

The answer depends on the vertex coupling

Recall that self-adjointness requires the matching conditions $(U-I) \psi+i(U+I) \psi^{\prime}=0$, where ψ, ψ^{\prime} are vectors of values and derivatives at the vertex of degree n and U is an $n \times n$ unitary matrix The condition can be decomposed into Dirichlet, Neumann, and Robin parts corresponding to eigenspaces of U with eigenvalues $-1,1$, and the rest, respectively; if the latter is absent we call such a coupling scale-invariant

The answer depends on the vertex coupling

Recall that self-adjointness requires the matching conditions $(U-I) \psi+i(U+I) \psi^{\prime}=0$, where ψ, ψ^{\prime} are vectors of values and derivatives at the vertex of degree n and U is an $n \times n$ unitary matrix The condition can be decomposed into Dirichlet, Neumann, and Robin parts corresponding to eigenspaces of U with eigenvalues $-1,1$, and the rest, respectively; if the latter is absent we call such a coupling scale-invariant (an example is provided by the Kirchhoff coupling).

The answer depends on the vertex coupling

Recall that self-adjointness requires the matching conditions $(U-I) \psi+i(U+I) \psi^{\prime}=0$, where ψ, ψ^{\prime} are vectors of values and derivatives at the vertex of degree n and U is an $n \times n$ unitary matrix The condition can be decomposed into Dirichlet, Neumann, and Robin parts corresponding to eigenspaces of U with eigenvalues $-1,1$, and the rest, respectively; if the latter is absent we call such a coupling scale-invariant (an example is provided by the Kirchhoff coupling).

Theorem

An infinite periodic quantum graph does not belong to the BetheSommerfeld class if the couplings at its vertices are scale-invariant.

[^0]
The answer depends on the vertex coupling

Recall that self-adjointness requires the matching conditions $(U-I) \psi+i(U+I) \psi^{\prime}=0$, where ψ, ψ^{\prime} are vectors of values and derivatives at the vertex of degree n and U is an $n \times n$ unitary matrix The condition can be decomposed into Dirichlet, Neumann, and Robin parts corresponding to eigenspaces of U with eigenvalues $-1,1$, and the rest, respectively; if the latter is absent we call such a coupling scale-invariant (an example is provided by the Kirchhoff coupling).

Theorem

An infinite periodic quantum graph does not belong to the BetheSommerfeld class if the couplings at its vertices are scale-invariant.

[^1]Worse than that, there is a simple argument showing in a 'typical' periodic graph the probability of being in a band or gap is $\neq 0,1$.
R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

The existence

Nevertheless, the answer to our question is affirmative:

Theorem

Bethe-Sommerfeld graphs exist.

The existence

Nevertheless, the answer to our question is affirmative:

Theorem

Bethe-Sommerfeld graphs exist.

It is sufficient, of course, to demonstrate an example

The existence

Nevertheless, the answer to our question is affirmative:

Theorem

Bethe-Sommerfeld graphs exist.

It is sufficient, of course, to demonstrate an example. With this aim we are going to revisit the model of a rectangular lattice graph with a δ coupling in the vertices introduced in
P.E.: Contact interactions on graph superlattices, J. Phys. A: Math. Gen. 29 (1996), 87-102.
P.E., R. Gawlista: Band spectra of rectangular graph superlattices, Phys. Rev. B53 (1996), 7275-7286.

Spectral condition

A number $k^{2}>0$ belongs to a gap iff $k>0$ satisfies the gap condition which is easily derived; it reads

$$
2 k\left[\tan \left(\frac{k a}{2}-\frac{\pi}{2}\left\lfloor\frac{k a}{\pi}\right\rfloor\right)+\tan \left(\frac{k b}{2}-\frac{\pi}{2}\left\lfloor\frac{k b}{\pi}\right\rfloor\right)\right]<\alpha \quad \text { for } \alpha>0
$$

and

$$
2 k\left[\cot \left(\frac{k a}{2}-\frac{\pi}{2}\left\lfloor\frac{k a}{\pi}\right\rfloor\right)+\cot \left(\frac{k b}{2}-\frac{\pi}{2}\left\lfloor\frac{k b}{\pi}\right\rfloor\right)\right]<|\alpha| \quad \text { for } \alpha<0 ;
$$

we neglect the Kirchhoff case, $\alpha=0$, where $\sigma(H)=[0, \infty)$.

Spectral condition

A number $k^{2}>0$ belongs to a gap iff $k>0$ satisfies the gap condition which is easily derived; it reads

$$
2 k\left[\tan \left(\frac{k a}{2}-\frac{\pi}{2}\left\lfloor\frac{k a}{\pi}\right\rfloor\right)+\tan \left(\frac{k b}{2}-\frac{\pi}{2}\left\lfloor\frac{k b}{\pi}\right\rfloor\right)\right]<\alpha \quad \text { for } \alpha>0
$$

and

$$
2 k\left[\cot \left(\frac{k a}{2}-\frac{\pi}{2}\left\lfloor\frac{k a}{\pi}\right\rfloor\right)+\cot \left(\frac{k b}{2}-\frac{\pi}{2}\left\lfloor\frac{k b}{\pi}\right\rfloor\right)\right]<|\alpha| \quad \text { for } \alpha<0 \text {; }
$$

we neglect the Kirchhoff case, $\alpha=0$, where $\sigma(H)=[0, \infty)$.
Note that for $\alpha<0$ the spectrum extends to the negative part of the real axis and may have a gap there, which is not important here because there is not more than a single negative gap, and this gap always extends to positive values

What is known about this model

The spectrum depends on the ratio $\theta=\frac{a}{b}$. If θ is rational, $\sigma(H)$ has clearly infinitely many gaps unless $\alpha=0$ in which case $\sigma(H)=[0, \infty)$

What is known about this model

The spectrum depends on the ratio $\theta=\frac{a}{b}$. If θ is rational, $\sigma(H)$ has clearly infinitely many gaps unless $\alpha=0$ in which case $\sigma(H)=[0, \infty)$

The same is true if θ is is an irrational well approximable by rationals, which means equivalently that in the continued fraction representation $\theta=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ the sequence $\left\{a_{j}\right\}$ is unbounded

What is known about this model

The spectrum depends on the ratio $\theta=\frac{a}{b}$. If θ is rational, $\sigma(H)$ has clearly infinitely many gaps unless $\alpha=0$ in which case $\sigma(H)=[0, \infty)$

The same is true if θ is is an irrational well approximable by rationals, which means equivalently that in the continued fraction representation $\theta=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ the sequence $\left\{a_{j}\right\}$ is unbounded

On the other hand, $\theta \in \mathbb{R}$ is badly approximable if there is a $c>0$ such that

$$
\left|\theta-\frac{p}{q}\right|>\frac{c}{q^{2}}
$$

for all $p, q \in \mathbb{Z}$ with $q \neq 0$.

