A CATEGORIFICATION OF THE TUBE ALGEBRA

ALEX BULLIVANT
UNIVERSITY OF LEEDS
A CATEGORIFICATION OF THE TUBE ALGEBRA

ALEX BULLIVANT
UNIVERSITY OF LEEDS

Based around work in Arxiv: 2006.06536 w. Delcamp
Motivation

- Application of higher category theory to physics
- Classification of phases of matter beyond Landau-Ginzburg symmetry breaking
- Phenomenology of such systems
- Applications to quantum information/computation
Topological phase of matter

* Equivalence class of gapped, local quantum many-body systems.

* Equivalence relation \Rightarrow Two systems in same topological phase if they share a common TQFT description of far infrared limit.
Physically:

* Example
 - Fractional quantum hall effect, Chern-Simons effective field theory

* Topological excitations
 - Anyons
 - Candidate physics for engineering fault-tolerant quantum computer. Topological protection from errors.
TQFT in a nutshell

Atiyah, TQFT is a symmetric monoidal functor

\[Z : (n+1) \text{Cob} \to \text{Vect} \]
TQFT in a nutshell

Atiyah, TQFT is a symmetric monoidal functor

\[Z : (n+1)\text{Cob} \rightarrow \text{Vect} \]

Essentially a set of rules

\[Z : M^n \rightarrow H(M^n) \quad \text{state-space} \]

\[Z : C : M^n \rightarrow M^n \rightarrow Z(C) : H(M^n) \rightarrow H(M^n) \]

\[\text{depends only on diffeomorphism class} \].
TQFT in a nutshell

Pros: nice concise theory ✓
Cons: lots of data required ×
 lack of phenomenology ×

- only tells us $H[M^3]$ as rep of $\text{MCG}(M^3)$
- nothing about excitations
- real materials have boundaries, only tells us about closed spatial materials
- not physically realisable TQFT ×
 and physically realisable TPM ×
- not necessarily local .
TQFT in a nutshell

Extended TQFT - addresses some of problems

\[Z(M^{n+1}) \in \mathbb{C} \]
\[Z(M^n) \in \text{Vect} \]
\[Z(M^{n-1}) \in 2\text{Vect} \]
\[\vdots \]
\[Z(*) \in n\text{Vect} \]

*provides notion of locality
TQFT in a nutshell

Extended TQFT - addresses some of problems

\[Z(M^{n+1}) \in \mathbb{C} \]
\[Z(M^n) \in \text{Vect} \]
\[Z(M^{n-1}) \in 2\text{Vect} \]
\[\vdots \]
\[Z(*) \in n\text{Vect} \]

- cobordism hypothesis
 - can reconstruct rest of g theory from point
TQFT in a nutshell

Extended TQFT - addresses some of problems

\[Z(M^{n+1}) \in \mathbb{C} \]
\[Z(M^n) \in \text{Vect} \]
\[Z(M^{n-1}) \in 2\text{Vect} \]

\[Z(*) \in n\text{Vect} \]

However: What do we assign to lower dim manifolds?

Cobordism hypothesis

Can reconstruct rest of theory from point
HAMILTONIAN MODELS OF TPM
local, lattice Hamiltonian schema
clearly pick spatial dimension n, then
for all triangulated n-manifolds M^Δ_n

1) $i_s: M^\Delta_n \rightarrow \mathbb{H}^3 \quad \text{set of classical field configurations}$

2) $H = \sum_{\Delta \in \text{Tri}(M^\Delta_n)} H_{\Delta}$ \quad Hamiltonian

where $H: \text{Span}_\mathbb{C} \times s: M^\Delta_n \rightarrow \mathbb{H}^3 \rightarrow \text{Span}_\mathbb{C} \times s: M^\Delta_n \rightarrow \mathbb{H}^3 \equiv V[M^\Delta_n]$

$H_{\Delta}: \mathbb{H}^3 \rightarrow \mathbb{C} \sum_{g} \phi(s, \ldots) \quad \phi$ \quad phase factor

- changes field configuration in local neighbourhood of g a vertex
Models for TPM

*Given exactly solvable LLHS

if \(A M^n \) w. triangulations \(M^\wedge_A, M^\sim_A \) s.t. \(\partial M^\wedge_A = \partial M^\sim_A \)

\[\exists \text{ unitary isomorphism s.t. } \Pi_{\Delta_0} U = U \circ \Pi_{\Delta_0} \text{ and } \Delta_0 \in \text{Int}(M^\wedge_A) \]

\[H[M^\wedge_A] \stackrel{U}{\longrightarrow} H[M^\sim_A] \stackrel{U}{\longrightarrow} H[M^\wedge_A] = H[M^\wedge_A] \stackrel{U \circ U}{\longrightarrow} H[M^\wedge_A] \]

