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Topological phases of matter
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» Berry connections and curvatures



Vector gauge fields vs tensor gauge fields

U(1) gauge theories
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Monopoles and topological invariants

Monopoles allow us to prove the quantization of the electric
charge.

The first and second Chern numbers characterize monopoles in
3D (Dirac monopole) and 5D (Yang monopole), respectively.

Tensor monopoles in 4D are characterized by the Dixmier-Douady
(DD) invariant (Murray, 1996).



3D Dirac monopoles

U(1) vector gauge field: A, — A, — J .

Curvature tensor: F,, = 0,A, — 0, A,.
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4D tensor monopoles

U(1) tensor gauge field: B, — B, + 0,8 — 0,&,.
Curvature tensor: H,,\ = 0,B,x + 0, By, + 0\B,uw.
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Berry connection

Bloch wavefunctions: |u(q)) = (u*(q), u*(q), ..., u™(q)) .

The gauge redundancy in a non-degenerate Bloch state is encoded
in the arbitrary phase in |u)

|u) = & @D|u),

where a(q) is a momentum-dependent function.
We can build an Abelian gauge connection in momentum space:

AJ' = i<u|8j|u>, Aj — AJ' — Bja

with 9; = g, while the gauge-invariant Berry curvature is given by

ij = 8J-Ak — 8kAj.



3D Weyl semimetals




Momentum-space Dirac monopole

Hzp = gxo™ + qyay + q.0%,

where g = (gx, gy, g;) are the momenta and ¢*¥>* are the Pauli
matrices.

In 3D Weyl semimetals, the Berry curvature of the Dirac monopole

is given by
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Tensor Berry connection

By = = €"°$,0;00k e,
where a, b, c = {1,2,3}.

Scalars can be complex or (pseudo-)real depending on their gauge
transformations

¢ — &g,
p — o+ o).
In our case, we consider the following scalars
pr=¢—>p+a(a), ¢2—e Wy g3 Vg,
such that
Bjk — Bjk + Nk,
Hjx = 0jBys + Ok Bjj + 0y Bjk.



4D topological semimetals

H(k) = diT x +d,T, + d.T, + dulw, (1)

with the four-component Bloch vector defined as

dy = 2Jsinky, d, = 2Jsink,, d, = 2Jsink,, )
dy = 2J(M — cos ky — cos k, — cos k, — cos ky, ).

with
F o9 Qo1 +ao1 ® oo, f =092®03+ao3 ooy,
F =090®02 +aor oy, FW—01®03+303®01

These matrices only satisfy the Clifford algebra for a = 0 (“Dirac
regime”). When a # 0, the Hamiltonian (1) supports spin-3/2-like

quasiparticles (birefringent fermions).



Monopole-to-monopole phase transition

For a = 0 we have a Z, monopole protected by CP symmetry.

O<ax<l
w=1,DD=0 DD =1
E(k) = +(1+a)\/d2 + d2 + d2 + 02, (3)

For 2 < M < 4 and a # 0, there exists a single pair of Dirac-like
cones in the first Brillouin zone (BZ) separated along the k,, axis
and located at K1 = (0,0, 0, & arccos k) with kp, = M — 3.



DD =, / dg/ A dg* A dg' 21:2 s (4)
where
%fk/ = 8181?/ + akB/? + a/Bﬂ(’ (5)

denotes the 3-form Berry curvature associated with the n-th
eigenstate |up(q)). Only the two lowest bands (n=1,2) contribute
to the DD invariant, as required by the half-filling condition.
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where u} denotes the components of |uj,).



3D boundary states
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Parity magnetic effect and topological currents

we introduce the dipolar momentum b, which denotes the
separation of the two monopoles in momentum space, with vector
b= (K+— K_)/2, and in energy with offset 2b;.

Het = kiG' — b, G}, (7)

where i = x,y,z,w and u = t, x,y,z, w.
By implementing a Legendre transformation on Eq. (7), the action
can be written in terms of a first-order Lagrangian,

U061 = [ x50, - Fbw, ®)
By integrating out the fermion field, we obtain the effective action

Seff = —ijln det(l'ﬁ/“Du — '?Zbu)a (9)

where D,, = 0, — iA,, is the gauge covariant derivative.



Parity anomaly

This action can be regularized by employing the standard
Pauli-Villars method which consists in introducing a mass term
M) with M = m — ak?.

We determine the effective Chern-Simons action, by calculating a
one-loop triangle diagram

G vApo
Stop = 33 /d5 A7 b, ArD A, (10)
where G, = — [sgn(m) + sgn(«a)] /2 is the second Chern number.

Our massless Hamiltonian in the Dirac case, supports a reflection
symmetry along the w direction, namely

U7 H( ke, ky s kzy k) Up = H(ke, ky, kzy —ku), (11)

with U, = 02 ® og, which is broken at quantum level by the
Pauli-Villars mass regulator. This is the essence of the parity
anomaly for a = 0 (similar situation with the spin-3/2-like fermions
and the sublattice chiral symmetry).



Topological current

05 G
T 0A,  2m?
For simplicity, we consider the response of our system to a static
and uniform magnetic field (i.e. A,=xB* and A, ,+=0), and to
a simultaneous time-dependent modulation of the cones
separation, b,, =arccos[M(t) — 3]:
__Zﬁ(
This is the parity magnetic effect, where by, plays the role of an
effective axial gauge field.
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Conclusions

v

4D topological semimetals protected by chiral symmetry.

v

Monopole-to-monopole phase transition (Z, — Z).

v

Robust 3D edge states.

v

4D parity magnetic effect.



Experimental Observation of Tensor Monopoles

The three-level model proposed in " G.P. and N. Goldman, PRL
(2018)" has been recently implemented in superconducting qudits:

Experimental Observation of Tensor Monopoles with a Superconducting Qudit

Xinsheng Tan,! * Dan-Wei Zhang,?* T Danyu Li,! Xiaopei Yang,! Shuqing Song,! Zhikun
Han,! Yugian Dong,' Dong Lan,! Hui Yan,>? Shi-Liang Zhu,>%* and Yang Yu''!
! National Laboratory of Solid State Microstructures,
School of Physics, Nanjing University, Nanjing 210093, China
?Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,
GPETR Center for Quantum Precision Measurement and SPTE,
) South China Normal University, Guangzhou 510006, China
*Prontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China

ArXiv:2006.11770.

They have measured the DD invariant from the quantum metric
following " G.P. and N. Goldman, PRL (2018)".