What is known about this model

The spectrum depends on the ratio $\theta=\frac{a}{b}$. If θ is rational, $\sigma(H)$ has clearly infinitely many gaps unless $\alpha=0$ in which case $\sigma(H)=[0, \infty)$

The same is true if θ is is an irrational well approximable by rationals, which means equivalently that in the continued fraction representation $\theta=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ the sequence $\left\{a_{j}\right\}$ is unbounded

On the other hand, $\theta \in \mathbb{R}$ is badly approximable if there is a $c>0$ such that

$$
\left|\theta-\frac{p}{q}\right|>\frac{c}{q^{2}}
$$

for all $p, q \in \mathbb{Z}$ with $q \neq 0$.
Let us turn now to the question about the gaps number

What is known about this model

The spectrum depends on the ratio $\theta=\frac{a}{b}$. If θ is rational, $\sigma(H)$ has clearly infinitely many gaps unless $\alpha=0$ in which case $\sigma(H)=[0, \infty)$
The same is true if θ is is an irrational well approximable by rationals, which means equivalently that in the continued fraction representation $\theta=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ the sequence $\left\{a_{j}\right\}$ is unbounded

On the other hand, $\theta \in \mathbb{R}$ is badly approximable if there is a $c>0$ such that

$$
\left|\theta-\frac{p}{q}\right|>\frac{c}{q^{2}}
$$

for all $p, q \in \mathbb{Z}$ with $q \neq 0$.
Let us turn now to the question about the gaps number. We can answer it for any θ but for the purpose of this talk we limit ourself with the example of the 'worst' irrational, $\theta=\frac{\sqrt{5}+1}{2}=[1 ; 1,1, \ldots]$.

The golden mean situation

Theorem
Let $\frac{a}{b}=\theta=\frac{\sqrt{5}+1}{2}$, then the following claims are valid:
(i) If $\alpha>\frac{\pi^{2}}{\sqrt{5} a}$ or $\alpha \leq-\frac{\pi^{2}}{\sqrt{5} a}$, there are infinitely many spectral gaps.
(ii) If

$$
-\frac{2 \pi}{a} \tan \left(\frac{3-\sqrt{5}}{4} \pi\right) \leq \alpha \leq \frac{\pi^{2}}{\sqrt{5} a},
$$

there are no gaps in the positive spectrum.

The golden mean situation

Theorem
Let $\frac{a}{b}=\theta=\frac{\sqrt{5}+1}{2}$, then the following claims are valid:
(i) If $\alpha>\frac{\pi^{2}}{\sqrt{5} a}$ or $\alpha \leq-\frac{\pi^{2}}{\sqrt{5} a}$, there are infinitely many spectral gaps.
(ii) If

$$
-\frac{2 \pi}{a} \tan \left(\frac{3-\sqrt{5}}{4} \pi\right) \leq \alpha \leq \frac{\pi^{2}}{\sqrt{5} a},
$$

there are no gaps in the positive spectrum.
(iii) If

$$
-\frac{\pi^{2}}{\sqrt{5} a}<\alpha<-\frac{2 \pi}{a} \tan \left(\frac{3-\sqrt{5}}{4} \pi\right)
$$

there is a nonzero and finite number of gaps in the positive spectrum.
P.E., O. Turek: Periodic quantum graphs from the Bethe-Sommerfeld point of view, J. Phys. A: Math.

Theor. 50 (2017), 455201.

The golden mean situation

Theorem
Let $\frac{a}{b}=\theta=\frac{\sqrt{5}+1}{2}$, then the following claims are valid:
(i) If $\alpha>\frac{\pi^{2}}{\sqrt{5} a}$ or $\alpha \leq-\frac{\pi^{2}}{\sqrt{5} a}$, there are infinitely many spectral gaps.
(ii) If

$$
-\frac{2 \pi}{a} \tan \left(\frac{3-\sqrt{5}}{4} \pi\right) \leq \alpha \leq \frac{\pi^{2}}{\sqrt{5} a}
$$

there are no gaps in the positive spectrum.
(iii) If

$$
-\frac{\pi^{2}}{\sqrt{5} a}<\alpha<-\frac{2 \pi}{a} \tan \left(\frac{3-\sqrt{5}}{4} \pi\right)
$$

there is a nonzero and finite number of gaps in the positive spectrum.
\Rightarrow P.E., O. Turek: Periodic quantum graphs from the Bethe-Sommerfeld point of view, J. Phys. A: Math. Theor. 50 (2017), 455201.

Corollary

The above theorem about the existence of BS graphs is valid.

More about this example

The window in which the golden-mean lattice has the BS property is narrow, it is roughly $4.298 \lesssim-\alpha a \lesssim 4.414$.

More about this example

The window in which the golden-mean lattice has the BS property is narrow, it is roughly $4.298 \lesssim-\alpha a \lesssim 4.414$.

