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What is this talk about

Our topic here will be quantum graphs, in particular, those having a
periodic structure and a nontrivial vertex coupling

Let us introduce the main characters: we will deal with metric graphs
understood as a collection of vertices and edges the each of which is
homothetic to a (finite or semi-infinite) interval

vk

ej

Such a graph will support differential operators: we associate with it the
Hilbert space H =

⊕
j L

2(ej) and consider a Schrödinger operator acting

on ψ = {ψj} that are locally H2 as Hψ = {(−iψ′ − Aψ)2 + Vψ}
In this talk we consider mostly the simplest case, A = 0 and V = 0, that
is, we suppose that Hψ = {−ψ′′}
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Vertex coupling
To make such an H a self-adjoint operator we have to match the
functions ψj properly at each graph vertex

. Denoting ψ = {ψj} and
ψ′ = {ψ′j} the boundary values of functions and (outward) derivatives
at a given vertex of degree n, respectively, the most general self-adjoint
matching conditions read

(U − I )ψ(vk) + i(U + I )ψ′(vk) = 0,

where U is any n × n unitary matrix.

Such a coupling depends on n2 real parameters; the number is reduced
dramatically if we require continuity at the vertex, then we are left with

ψj(0) = ψk(0) =: ψ(0) , j , k = 1, . . . , n ,
n∑

j=1

ψ′j (0) = αψ(0)

depending on a single parameter α ∈ R which we call the δ coupling;
the corresponding unitary matrix is U = 2

n+iαJ − I , where J is the
n × n matrix whose all entries are equal to one.

In particular, the case with α = 0 is often called Kirchhoff coupling.
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Quantum graph spectra

Spectral properties of quantum graph operators have been studied by
many authors and a lot is known about them.

G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

Most attention is traditionally paid to the Kirchhoff case; our aim here
is to elucidate effects coming from a nontrivial vertex coupling

Note that the spectra we are interested in may differ from those of the
‘usual’ Schrödinger operators. For instance, they do not have the unique
continuation property which means, in particular, that they can have
compactly supported eigenfunctions

This is easily seen: a graph with a δ coupling which contains a loop
with rationally related edges has the so-called Dirichlet eigenvalues

Courtesy: Peter Kuchment
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Periodic graphs
We restrict our attention to graphs which are periodic in one or more
directions

. In such a case, one can study its spectrum using Floquet
decomposition,

H =

∫
Q∗

H(θ)dθ

with the fiber operator H(θ) acting on L2(Q), where Q ⊂ Rd is period
cell and Q∗ is the dual cell (or Brillouin zone)

From what was said about the uniform continuation property, the
spectrum clearly need not be purely absolutely continuous

In fact, it can be even pure point as the following example of a magnetic
quantum graph shows: we take a loop array

0 π 0 π 0 π• • • •

eLj−1

eUj−1

Aj−1

eLj

eUj

Aj

eLj+1

eUj+1

Aj+1

vj−1 vj vj+1 vj+2

. . . . . .
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A magnetic loop chain example
The Hamiltonian acts as ψj 7→ −D2ψj on each edge, D := −i∇− A

,
and we assume δ-coupling in the vertices, i.e. the domain consists of
functions from H2

loc(Γ) satisfying

ψi (0) = ψj(0) =: ψ(0) , i , j = 1, . . . , n ,
n∑

i=1

Dψi (0) = αψ(0) ,

where α ∈ R is the coupling constant and n = 4 holds in our case

V. Kostrykin, R. Schrader: Quantum wires with magnetic fluxes, Commun. Math. Phys. 237 (2003), 161–179.

If Aj = A, j ∈ Z, we can perform Floquet analysis on the period cell

writing ψL(x) = e−iAx(C+
L eikx + C−L e−ikx) for x ∈ [−π/2, 0] and energy

E := k2 6= 0, and similarly for the other three components; for E < 0 we
put instead k = iκ with κ > 0.
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The example, continued

The functions have to be matched through (a) the δ-coupling and

(b) Floquet conditions. This yields equation for the phase factor eiθ,

sin kπ cosAπ(e2iθ − 2ξ(k)eiθ + 1) = 0

with the discriminant D = 4(ξ(k)2 − 1), where ξ(k) := η(k)
4 cosAπ and

η(k) := 4 cos kπ +
α

k
sin kπ

for any k ∈ R∪ iR \ {0} and A− 1
2 6∈ Z. Apart from A− 1

2 ∈ Z and k ∈ N
we have thus k2 ∈ σ(−∆α) iff the condition |η(k)| ≤ 4| cosAπ| is satisfied.