- we say we have a topological lattice model

* such models expected to capture infrared limit effective field theory of condensed matter lattice models eg. TPM.
State-Sum TQFT

Given data of topological lattice model we can construct state-sum TQFT

Roughly: ssTQFT computes TQFT on simplicial model of space-time

To find ssTQFT we use unitary isomorphisms U to define partition on local balls of spacetime and glue to evaluate a full partition function.
Continuum theory

- Using colimit over all triangulations we can define $H(M^4)$ for closed M^3 via a colimit construction.
- Such construction defines continuum theory which can be lifted to Atiyah TQFT.
Folk lore: ssTQFT in 1-1-correspondence w. fully extended TQFT
Folk lore: ssTQFT in 1-1-correspondence w. fully extended TQFT

Assuming true =>

Question: What do our TLM/ssTQFT assign to lower dimensional manifolds

- How can we compute properties of lattice model from this vantage point?
TUBE ALGEBRAS
Tube algebras

So far given a TLM we showed how to define a Hilbert space $H[C_{M_0}]$ to a triangulated n-manifold.

- The idea of the tube algebra is to associate a "2-Hilbert space" to a triangulated $(n-1)$-manifold.

* In the following a (finite din) 2-Hilbert space := semisimple C-linear Abelian category.

(I won’t discuss category-od inner product structure but can be added!)
Tube algebra

\[H[\mathcal{O}] \times H[\mathcal{O}] \to H[\mathcal{O}] \to H[\mathcal{O}] \]

\[\ast \left(\begin{array}{c} h \\ \circ \end{array} \right) \to \begin{array}{c} g \\ \uparrow \end{array} = \begin{array}{c} g \\ \downarrow \end{array} \quad (\ast \text{- structure}) \]
Tube algebras

Let N_Δ be a triangulated $(n,1)$-manifold and ΔN_Δ a triangulation of $N \times I$.

$N \times I = \underbrace{N \times I}_{\sim}$

$(\eta,i) \sim (\eta,j)$ \quad $\forall (\eta,i),(\eta,j) \in \partial N \times I$

Example: $I \times I = \begin{pmatrix} (0,0) & (1,0) \\ (0,1) & (1,1) \end{pmatrix} = \bigcirc$

Example: $S^1 \times I = S^1 \times I = \text{cylinder}$
Tube algebras

ΔNΔ U ΔNΔ \rightarrow ΔNΔ U NΔ ΔNΔ \cong ΔNΔ

NΔ = I

NΔ = S
Tube algebra

Given the tube algebra on $\mathcal{H}[\Lambda_N^d]$ we define semisimple Abelian category $\text{Mod}(N_\Lambda)$ as category of $\mathcal{H}[\Lambda_N^d]$ modules.

$\text{Mod}(N_\Lambda)$ = 2-Hilbert space we associate to triangulated (n-1)-manifold N_Λ.
Given the tube algebra on $\mathcal{H}[\Delta N_a]$ we define the semisimple Abelian category $\text{Mod}(N_a)$ as the category of $\mathcal{H}[\Delta N_a]$ modules.

$\text{Mod}(N_a) = \mathcal{H}$-Hilbert space we associate to triangulated $(n, 1)$-manifold N_a.

Importantly $\text{Mod}(N_a) \cong \text{Mod}(N_{a'})$ (equivalence of ss. Abelian categories) for all $N_a, N_{a'}$ st. $\partial N_a = \partial N_{a'}$.

- this follows from Morita equivalence of $\mathcal{H}[\Delta N_a]$ and $\mathcal{H}[\Delta N_{a'}]$.