We are also able to control the number of gaps in the BS regime; in the same paper the following result was proved:

Theorem

For a given $N \in \mathbb{N}$, there are exactly N gaps in the positive spectrum if and only if α is chosen within the bounds

$$
-\frac{2 \pi\left(\theta^{2(N+1)}-\theta^{-2(N+1)}\right)}{\sqrt{5} a} \tan \left(\frac{\pi}{2} \theta^{-2(N+1)}\right) \leq \alpha<-\frac{2 \pi\left(\theta^{2 N}-\theta^{-2 N}\right)}{\sqrt{5} a} \tan \left(\frac{\pi}{2} \theta^{-2 N}\right)
$$

More about this example

The window in which the golden-mean lattice has the BS property is narrow, it is roughly $4.298 \lesssim-\alpha a \lesssim 4.414$.

We are also able to control the number of gaps in the BS regime; in the same paper the following result was proved:

Theorem

For a given $N \in \mathbb{N}$, there are exactly N gaps in the positive spectrum if and only if α is chosen within the bounds

$$
-\frac{2 \pi\left(\theta^{2(N+1)}-\theta^{-2(N+1)}\right)}{\sqrt{5} a} \tan \left(\frac{\pi}{2} \theta^{-2(N+1)}\right) \leq \alpha<-\frac{2 \pi\left(\theta^{2 N}-\theta^{-2 N}\right)}{\sqrt{5} a} \tan \left(\frac{\pi}{2} \theta^{-2 N}\right) .
$$

Note that the numbers $A_{j}:=\frac{2 \pi\left(\theta^{2 j}-\theta^{-2 j}\right)}{\sqrt{5}} \tan \left(\frac{\pi}{2} \theta^{-2 j}\right)$ form an increasing sequence the first element of which is $A_{1}=2 \pi \tan \left(\frac{3-\sqrt{5}}{4} \pi\right)$ and

$$
A_{j}<\frac{\pi^{2}}{\sqrt{5}} \quad \text { holds for all } j \in \mathbb{N}
$$

A more general result

Proofs of the above results are based on properties of Diophantine approximations. In a similar way one can prove

A more general result

Proofs of the above results are based on properties of Diophantine approximations. In a similar way one can prove

Theorem
Let $\theta=\frac{a}{b}$ and define

$$
\gamma_{+}:=\min \left\{\inf _{m \in \mathbb{N}}\left\{\frac{2 m \pi}{a} \tan \left(\frac{\pi}{2}\left(m \theta^{-1}-\left\lfloor m \theta^{-1}\right\rfloor\right)\right)\right\}, \inf _{m \in \mathbb{N}}\left\{\frac{2 m \pi}{b} \tan \left(\frac{\pi}{2}(m \theta-\lfloor m \theta\rfloor)\right)\right\}\right\}
$$

and γ_{-}similarly with $\lfloor\cdot\rfloor$ replaced by $\lceil\cdot\rceil$ and \tan by $-\tan$

A more general result

Proofs of the above results are based on properties of Diophantine approximations. In a similar way one can prove

Theorem
Let $\theta=\frac{a}{b}$ and define

$$
\gamma_{+}:=\min \left\{\inf _{m \in \mathbb{N}}\left\{\frac{2 m \pi}{a} \tan \left(\frac{\pi}{2}\left(m \theta^{-1}-\left\lfloor m \theta^{-1}\right\rfloor\right)\right)\right\}, \inf _{m \in \mathbb{N}}\left\{\frac{2 m \pi}{b} \tan \left(\frac{\pi}{2}(m \theta-\lfloor m \theta\rfloor)\right)\right\}\right\}
$$

and γ_{-}similarly with $\lfloor\cdot\rfloor$ replaced by $\lceil\cdot\rceil$ and \tan by $-\tan$. If the coupling α satisfies

$$
\gamma_{ \pm}< \pm \alpha<\frac{\pi^{2}}{\max \{a, b\}} \mu(\theta)
$$

where $\mu(\theta):=\inf \left\{c>0 \left\lvert\,\left(\exists_{\infty}(p, q) \in \mathbb{N}^{2}\right)\left(\left|\theta-\frac{p}{q}\right|<\frac{c}{q^{2}}\right)\right.\right\}$ is the Markov constant, then there is a nonzero and finite number of gaps in the positive spectrum.

A more general result

Proofs of the above results are based on properties of Diophantine approximations. In a similar way one can prove

Theorem
Let $\theta=\frac{a}{b}$ and define

$$
\gamma_{+}:=\min \left\{\inf _{m \in \mathbb{N}}\left\{\frac{2 m \pi}{a} \tan \left(\frac{\pi}{2}\left(m \theta^{-1}-\left\lfloor m \theta^{-1}\right\rfloor\right)\right)\right\}, \inf _{m \in \mathbb{N}}\left\{\frac{2 m \pi}{b} \tan \left(\frac{\pi}{2}(m \theta-\lfloor m \theta\rfloor)\right)\right\}\right\}
$$

and γ_{-}similarly with $\lfloor\cdot\rfloor$ replaced by $\lceil\cdot\rceil$ and \tan by $-\tan$. If the coupling α satisfies

$$
\gamma_{ \pm}< \pm \alpha<\frac{\pi^{2}}{\max \{a, b\}} \mu(\theta)
$$

where $\mu(\theta):=\inf \left\{c>0 \left\lvert\,\left(\exists_{\infty}(p, q) \in \mathbb{N}^{2}\right)\left(\left|\theta-\frac{p}{q}\right|<\frac{c}{q^{2}}\right)\right.\right\}$ is the Markov constant, then there is a nonzero and finite number of gaps in the positive spectrum.

More details in [E-Turek, loc.cit.], for extension to 3D lattices see
O. Turek: Gaps in the spectrum of a cuboidal periodic lattices graph, Rep. Math. Phys. 83 (2019), 107-127.