In the Kirchhoff case, α = 0, the spectrum is ‘trivial, σ(H) = [0,∞),
provided A ∈ Z, otherwise there are always open spectral gaps as one can
see from a graphical solution of the above spectral condition
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(b) Floquet conditions. This yields equation for the phase factor eiθ,
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Determining the spectral bands

i 1
2 i

1
2

1 3
2

2 5
2

3 7
2

−4
−2

2

4

η
α > 0

α = 0

α ∈ (−8/π, 0)
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−→ √z ∈ R+
0←− √z ∈ iR+

The picture refers to the (generalized) non-magnetic case, A ∈ Z.

For A− 1
2 /∈ Z the strip width changes to 8| cosAπ|, and for A− 1

2 ∈ Z
it shrinks to a line; then the spectrum consists of infinitely degenerate
eigenvalues (or flat bands as a physicist would say)

Remark: There are other situations: for instance, if Aj = µj + θ with
µ ∈ R \Q, the spectrum is a Cantor set of Lebesgue measure zero

P.E., D. Vašata: Cantor spectra of magnetic chain graphs, J. Phys. A: Math. Theor. 50 (2017), 165201.
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P.E., D. Vašata: Cantor spectra of magnetic chain graphs, J. Phys. A: Math. Theor. 50 (2017), 165201.

P.E.: Vertex coupling and graph spectra WADE webinar July 14, 2020 - 8 -



Determining the spectral bands

i 1
2 i

1
2

1 3
2

2 5
2

3 7
2

−4
−2

2

4

η
α > 0

α = 0

α ∈ (−8/π, 0)
α < −8/π

−→ √z ∈ R+
0←− √z ∈ iR+

The picture refers to the (generalized) non-magnetic case, A ∈ Z.

For A− 1
2 /∈ Z the strip width changes to 8| cosAπ|, and for A− 1

2 ∈ Z
it shrinks to a line; then the spectrum consists of infinitely degenerate
eigenvalues (or flat bands as a physicist would say)

Remark: There are other situations: for instance, if Aj = µj + θ with
µ ∈ R \Q, the spectrum is a Cantor set of Lebesgue measure zero
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Questions to be addressed

In the absence of a magnetic field the spectrum of a periodic graph
has always an absolutely continuous component

, and unless the vertex
coupling is Kirchhhoff the spectrum has open gaps.

We are interested in relations between the vertex coupling and the gap
structure, specifically we ask:

is the number of open gaps finite or infinite?

can the gap structure depend on the graph topology?
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How many spectral gaps are open?

To motivate this question, recall first that for the ‘usual’ Schrödinger
operators the dimension is known to be decisive:

systems which are
Z-periodic have generically an infinite number of open gaps, while
Zν-periodic systems with ν ≥ 2 have only finitely many open gaps

This is the celebrated Bethe–Sommerfeld conjecture, rather plausible for
the physicist’s point of view but mathematically quite hard, to which we
have nowadays an affirmative answer in a large number of cases

L. Parnovski: Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), 457–508.

Question: How the situation looks for quantum graphs which can, in a
sense, are ‘mixing’ different dimensionalities?