Tube algebra
Morita equivalence:

two equivalent definitions: two algebras A, B are Morita equivalent if

1) there exists an A-B-bimodule AQB and a B-A-bimodule BPA

$s.t.\ AQB \otimes_B BPA \cong A$

$BPA \otimes_A AQB \cong B$ isomorphic as A-A-bimodules
B-B-bimodules

2) $\text{Mod}(A)$ is equivalent to $\text{Mod}(B)$
Morita equivalence:

two equivalent definitions: two algebras A, B are Morita equivalent if

1) there exists an A-B-bimodule AQB and a B-A-bimodule BPA
\
s.t. $AQB \otimes_B BPA \cong A$
\
$BPA \otimes_A AQB \cong B$ — isomorphic as A-A-bimodules
\
B-B-bimodules

2) $\text{Mod}(A)$ is equivalent to $\text{Mod}(B)$

To see $H[\triangleangledown N_{\lambda}]$ is Morita to $H[\triangleangledown N_{\lambda}]$ we make following observations:

* $H[\bigtriangleup]\bigtriangleup[\bigtriangleup]$ defines a right $H[\bigtriangleup]\bigtriangleup[\bigtriangleup]$ and left $H[\bigtriangleup]\bigtriangleup[\bigtriangleup]$ module!

* $H[\bigtriangleup]\bigtriangleup[\bigtriangleup]$
\
$\otimes H[\bigtriangleup]\bigtriangleup[\bigtriangleup] \cong H[\bigtriangleup]\bigtriangleup[\bigtriangleup]$ as $H[\bigtriangleup]\bigtriangleup[\bigtriangleup]$ bimodules and similarly in other direction!
Crossing with circle

defn: the dimension of a category $\equiv \text{Nat}(\text{id}, \text{id})$

facts: * for an algebra A $\dim[\text{Mod}(A)] \cong Z(A)$ as commutative algebras
 * if A is Morita B $Z(A) \cong Z(B)$

$$\dim \text{Mod}(N_A) \equiv \dim \text{Mod}(N_{A'}) \cong \mathcal{H}(N_A \times S')$$

& isomorphism of Hilbert spaces

for all closed $(n.1)$-manifolds N

$$\mathcal{H}[\begin{array}{c} \infty \\ \infty \end{array}] \subset \mathcal{H}[\begin{array}{c} \infty \\ \infty \end{array}]$$

identify boundary + H operators on "gluing seam"
CATEGORIZED TUBE ALGEBRAS
(and some physics...)
Given a monoidal category C an algebra (A,p) is an object $A \in C^0$ and morphism $p : A \otimes A \rightarrow A$ s.t. following commutes

$$(A \otimes A) \otimes A \xrightarrow{p \otimes A} A \otimes A \xrightarrow{p} A$$

$A \otimes (A \otimes A) \xrightarrow{A \otimes p} A \otimes A \xrightarrow{p} A$$
2-Algebra

Given a monoidal bicategory B a 2-algebra (A, p, Q) is an object $A \in B$, a morphism $p : A \otimes A \to A$ and 2-morphism

$$(A \otimes A) \otimes A \xrightarrow{p \otimes A} A \otimes A \xrightarrow{p} A$$

$satisfying some coherence data...$
2-Algebra

Given a monoidal bicategory B a 2-algebra (A, p, Q) is an object $A \in B$, a morphism $p : A \otimes A \rightarrow A$ and 2-morphism

\[
\begin{array}{ccc}
(A \otimes A) & \xrightarrow{p \otimes A} & A \otimes A \\
\downarrow & & \downarrow p \\
A \otimes (A \otimes A) & \xrightarrow{Q} & A
\end{array}
\]

satisfying some coherence data...

* example in $2Vect$ (Bicategory of Vect-Module categories) are tensor categories

* semisimple 2-algebras in $2Vect$ are multifusion categories

see e.g. EGNO, Douglas+Reutter 1812.11933
Categorified tube algebras

* semisimple 2-algebra in 2Vect, multifusion categories.

* Let O_Δ be a closed triangulated $(n-2)$-monoidal eg $n = 2$

* Can define $\text{Mod}(O_\Delta \times I)$ eg $\text{Mod}(\cdot \otimes \cdot)$ $n=2$

* want to define linear monoidal structure

\[\boxtimes : \text{Mod}(O_\Delta \times I) \boxtimes \text{Mod}(O_\Delta \times I) \to \text{Mod}(O_\Delta \times I) \]

\[\Rightarrow \text{Categorified tube algebra for } O_\Delta \]
Categorified tube algebra for x in 2+1D

$\text{Mod}(\rightarrow) \boxtimes \text{Mod}(\rightarrow) \rightarrow \text{Mod}(\rightarrow)$

$\otimes_{s,s'} \tilde{S}_{s,s}' \otimes_{M_1 M_2} \mathcal{H}^* [\langle \rangle] \rightarrow \circ_{\mathcal{H}}$

* action on morphisms similarly defined
Categorified tube algebra for $*$ in $2+1D$

$\text{Mod}(\rightarrow) \boxtimes \text{Mod}(\rightarrow) \rightarrow \text{Mod}(\rightarrow)$

$\otimes_s x \otimes_t \rightarrow \bar{S}_{st}$

$\text{H}^*[\langle \rangle]$?