A different vertex coupling class

As a motivation, let us ask about the meaning of the vertex coupling. There are different ways to answer this question:

- One idea is to take a thin tube network and squeeze their with to zero. Its direct application yields Kirchhoff coupling

A different vertex coupling class

As a motivation, let us ask about the meaning of the vertex coupling. There are different ways to answer this question:

- One idea is to take a thin tube network and squeeze their with to zero. Its direct application yields Kirchhoff coupling, but adding - properly scaled - potentials and magnetic fields, and in addition, modifying locally the network topology, one can get any self-adjoint coupling
P.E., O. Post: A general approximation of quantum graph vertex couplings by scaled Schrödinger operators on However, the construction is complicated and of little practical use

A different vertex coupling class

As a motivation, let us ask about the meaning of the vertex coupling. There are different ways to answer this question:

- One idea is to take a thin tube network and squeeze their with to zero. Its direct application yields Kirchhoff coupling, but adding - properly scaled - potentials and magnetic fields, and in addition, modifying locally the network topology, one can get any self-adjoint coupling
P.E., O. Post: A general approximation of quantum graph vertex couplings by scaled Schrödinger operators on
thin branched manifolds, Commun. Math. Phys. 322 (2013), 207-227. However, the construction is complicated and of little practical use
- An alternative is to take a pragmatic approach and to look which particular coupling would suit a given physical model

A different vertex coupling class

As a motivation, let us ask about the meaning of the vertex coupling. There are different ways to answer this question:

- One idea is to take a thin tube network and squeeze their with to zero. Its direct application yields Kirchhoff coupling, but adding - properly scaled - potentials and magnetic fields, and in addition, modifying locally the network topology, one can get any self-adjoint coupling

However, the construction is complicated and of little practical use

- An alternative is to take a pragmatic approach and to look which particular coupling would suit a given physical model

For instance, recall the Hall effect, classical and quantum, which is nowadays well understood

A different vertex coupling class

As a motivation, let us ask about the meaning of the vertex coupling. There are different ways to answer this question:

- One idea is to take a thin tube network and squeeze their with to zero. Its direct application yields Kirchhoff coupling, but adding - properly scaled - potentials and magnetic fields, and in addition, modifying locally the network topology, one can get any self-adjoint coupling

However, the construction is complicated and of little practical use

- An alternative is to take a pragmatic approach and to look which particular coupling would suit a given physical model

For instance, recall the Hall effect, classical and quantum, which is nowadays well understood. This is not at all the case, however, for the anomalous Hall effect which occurs in the absence of a magnetic field.

A different vertex coupling class

As a motivation, let us ask about the meaning of the vertex coupling. There are different ways to answer this question:

- One idea is to take a thin tube network and squeeze their with to zero. Its direct application yields Kirchhoff coupling, but adding - properly scaled - potentials and magnetic fields, and in addition, modifying locally the network topology, one can get any self-adjoint coupling

However, the construction is complicated and of little practical use

- An alternative is to take a pragmatic approach and to look which particular coupling would suit a given physical model

For instance, recall the Hall effect, classical and quantum, which is nowadays well understood. This is not at all the case, however, for the anomalous Hall effect which occurs in the absence of a magnetic field. We will use it as an inspiration.

Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the material structure of the sample is described by lattice of δ-coupled rings (topologically equivalent to a rectangular lattice)
园
P. Středa, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.

Source: the cited paper

Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the material structure of the sample is described by lattice of δ-coupled rings (topologically equivalent to a rectangular lattice)

圊
P. Středa, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.

Source: the cited paper
There is a flaw in the model

Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the material structure of the sample is described by lattice of δ-coupled rings (topologically equivalent to a rectangular lattice)
围
P. Středa, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.

Source: the cited paper
There is a flaw in the model: to mimick the rotational motion of atomic orbitals responsible for the magnetization, the requirement was imposed 'by hand' that the electrons move only one way on the loops of the lattice

Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the material structure of the sample is described by lattice of δ-coupled rings (topologically equivalent to a rectangular lattice)

围
P. Středa, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.

There is a flaw in the model: to mimick the rotational motion of atomic orbitals responsible for the magnetization, the requirement was imposed 'by hand' that the electrons move only one way on the loops of the lattice. Naturally, this cannot be justified from the first principles.

Breaking the time-reversal invariance

On the other hand, it is possible to break the time-reversal invariance, not at graph edges but in its vertices

Breaking the time-reversal invariance

On the other hand, it is possible to break the time-reversal invariance, not at graph edges but in its vertices. Consider an example: note that for a vertex coupling U the on-shell S-matrix at the momentum k is

$$
S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U},
$$

in particular, we have $U=S(1)$

Breaking the time-reversal invariance

On the other hand, it is possible to break the time-reversal invariance, not at graph edges but in its vertices. Consider an example: note that for a vertex coupling U the on-shell S-matrix at the momentum k is

$$
S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}
$$

in particular, we have $U=S(1)$. If we thus require that the coupling leads to the 'maximum rotation' at $k=1$, it is natural to choose

$$
U=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right),
$$

Spectrum for such a coupling

Consider first a star graph, i.e. N semi-infinite edges meeting in a single vertex

Spectrum for such a coupling

Consider first a star graph, i.e. N semi-infinite edges meeting in a single vertex. Writing the coupling conditions componentwise, we have

$$
\left(\psi_{j+1}-\psi_{j}\right)+i\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0, \quad j \in \mathbb{Z}(\bmod N)
$$

which is non-trivial for $N \geq 3$ and obviously non-invariant w.r.t. the reverse in the edge numbering order

Spectrum for such a coupling

Consider first a star graph, i.e. N semi-infinite edges meeting in a single vertex. Writing the coupling conditions componentwise, we have

$$
\left(\psi_{j+1}-\psi_{j}\right)+i\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0, \quad j \in \mathbb{Z}(\bmod N)
$$

which is non-trivial for $N \geq 3$ and obviously non-invariant w.r.t. the reverse in the edge numbering order, or equivalently, w.r.t. the complex conjugation representing the time reversal.