The standard reference, [Berkolaiko-Kuchment’13, loc.cit.], says that
Bethe-Sommerfeld heuristic reasoning is applicable again, however,
the finiteness of the gap number is not a strict law
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Graph decoration

An infinite number of gaps in the spectrum of a periodic graph can
result from decorating its vertices by copies of a fixed compact graph

.
This fact was observed first in the combinatorial graph context,

J.H. Schenker, M. Aizenman: The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), 253–262.

and the argument extends easily to metric graphs we consider here

Courtesy: Peter Kuchment

Thus, instead of ‘not a strict law’, the question rather is whether
it is a ‘law’ at all: do infinite periodic graphs having a finite nonzero
number of open gaps exist? From obvious reasons we would call them
Bethe-Sommerfeld graphs
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The answer depends on the vertex coupling
Recall that self-adjointness requires the matching conditions
(U − I )ψ + i(U + I )ψ′ = 0 , where ψ, ψ′ are vectors of values and
derivatives at the vertex of degree n and U is an n × n unitary matrix

The condition can be decomposed into Dirichlet, Neumann, and Robin
parts corresponding to eigenspaces of U with eigenvalues −1, 1, and
the rest, respectively; if the latter is absent we call such a coupling
scale-invariant (an example is provided by the Kirchhoff coupling).

Theorem

An infinite periodic quantum graph does not belong to the Bethe-
Sommerfeld class if the couplings at its vertices are scale-invariant.

P.E., O. Turek: Periodic quantum graphs from the Bethe- Sommerfeld perspective, J. Phys. A: Math. Theor. 50 (2017),
455201.

Worse than that, there is a simple argument showing in a ‘typical’ periodic
graph the probability of being in a band or gap is 6= 0, 1.

R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013),
130404.
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The existence

Nevertheless, the answer to our question is affirmative:

Theorem

Bethe–Sommerfeld graphs exist.

It is sufficient, of course, to demonstrate an example. With this aim
we are going to revisit the model of a rectangular lattice graph with
a δ coupling in the vertices introduced in

P.E.: Contact interactions on graph superlattices, J. Phys. A: Math. Gen. 29 (1996), 87–102.

P.E., R. Gawlista: Band spectra of rectangular graph superlattices, Phys. Rev. B53 (1996), 7275–7286.

q q q qa

bq q q qq q q qq q q q
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Spectral condition

A number k2 > 0 belongs to a gap iff k > 0 satisfies the gap condition
which is easily derived; it reads

2k

[
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− π

2
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π

⌋)
+ tan
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⌊
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π

⌋)
+ cot

(
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2
− π

2

⌊
kb

π

⌋)]
< |α| for α < 0 ;

we neglect the Kirchhoff case, α = 0, where σ(H) = [0,∞).

Note that for α < 0 the spectrum extends to the negative part of the
real axis and may have a gap there, which is not important here because
there is not more than a single negative gap, and this gap always extends
to positive values
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What is known about this model

The spectrum depends on the ratio θ = a
b . If θ is rational, σ(H) has

clearly infinitely many gaps unless α = 0 in which case σ(H) = [0,∞)

The same is true if θ is is an irrational well approximable by rationals,
which means equivalently that in the continued fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded

On the other hand, θ ∈ R is badly approximable if there is a c > 0 such
that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q 6= 0.

Let us turn now to the question about the gaps number. We can answer it
for any θ but for the purpose of this talk we limit ourself with the example

of the ‘worst’ irrational, θ =
√

5+1
2 = [1; 1, 1, . . . ].
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The golden mean situation

Theorem

Let a
b = θ =

√
5+1
2 , then the following claims are valid:

(i) If α > π2
√

5a
or α ≤ − π2

√
5a

, there are infinitely many spectral gaps.

(ii) If
−2π

a
tan
(3−

√
5

4
π
)
≤ α ≤ π2

√
5a
,

there are no gaps in the positive spectrum.

(iii) If − π2

√
5a

< α < −2π

a
tan
(3−

√
5

4
π
)
,

there is a nonzero and finite number of gaps in the positive spectrum.

P.E., O. Turek: Periodic quantum graphs from the Bethe-Sommerfeld point of view, J. Phys. A: Math.
Theor. 50 (2017), 455201.

Corollary

The above theorem about the existence of BS graphs is valid.
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More about this example

The window in which the golden-mean lattice has the BS property is
narrow, it is roughly 4.298 . −αa . 4.414.

We are also able to control the number of gaps in the BS regime; in the
same paper the following result was proved:

Theorem

For a given N ∈ N, there are exactly N gaps in the positive spectrum if
and only if α is chosen within the bounds

−
2π
(
θ2(N+1) − θ−2(N+1)

)
√

5a
tan
(π

2
θ−2(N+1)

)
≤ α < −

2π
(
θ2N − θ−2N

)
√

5a
tan
(π

2
θ−2N

)
.