Induced from Mod Cat^N.

$\Rightarrow \text{Mod}(\rightarrow) \rightarrow \otimes_s \otimes_t$.

- Action on morphisms similarly defined
- Now we have a natural choice for associator

triangulation change defines module intertwiner. Triangulation of partition function guarantees solution to pentagon equation.

*unit + dualisability are consequences of existence of 2-inner product
Examples

$\Omega_\Delta = *$ in 2+1D THT GT with $G = (\mathbb{C} : E \to G, \triangleright)$

let \tilde{G} denote corresponding monoidal groupoid

$[\tilde{G}, \text{Vect}]^\otimes = \text{multifusion cat of monoidal functors + monoidal nat trans}$

$\Omega_\Delta = *$ in 2+1D TGT theory $\cong \text{Vect}_G^\otimes$, multifusion cat of G-graded vector spaces

Now we define

$\text{MOD}(\Omega_\Delta) = \text{bicategory of } \text{Mod}^\otimes(\Delta_0 \Delta)$ - module categories, nat-trans, modifications

\cong 3-Hilbert space assigned to \mathcal{N}_Δ

$\Rightarrow \text{MOD}(\star)$ in 2+1D THT GT $\cong 2\text{Rep}(G)$
and some physics...

- How can we interpret $\text{MOD}(\#)$?

ob morphism

2-morphisms define fusion
Defn: Dimension of bicategory \(\equiv\) braided monoidal category of pseudo-natural transformations of identity bimodule

\[
\dim \text{MOD}(O_A) \equiv \text{Mod}^{\otimes, \otimes}(O_A \times S') \cong \mathbb{Z}[\text{Mod}^{\otimes} (O_A \times I)]
\]

\[
\dim \text{MOD}(\times) \equiv \mathbb{Z}[\text{Mod}(\otimes) \otimes] \leftarrow \text{Drinfeld center}
\]

\(\Rightarrow\) algebraic data of anyons w. fusion + braiding
and some more physics...

In 3+1D $\text{MOD}(S')$

[for DW theory see 2006.06536 w. Donnelly]
and some more physics...

In 3+1D $\text{MOD}(S')$

$\dim[\text{MOD}(S')] \cong \text{Mod}(S' \times S')$ and describes closed loop excitations with braiding and fusion!

(coming soon w. Delcamp)
Thanks for listening!
Algebras and chunks of space

\[\mathcal{B} \simeq \mathcal{B} \]

\[\mathcal{P}_{\mathcal{B}} \subseteq \mathcal{H} \left[\begin{array}{c} \mathcal{B} \end{array} \right] \]
Modules and chunks of space

$\text{(M} \otimes \text{B}) \otimes \text{B} \xrightarrow{\alpha_{M,B,B}} \text{M} \otimes (\text{B} \otimes \text{B})$
Bimodules and chunks of space

\[A \otimes \left[A \otimes (M \otimes B) \right] \otimes B \]

\[\downarrow \quad A \otimes \phi_A, M \otimes B, B \]

\[A \otimes \left(A \otimes \left[(M \otimes B) \otimes B \right] \right) \]

\[\downarrow \quad A \otimes (A \otimes \phi_M, B, B) \]

\[A \otimes \left(A \otimes \left[M \otimes (B \otimes B) \right] \right) \]

\[\downarrow \quad A \otimes (A \otimes (M \otimes P_B)) \]

\[A \otimes (A \otimes (M \otimes B)) \]

\[\phi_A, A, M \otimes B \]

\[(A \otimes A) \otimes (M \otimes B) \]

\[m_A \otimes (M \otimes B) \]

\[A \otimes (M \otimes B) \]
Bimodules and chunks of space

\[(A \otimes M) \otimes B \rightarrow M \otimes B\]

\[\alpha_{A,M,B}\]

\[A \otimes (M \otimes B) \rightarrow A \otimes M\]

\[A \otimes M_B\]
- boundary tube algebra

\[A \rightarrow M \rightarrow B \rightarrow A \]

\[P_A \rightarrow M \rightarrow P_B \]

- described renormalization properties for boundary excitations. Rep \(\rightarrow\) excite