Spectrum for such a coupling

Consider first a star graph, i.e. N semi-infinite edges meeting in a single vertex. Writing the coupling conditions componentwise, we have

$$
\left(\psi_{j+1}-\psi_{j}\right)+i\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0, \quad j \in \mathbb{Z}(\bmod N)
$$

which is non-trivial for $N \geq 3$ and obviously non-invariant w.r.t. the reverse in the edge numbering order, or equivalently, w.r.t. the complex conjugation representing the time reversal.
For such a star-graph Hamiltonian we obviously have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$

Spectrum for such a coupling

Consider first a star graph, i.e. N semi-infinite edges meeting in a single vertex. Writing the coupling conditions componentwise, we have

$$
\left(\psi_{j+1}-\psi_{j}\right)+i\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0, \quad j \in \mathbb{Z}(\bmod N)
$$

which is non-trivial for $N \geq 3$ and obviously non-invariant w.r.t. the reverse in the edge numbering order, or equivalently, w.r.t. the complex conjugation representing the time reversal.
For such a star-graph Hamiltonian we obviously have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$. It is also easy to check that H has eigenvalues $-\kappa^{2}$, where

$$
\kappa=\tan \frac{\pi m}{N}
$$

with m running through $1, \ldots,\left[\frac{N}{2}\right]$ for N odd and $1, \ldots,\left[\frac{N-1}{2}\right]$ for N even. Thus $\sigma_{\text {disc }}(H)$ is always nonempty

Spectrum for such a coupling

Consider first a star graph, i.e. N semi-infinite edges meeting in a single vertex. Writing the coupling conditions componentwise, we have

$$
\left(\psi_{j+1}-\psi_{j}\right)+i\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0, \quad j \in \mathbb{Z}(\bmod N)
$$

which is non-trivial for $N \geq 3$ and obviously non-invariant w.r.t. the reverse in the edge numbering order, or equivalently, w.r.t. the complex conjugation representing the time reversal.
For such a star-graph Hamiltonian we obviously have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$. It is also easy to check that H has eigenvalues $-\kappa^{2}$, where

$$
\kappa=\tan \frac{\pi m}{N}
$$

with m running through $1, \ldots,\left[\frac{N}{2}\right]$ for N odd and $1, \ldots,\left[\frac{N-1}{2}\right]$ for N even. Thus $\sigma_{\text {disc }}(H)$ is always nonempty, in particular, H has a single negative eigenvalue for $N=3,4$ which is equal to -3 and -1 , respectively.

[^2]
The on-shell S-matrix

We have mentioned already that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$.

The on-shell S-matrix

We have mentioned already that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$.
It might seem that transport becomes trivial at small and high energies, since $\lim _{k \rightarrow 0} S(k)=-1$ and $\lim _{k \rightarrow \infty} S(k)=1$.

The on-shell S-matrix

We have mentioned already that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$.
It might seem that transport becomes trivial at small and high energies, since $\lim _{k \rightarrow 0} S(k)=-1$ and $\lim _{k \rightarrow \infty} S(k)=1$.

However, caution is needed; the formal limits lead to a false result if +1 or -1 are eigenvalues of U

The on-shell S-matrix

We have mentioned already that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$.
It might seem that transport becomes trivial at small and high energies, since $\lim _{k \rightarrow 0} S(k)=-1$ and $\lim _{k \rightarrow \infty} S(k)=1$.

However, caution is needed; the formal limits lead to a false result if +1 or -1 are eigenvalues of U. A counterexample is the (scale invariant) Kirchhoff coupling where U has only ± 1 as its eigenvalues; the on-shell S-matrix is then independent of k and it is not a multiple of the identity

The on-shell S-matrix

We have mentioned already that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$.
It might seem that transport becomes trivial at small and high energies, since $\lim _{k \rightarrow 0} S(k)=-1$ and $\lim _{k \rightarrow \infty} S(k)=1$.

However, caution is needed; the formal limits lead to a false result if +1 or -1 are eigenvalues of U. A counterexample is the (scale invariant) Kirchhoff coupling where U has only ± 1 as its eigenvalues; the on-shell S-matrix is then independent of k and it is not a multiple of the identity

A straightforward computation yields the explicit form of $S(k)$: denoting for simplicity $\eta:=\frac{1-k}{1+k}$

The on-shell S-matrix

We have mentioned already that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$.
It might seem that transport becomes trivial at small and high energies, since $\lim _{k \rightarrow 0} S(k)=-1$ and $\lim _{k \rightarrow \infty} S(k)=1$.

However, caution is needed; the formal limits lead to a false result if +1 or -1 are eigenvalues of U. A counterexample is the (scale invariant) Kirchhoff coupling where U has only ± 1 as its eigenvalues; the on-shell S-matrix is then independent of k and it is not a multiple of the identity

A straightforward computation yields the explicit form of $S(k)$: denoting for simplicity $\eta:=\frac{1-k}{1+k}$ we have

$$
S_{i j}(k)=\frac{1-\eta^{2}}{1-\eta^{N}}\left\{-\eta \frac{1-\eta^{N-2}}{1-\eta^{2}} \delta_{i j}+\left(1-\delta_{i j}\right) \eta^{(j-i-1)(\bmod N)}\right\}
$$

The role of vertex degree parity

This suggests, in particular, that the high-energy behavior, $\eta \rightarrow-1-$, could be determined by the parity of the vertex degree N

The role of vertex degree parity

This suggests, in particular, that the high-energy behavior, $\eta \rightarrow-1-$, could be determined by the parity of the vertex degree N

In the cases with the lowest N we get

$$
S(k)=\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right)
$$

The role of vertex degree parity

This suggests, in particular, that the high-energy behavior, $\eta \rightarrow-1-$, could be determined by the parity of the vertex degree N

In the cases with the lowest N we get

$$
S(k)=\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right)
$$

and

$$
S(k)=\frac{1}{1+\eta^{2}}\left(\begin{array}{cccc}
-\eta & 1 & \eta & \eta^{2} \\
\eta^{2} & -\eta & 1 & \eta \\
\eta & \eta^{2} & -\eta & 1 \\
1 & \eta & \eta^{2} & -\eta
\end{array}\right)
$$

for $N=3,4$, respectively

The role of vertex degree parity

This suggests, in particular, that the high-energy behavior, $\eta \rightarrow-1-$, could be determined by the parity of the vertex degree N