Note that the numbers Aj :=
2π(θ2j−θ−2j)√

5
tan
(
π
2 θ
−2j
)

form an increasing

sequence the first element of which is A1 = 2π tan
(

3−
√

5
4 π

)
and

Aj <
π2

√
5

holds for all j ∈ N .
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A more general result

Proofs of the above results are based on properties of Diophantine
approximations. In a similar way one can prove

Theorem

Let θ = a
b and define

γ+ := min

{
inf
m∈N

{
2mπ

a
tan
(π

2
(mθ−1 − bmθ−1c)

)}
, inf
m∈N

{
2mπ

b
tan
(π

2
(mθ − bmθc)

)}}
and γ− similarly with b·c replaced by d·e and tan by − tan. If the coupling
α satisfies

γ± < ±α <
π2

max{a, b}µ(θ) ,

where µ(θ) := inf
{
c > 0

∣∣ (∃∞(p, q) ∈ N2
) (∣∣θ − p

q

∣∣ < c
q2

)}
is the Markov constant,

then there is a nonzero and finite number of gaps in the positive spectrum.

More details in [E-Turek, loc.cit.], for extension to 3D lattices see

O. Turek: Gaps in the spectrum of a cuboidal periodic lattices graph, Rep. Math. Phys. 83 (2019), 107–127.
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A different vertex coupling class

As a motivation, let us ask about the meaning of the vertex coupling.
There are different ways to answer this question:

One idea is to take a thin tube network and squeeze their with to zero.
Its direct application yields Kirchhoff coupling

, but adding – properly
scaled – potentials and magnetic fields, and in addition, modifying
locally the network topology, one can get any self-adjoint coupling

P.E., O. Post: A general approximation of quantum graph vertex couplings by scaled Schrödinger operators on
thin branched manifolds, Commun. Math. Phys. 322 (2013), 207–227.

However, the construction is complicated and of little practical use

An alternative is to take a pragmatic approach and to look which
particular coupling would suit a given physical model

For instance, recall the Hall effect, classical and quantum, which is
nowadays well understood. This is not at all the case, however, for the
anomalous Hall effect which occurs in the absence of a magnetic field.

We will use it as an inspiration.
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Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the
material structure of the sample is described by lattice of δ-coupled rings
(topologically equivalent to a rectangular lattice)

P. Sťreda, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.

Source: the cited paper

There is a flaw in the model: to mimick the rotational motion of atomic
orbitals responsible for the magnetization, the requirement was imposed
‘by hand’ that the electrons move only one way on the loops of the lattice.
Naturally, this cannot be justified from the first principles.
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Breaking the time-reversal invariance

On the other hand, it is possible to break the time-reversal invariance,
not at graph edges but in its vertices

. Consider an example: note that
for a vertex coupling U the on-shell S-matrix at the momentum k is

S(k) =
k − 1 + (k + 1)U

k + 1 + (k − 1)U
,

in particular, we have U = S(1). If we thus require that the coupling
leads to the ‘maximum rotation’ at k = 1, it is natural to choose

U =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1

1 0 0 0 · · · 0 0


,
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Spectrum for such a coupling
Consider first a star graph, i.e. N semi-infinite edges meeting in a
single vertex

. Writing the coupling conditions componentwise, we have

(ψj+1 − ψj) + i(ψ′j+1 + ψ′j) = 0 , j ∈ Z (modN) ,

which is non-trivial for N ≥ 3 and obviously non-invariant w.r.t. the
reverse in the edge numbering order, or equivalently, w.r.t. the complex
conjugation representing the time reversal.

For such a star-graph Hamiltonian we obviously have σess(H) = R+. It is
also easy to check that H has eigenvalues −κ2, where

κ = tan
πm

N

with m running through 1, . . . , [N2 ] for N odd and 1, . . . , [N−1
2 ] for N even.

Thus σdisc(H) is always nonempty, in particular, H has a single negative
eigenvalue for N = 3, 4 which is equal to −3 and −1, respectively.