In the cases with the lowest N we get

$$
S(k)=\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right)
$$

and

$$
S(k)=\frac{1}{1+\eta^{2}}\left(\begin{array}{cccc}
-\eta & 1 & \eta & \eta^{2} \\
\eta^{2} & -\eta & 1 & \eta \\
\eta & \eta^{2} & -\eta & 1 \\
1 & \eta & \eta^{2} & -\eta
\end{array}\right)
$$

for $N=3,4$, respectively. We see that $\lim _{k \rightarrow \infty} S(k)=I$ holds for $N=3$ and more generally for all odd N, while for the even ones the limit is not a multiple of identity

The role of vertex degree parity

This suggests, in particular, that the high-energy behavior, $\eta \rightarrow-1-$, could be determined by the parity of the vertex degree N

In the cases with the lowest N we get

$$
S(k)=\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right)
$$

and

$$
S(k)=\frac{1}{1+\eta^{2}}\left(\begin{array}{cccc}
-\eta & 1 & \eta & \eta^{2} \\
\eta^{2} & -\eta & 1 & \eta \\
\eta & \eta^{2} & -\eta & 1 \\
1 & \eta & \eta^{2} & -\eta
\end{array}\right)
$$

for $N=3,4$, respectively. We see that $\lim _{k \rightarrow \infty} S(k)=I$ holds for $N=3$ and more generally for all odd N, while for the even ones the limit is not a multiple of identity. This is is related to the fact that in the latter case U has both ± 1 as its eigenvalues, while for N odd -1 is missing.

The role of vertex degree parity

This suggests, in particular, that the high-energy behavior, $\eta \rightarrow-1-$, could be determined by the parity of the vertex degree N

In the cases with the lowest N we get

$$
S(k)=\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right)
$$

and

$$
S(k)=\frac{1}{1+\eta^{2}}\left(\begin{array}{cccc}
-\eta & 1 & \eta & \eta^{2} \\
\eta^{2} & -\eta & 1 & \eta \\
\eta & \eta^{2} & -\eta & 1 \\
1 & \eta & \eta^{2} & -\eta
\end{array}\right)
$$

for $N=3,4$, respectively. We see that $\lim _{k \rightarrow \infty} S(k)=I$ holds for $N=3$ and more generally for all odd N, while for the even ones the limit is not a multiple of identity. This is is related to the fact that in the latter case U has both ± 1 as its eigenvalues, while for N odd -1 is missing.

Let us look how this fact influences spectra of periodic quantum graphs.

Comparison of two lattices

Comparison of two lattices

Comparison of two lattices

Spectral condition for the two cases are easy to derive,

$$
16 i \mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)} k \sin k \ell\left[\left(k^{2}-1\right)\left(\cos \theta_{1}+\cos \theta_{2}\right)+2\left(k^{2}+1\right) \cos k \ell\right]=0
$$

Comparison of two lattices

Spectral condition for the two cases are easy to derive,

$$
16 i \mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)} k \sin k \ell\left[\left(k^{2}-1\right)\left(\cos \theta_{1}+\cos \theta_{2}\right)+2\left(k^{2}+1\right) \cos k \ell\right]=0
$$

and respectively

$$
16 i \mathrm{e}^{-i\left(\theta_{1}+\theta_{2}\right.} k^{2} \sin k \ell\left(3+6 k^{2}-k^{4}+4 d_{\theta}\left(k^{2}-1\right)+\left(k^{2}+3\right)^{2} \cos 2 k \ell\right)=0
$$

where $d_{\theta}:=\cos \theta_{1}+\cos \left(\theta_{1}-\theta_{2}\right)+\cos \theta_{2}$ and $\frac{1}{\ell}\left(\theta_{1}, \theta_{2}\right) \in\left[-\frac{\pi}{\ell}, \frac{\pi}{\ell}\right]^{2}$ is the quasimomentum

Comparison of two lattices

Spectral condition for the two cases are easy to derive,

$$
16 i \mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)} k \sin k \ell\left[\left(k^{2}-1\right)\left(\cos \theta_{1}+\cos \theta_{2}\right)+2\left(k^{2}+1\right) \cos k \ell\right]=0
$$

and respectively

$$
16 i \mathrm{e}^{-i\left(\theta_{1}+\theta_{2}\right.} k^{2} \sin k \ell\left(3+6 k^{2}-k^{4}+4 d_{\theta}\left(k^{2}-1\right)+\left(k^{2}+3\right)^{2} \cos 2 k \ell\right)=0
$$

where $d_{\theta}:=\cos \theta_{1}+\cos \left(\theta_{1}-\theta_{2}\right)+\cos \theta_{2}$ and $\frac{1}{\ell}\left(\theta_{1}, \theta_{2}\right) \in\left[-\frac{\pi}{\ell}, \frac{\pi}{\ell}\right]^{2}$ is the quasimomentum. They are tedious to solve except the flat band cases, $\sin k \ell=0$

Comparison of two lattices

Spectral condition for the two cases are easy to derive,

$$
16 i \mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)} k \sin k \ell\left[\left(k^{2}-1\right)\left(\cos \theta_{1}+\cos \theta_{2}\right)+2\left(k^{2}+1\right) \cos k \ell\right]=0
$$

and respectively

$$
16 i \mathrm{e}^{-i\left(\theta_{1}+\theta_{2}\right.} k^{2} \sin k \ell\left(3+6 k^{2}-k^{4}+4 d_{\theta}\left(k^{2}-1\right)+\left(k^{2}+3\right)^{2} \cos 2 k \ell\right)=0
$$

where $d_{\theta}:=\cos \theta_{1}+\cos \left(\theta_{1}-\theta_{2}\right)+\cos \theta_{2}$ and $\frac{1}{\ell}\left(\theta_{1}, \theta_{2}\right) \in\left[-\frac{\pi}{\ell}, \frac{\pi}{\ell}\right]^{2}$ is the quasimomentum. They are tedious to solve except the flat band cases, $\sin k \ell=0$, however, we can present the band solution in a graphical form
P.E., M. Tater: Quantum graphs with vertices of a preferred orientation, Phys. Lett. A382 (2018), 283-287.

A picture is worth of thousand words

For the two lattices, respectively, we get (with $\ell=\frac{3}{2}$, dashed $\ell=\frac{1}{4}$)

A picture is worth of thousand words

For the two lattices, respectively, we get (with $\ell=\frac{3}{7}$, dashed $\ell=\frac{1}{4}$)

and

A picture is worth of thousand words

For the two lattices, respectively, we get (with $\ell=\frac{3}{2}$, dashed $\ell=\frac{1}{4}$)

and

Comparison of the gap structure of the two lattices reveals the role of vertex degree parity clearly.

An interpolation

One can interpolate between the δ-coupling and the present one taking e.g., for U the circulant matrix with the eigenvalues

$$
\lambda_{k}(t)=\left\{\begin{array}{cc}
\mathrm{e}^{-i(1-t) \gamma} & \text { for } k=0 \\
-\mathrm{e}^{i \pi t\left(\frac{2 k}{n}-1\right)} & \text { for } k \geq 1
\end{array}\right.
$$

for all $t \in[0,1]$, where $\frac{n-i \alpha}{n+i \alpha}=\mathrm{e}^{-i \gamma}$

An interpolation

One can interpolate between the δ-coupling and the present one taking e.g., for U the circulant matrix with the eigenvalues

$$
\lambda_{k}(t)=\left\{\begin{array}{cc}
\mathrm{e}^{-i(1-t) \gamma} & \text { for } k=0 \\
-\mathrm{e}^{i \pi t\left(\frac{2 k}{n}-1\right)} & \text { for } k \geq 1
\end{array}\right.
$$

for all $t \in[0,1]$, where $\frac{n-i \alpha}{n+i \alpha}=\mathrm{e}^{-i \gamma}$. Taking, for instance, $\alpha=0$ and $-4(\sqrt{2}+1)$, respectively, we have the following spectral patterns

An interpolation

One can interpolate between the δ-coupling and the present one taking e.g., for U the circulant matrix with the eigenvalues

$$
\lambda_{k}(t)=\left\{\begin{array}{cc}
\mathrm{e}^{-i(1-t) \gamma} & \text { for } k=0 \\
-\mathrm{e}^{i \pi t\left(\frac{2 k}{n}-1\right)} & \text { for } k \geq 1
\end{array}\right.
$$

for all $t \in[0,1]$, where $\frac{n-i \alpha}{n+i \alpha}=\mathrm{e}^{-i \gamma}$. Taking, for instance, $\alpha=0$ and $-4(\sqrt{2}+1)$, respectively, we have the following spectral patterns

P.E., O. Turek, M. Tater: A family of quantum graph vertex couplings interpolating between different symmetries, J. Phys. A: Math. Theor. 51 (2018), 285301.

Discrete symmetry: Platonic solid graphs

Topological properties of our vertex coupling can be manifested in many other ways

Discrete symmetry: Platonic solid graphs

Topological properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices

Discrete symmetry: Platonic solid graphs

Topological properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error

Discrete symmetry: Platonic solid graphs

Topological properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error
- octahedron also has such eigenvalues, but in addition it has two other series

Discrete symmetry: Platonic solid graphs

Topological properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error
- octahedron also has such eigenvalues, but in addition it has two other series: those behaving as $k=2 \pi n \pm \frac{2}{3} \pi$ for $n \in \mathbb{Z}$, and as $k=\pi n+\frac{1}{2} \pi$ with with an $\mathcal{O}\left(k^{-2}\right)$ error

Discrete symmetry: Platonic solid graphs

Topological properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error
- octahedron also has such eigenvalues, but in addition it has two other series: those behaving as $k=2 \pi n \pm \frac{2}{3} \pi$ for $n \in \mathbb{Z}$, and as $k=\pi n+\frac{1}{2} \pi$ with with an $\mathcal{O}\left(k^{-2}\right)$ error
- no such distinction exists for more common couplings such as δ

Discrete symmetry: Platonic solid graphs

Topological properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges
and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error
- octahedron also has such eigenvalues, but in addition it has two other series: those behaving as $k=2 \pi n \pm \frac{2}{3} \pi$ for $n \in \mathbb{Z}$, and as $k=\pi n+\frac{1}{2} \pi$ with with an $\mathcal{O}\left(k^{-2}\right)$ error
- no such distinction exists for more common couplings such as δ
P.E., J. Lipovský: Spectral asymptotics of the Laplacian on Platonic solids graphs, J. Math. Phys. 60 (2019), 122101

Another periodic graph model

Let us look what this coupling influences graphs periodic in one direction

Another periodic graph model

Let us look what this coupling influences graphs periodic in one direction. Consider again a loop chain, first tightly connected

The spectrum of the corresponding Hamiltonian looks as follows:

Theorem

The spectrum of H_{0} consists of the absolutely continuous part which coincides with the interval $[0, \infty)$, and a family of infinitely degenerate eigenvalues, the isolated one equal to -1 , and the embedded ones equal to the positive integers.
M. Baradaran, P.E., M. Tater: Ring chains with vertex coupling of a preferred orientation, Rev. Math. Phys., to appear; arXiv:1912.03667

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.
- Away of the non-negative integers the spectrum is absolutely continuous having a band-and-gap structure.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.
- Away of the non-negative integers the spectrum is absolutely continuous having a band-and-gap structure.
- The negative spectrum is contained in $(-\infty,-1)$ consisting of a single band if $\ell=\pi$, otherwise there is a pair of bands and $-3 \notin \sigma\left(H_{\ell}\right)$.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.
- Away of the non-negative integers the spectrum is absolutely continuous having a band-and-gap structure.
- The negative spectrum is contained in $(-\infty,-1)$ consisting of a single band if $\ell=\pi$, otherwise there is a pair of bands and $-3 \notin \sigma\left(H_{\ell}\right)$.
- The positive spectrum has infinitely many gaps.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.
- Away of the non-negative integers the spectrum is absolutely continuous having a band-and-gap structure.
- The negative spectrum is contained in $(-\infty,-1)$ consisting of a single band if $\ell=\pi$, otherwise there is a pair of bands and $-3 \notin \sigma\left(H_{\ell}\right)$.
- The positive spectrum has infinitely many gaps.
- $P_{\sigma}\left(H_{\ell}\right):=\lim _{K \rightarrow \infty} \frac{1}{K}\left|\sigma\left(H_{\ell}\right) \cap[0, K]\right|=0$ holds for any $\ell>0$.