P.E., M. Tater: Quantum graphs with vertices of a preferred orientation, Phys. Lett. A382 (2018), 283–287.
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The on-shell S-matrix

We have mentioned already that S(k) = k−1+(k+1)U
k+1+(k−1)U .

It might seem that transport becomes trivial at small and high energies,
since limk→0 S(k) = −I and limk→∞ S(k) = I .

However, caution is needed; the formal limits lead to a false result if
+1 or −1 are eigenvalues of U. A counterexample is the (scale invariant)
Kirchhoff coupling where U has only ±1 as its eigenvalues; the on-shell
S-matrix is then independent of k and it is not a multiple of the identity

A straightforward computation yields the explicit form of S(k): denoting
for simplicity η := 1−k

1+k we have

Sij(k) =
1− η2

1− ηN
{
−η 1− ηN−2

1− η2
δij + (1− δij) η(j−i−1)(modN)

}
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The role of vertex degree parity
This suggests, in particular, that the high-energy behavior, η → −1−,
could be determined by the parity of the vertex degree N

In the cases with the lowest N we get

S(k) =
1 + η

1 + η + η2

 − η
1+η

1 η

η − η
1+η

1

1 η − η
1+η


and

S(k) =
1

1 + η2


−η 1 η η2

η2 −η 1 η

η η2 −η 1

1 η η2 −η


for N = 3, 4, respectively. We see that limk→∞ S(k) = I holds for N = 3
and more generally for all odd N, while for the even ones the limit is not
a multiple of identity. This is is related to the fact that in the latter case
U has both ±1 as its eigenvalues, while for N odd −1 is missing.

Let us look how this fact influences spectra of periodic quantum graphs.
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Comparison of two lattices

0
0 0

Spectral condition for the two cases are easy to derive,

16i ei(θ1+θ2) k sin k`
[
(k2 − 1)(cos θ1 + cos θ2) + 2(k2 + 1) cos k`

]
= 0

and respectively

16i e−i(θ1+θ2 k2 sin k`
(

3 + 6k2 − k4 + 4dθ(k2 − 1) + (k2 + 3)2 cos 2k`
)

= 0 ,

where dθ := cos θ1 + cos(θ1 − θ2) + cos θ2 and 1
` (θ1, θ2) ∈ [−π

` ,
π
` ]2 is the

quasimomentum. They are tedious to solve except the flat band cases,
sin k` = 0, however, we can present the band solution in a graphical form

P.E., M. Tater: Quantum graphs with vertices of a preferred orientation, Phys. Lett. A382 (2018), 283–287.
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A picture is worth of thousand words

For the two lattices, respectively, we get (with ` = 3
2 , dashed ` = 1

4 )
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Comparison of the gap structure of the two lattices reveals the role of
vertex degree parity clearly.
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An interpolation

One can interpolate between the δ-coupling and the present one taking
e.g., for U the circulant matrix with the eigenvalues

λk (t) =

 e−i(1−t)γ for k = 0;

− eiπt(
2k
n
−1) for k ≥ 1

for all t ∈ [0, 1], where n−iα
n+iα = e−iγ

. Taking, for instance, α = 0 and

−4(
√

2 + 1), respectively, we have the following spectral patterns
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P.E., O. Turek, M. Tater: A family of quantum graph vertex couplings interpolating between different symmetries,
J. Phys. A: Math. Theor. 51 (2018), 285301.
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Discrete symmetry: Platonic solid graphs
Topological properties of our vertex coupling can be manifested in
many other ways

. Consider, e.g., finite equilateral graphs consisting of
Platonic solids edges

Source: Wikipedia Commons

and assume the described coupling in the vertices. The corresponding
spectra are discrete but their high-energy behavior differs:

for tetrahedron, cube, icosahedron, and dodecahedron the square
roots of ev’s approach integer multiples of π with an O(k−1) error

octahedron also has such eigenvalues, but in addition it has two
other series: those behaving as k = 2πn ± 2

3π for n ∈ Z, and as
k = πn + 1

2π with with an O(k−2) error

no such distinction exists for more common couplings such as δ

P.E., J. Lipovský: Spectral asymptotics of the Laplacian on Platonic solids graphs, J. Math. Phys. 60 (2019), 122101
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Another periodic graph model

Let us look what this coupling influences graphs periodic in one direction

.
Consider again a loop chain, first tightly connected
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The spectrum of the corresponding Hamiltonian looks as follows:

Theorem

The spectrum of H0 consists of the absolutely continuous part which
coincides with the interval [0,∞), and a family of infinitely degenerate
eigenvalues, the isolated one equal to −1, and the embedded ones equal
to the positive integers.