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum introduced by
R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum introduced by
R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what happens if the the connecting links lengths shrink to zero

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum introduced by
R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what happens if the the connecting links lengths shrink to zero. From the general result derived inG. Berkolaiko, Y. Latushkin, S. Sukhtaiev: Limits of quantum graph operators with shrinking edges, Adv. Math. 352 (2019), 632-669.
we know that $\sigma\left(H_{\ell}\right) \rightarrow \sigma\left(H_{0}\right)$ in the set sense as $\ell \rightarrow 0+$.

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum introduced by
R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what happens if the the connecting links lengths shrink to zero. From the general result derived in
G. Berkolaiko, Y. Latushkin, S. Sukhtaiev: Limits of quantum graph operators with shrinking edges, Adv. Math. 352 (2019), 632-669.
we know that $\sigma\left(H_{\ell}\right) \rightarrow \sigma\left(H_{0}\right)$ in the set sense as $\ell \rightarrow 0+$.
We have, however, obviously $P_{\sigma}\left(H_{0}\right)=1$, hence our example shows that the said convergence may be rather nonuniform!

One more example: transport properties

Consider strips cut of the following two types of lattices:

In both cases we impose the 'rotating' coupling at the vertices

One more example: transport properties

Consider strips cut of the following two types of lattices:

In both cases we impose the 'rotating' coupling at the vertices. By Floquet decomposition we are able reduce the task to investigation of a 'one cell layer'. We use the Ansatz $a e^{i k x}+b e^{-i k x}$ for the wave functions e, f_{j}, g_{j}, h_{j} with the appropriate coefficients at the graphs edges

One more example: transport properties

Consider strips cut of the following two types of lattices:

In both cases we impose the 'rotating' coupling at the vertices. By Floquet decomposition we are able reduce the task to investigation of a 'one cell layer'. We use the Ansatz $a e^{i k x}+b \mathrm{e}^{-i k x}$ for the wave functions e, f_{j}, g_{j}, h_{j} with the appropriate coefficients at the graphs edges

This time we ask in which part of the 'guide' are the generalized eigenfunction dominantly supported

Transport properties, continued

Theorem

- In the rectangular-lattice strip, for a fixed $K \in\left(0, \frac{1}{2} \pi\right)$, consider $k>0$ obeying $k \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right)$. With the natural normalization of the generalized eigenfunction corresponding to energy k^{2}, its components at the leftmost and rightmost vertical edges are of order $\mathcal{O}\left(k^{-1}\right)$ as $k \rightarrow \infty$.

Transport properties, continued

Theorem

- In the rectangular-lattice strip, for a fixed $K \in\left(0, \frac{1}{2} \pi\right)$, consider $k>0$ obeying $k \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right)$. With the natural normalization of the generalized eigenfunction corresponding to energy k^{2}, its components at the leftmost and rightmost vertical edges are of order $\mathcal{O}\left(k^{-1}\right)$ as $k \rightarrow \infty$.
- In the 'brick-lattice' strip, consider momenta $k>0$ such that

$$
k \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{1}}, \frac{n \pi+K}{\ell_{1}}\right) \cup \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right) \cup \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{3}}, \frac{n \pi+K}{\ell_{3}}\right)
$$

Adopting the same normalization as above and denoting by $q_{j}^{(m)}$ with $m=1, \ldots, 8$, the coefficients of wave function components for the edges directed down and right from vertices of the jth vertical line, we have $q_{j}^{(m)}=\mathcal{O}\left(k^{1-j}\right)$ as $k \rightarrow \infty$.

[^3]
Transport properties, continued

Theorem

- In the rectangular-lattice strip, for a fixed $K \in\left(0, \frac{1}{2} \pi\right)$, consider $k>0$ obeying $k \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right)$. With the natural normalization of the generalized eigenfunction corresponding to energy k^{2}, its components at the leftmost and rightmost vertical edges are of order $\mathcal{O}\left(k^{-1}\right)$ as $k \rightarrow \infty$.
- In the 'brick-lattice' strip, consider momenta $k>0$ such that

$$
K \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{1}}, \frac{n \pi+K}{\ell_{1}}\right) \cup \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right) \cup \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{3}}, \frac{n \pi+K}{\ell_{3}}\right) .
$$

Adopting the same normalization as above and denoting by $q_{j}^{(m)}$ with $m=1, \ldots, 8$, the coefficients of wave function components for the edges directed down and right from vertices of the jth vertical line, we have $q_{j}^{(m)}=\mathcal{O}\left(k^{1-j}\right)$ as $k \rightarrow \infty$.

[^4]Remark: Note that the 'brick-lattice' strip is not a topological insulator!

It remains to say

It remains to say

Thank you for your attention!

[^0]: P.E., O. Turek: Periodic quantum graphs from the Bethe- Sommerfeld perspective, J. Phys. A: Math. Theor. 50 (2017), 455201.

[^1]: P.E., O. Turek: Periodic quantum graphs from the Bethe- Sommerfeld perspective, J. Phys. A: Math. Theor. 50 (2017), 455201.

[^2]: P.E., M. Tater: Quantum graphs with vertices of a preferred orientation, Phys. Lett. A382 (2018), 283-287.

[^3]: 美
 P. Exner, J. Lipovský: Topological bulk-edge effects in quantum graph transport, Phys. Lett. A384 (2020), 126390

[^4]: 易
 P. Exner, J. Lipovský: Topological bulk-edge effects in quantum graph transport, Phys. Lett. A384 (2020), 126390