M. Baradaran, P.E., M. Tater: Ring chains with vertex coupling of a preferred orientation, Rev. Math. Phys.,
to appear; arXiv:1912.03667
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A loosely connected chain
Replace the direct coupling of adjacent rings by connecting segments
of length ` > 0, still with the same vertex coupling.
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Theorem

The spectrum of H` has for any fixed ` > 0 the following properties:

Any non-negative integer is an eigenvalue of infinite multiplicity.
Away of the non-negative integers the spectrum is absolutely
continuous having a band-and-gap structure.
The negative spectrum is contained in (−∞,−1) consisting of a single
band if ` = π, otherwise there is a pair of bands and −3 6∈ σ(H`).
The positive spectrum has infinitely many gaps.
Pσ(H`) := limK→∞

1
K |σ(H`) ∩ [0,K ]| = 0 holds for any ` > 0.
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The limit `→ 0+

The quantity Pσ(H`) in the last claim of the theorem is the probability
of being in the spectrum introduced by

R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113
(2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what
happens if the the connecting links lengths shrink to zero. From the
general result derived in

G. Berkolaiko, Y. Latushkin, S. Sukhtaiev: Limits of quantum graph operators with shrinking edges,
Adv. Math. 352 (2019), 632–669.

we know that σ(H`)→ σ(H0) in the set sense as `→ 0+.

We have, however, obviously Pσ(H0) = 1, hence our example shows that
the said convergence may be rather nonuniform!
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One more example: transport properties

Consider strips cut of the following two types of lattices:

ℓ2

ℓ1

. . .

...

...

g1 g2 g3 g4 gN gN+1

f1 f2 f3 fN

ℓ2

ℓ2

ℓ1

ℓ3

g1

h1

f1

e1

g2

h2

f2

e2

g3

h3

f3

e3

gN

hN

fN

eN

hN+1

gN+1

. . .

...

...

In both cases we impose the ‘rotating’ coupling at the vertices

. By
Floquet decomposition we are able reduce the task to investigation of a
‘one cell layer’. We use the Ansatz aeikx + be−ikx for the wave functions
e, fj , gj , hj with the appropriate coefficients at the graphs edges

This time we ask in which part of the ‘guide’ are the generalized
eigenfunction dominantly supported
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Transport properties, continued

Theorem

In the rectangular-lattice strip, for a fixed K ∈
(
0, 1

2π
)
, consider k > 0

obeying k 6∈ ⋃n∈N0

(
nπ−K
`2

, nπ+K
`2

)
. With the natural normalization of the

generalized eigenfunction corresponding to energy k2, its components at
the leftmost and rightmost vertical edges are of order O(k−1) as k →∞.

In the ‘brick-lattice’ strip, consider momenta k > 0 such that

k 6∈
⋃

n∈N0

(
nπ − K

`1
,
nπ + K

`1

)
∪
⋃

n∈N0

(
nπ − K

`2
,
nπ + K

`2

)
∪
⋃

n∈N0

(
nπ − K

`3
,
nπ + K

`3

)
.

Adopting the same normalization as above and denoting by q
(m)
j with

m = 1, . . . , 8, the coefficients of wave function components for the edges
directed down and right from vertices of the jth vertical line, we have

q
(m)
j = O(k1−j) as k →∞.

P. Exner, J. Lipovský: Topological bulk-edge effects in quantum graph transport, Phys. Lett. A384 (2020), 126390

Remark: Note that the ‘brick-lattice’ strip is not a topological insulator!
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It remains to say

Thank you for your attention!
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