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Painlevé equations

The Painlevé equations are second-order differential equations
whose only movable singularities are poles
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Their solutions provide examples of special functions beyond
abelian integrals.



Hamiltonian description

The Painlevé equations have a Hamiltonian description on C2 with
canonical coordinates (q, p)

The Painlevé I equation q′′ = 6q2 + t has Hamiltonian
H = −p2 + q3 + tq

q′ = −∂H
∂p

= 2p p′ =
∂H

∂q
= 3q2 + t

After a rational (PI , PII , PIV ), trigonometric (PIII , PV ) or elliptic
(PVI ) transformation of the time variable, all have the form of a
particle moving in a time-dependent potential.

We need to compactify C2 to account for solutions with poles.
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Spaces of initial conditions

The required compactification is the complement of an
anti-canonical divisor of the projective plane blown-up in nine
(infinitely near) points.
The canonical holomorphic symplectic form extends to have poles
(with multiplicities) on the anti-canonical divisor
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The Hamiltonian dynamics of the Painlevé equations can be
recovered from (the) locally trivial deformation of the pair.



Limit to rational elliptic surfaces

We can give an autonomous limit of the Painlevé equations by
introducing a scaling parameter λ multiplying instances of t in the
Hamiltonian
In the limit λ→ 0, we find a fast dynamics which limits to a flow
around tori.

For example, the limit of Painlevé I is solved by the usual
Weierstrass p-function

(p′)2 = p3 + cp + H

Geometrically, the space of initial conditions limits to a rational
elliptic surface by moving the ninth blow-up point so that all nine
points lie on a pencil of cubic curves
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Isomonodromy interpretation of Painlevé VI

Fuchs discovered the relationship of Painlevé VI to isomonodromic
deformations of connections in a rank 2 bundle over the
four-punctured sphere as we vary the complex structure.

For t ∈ P1\{0, 1,∞}, Painlevé VI is equivalent to the Schlesinger
equations
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for Ai = Ai (p, q, t) 2-by-2 traceless matrices.

Solutions of the Schlesinger equations define an isomonodromic
family of flat connections on the trivial rank 2 bundle on P1
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Isomonodromy for the other Painlevé equations

The remaining Painlevé equations have a similar interpretation as
isomonodromic deformations of connections with higher order
poles on the projective line.
The monodromy data must be taken to include Stokes data at the
higher-order poles, and the complex structure to include local data
at these points.

Solutions to Painlevé I describe a family of connections on the
projective line whose five Stokes matrices at the unique singular
point at ∞ are constant
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Character varieties

A moduli space of local systems with simple poles on the
four-punctured sphere is a classical character variety

Hom(π1(P1\{0, 1, t,∞}), SL2(C))//SL2
∼= SL3

2//SL2

Functions are given by traces of holonomies around loops on the
curve, and finitely many suffice to generate the coordinate ring.

Similar “wild” character varieties parameterise the monodromy
data of connections with higher order poles, e.g. for Painlevé I

((P1)5\∆)//SL(2,C)
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Cubic surfaces

The character varieties are all families of affine cubic surfaces

XYZ = f2(X ,Y ,Z ; a, b, c , . . . )

For example, Painlevé VI gives the Fricke-Klein family of cubic
surfaces

XYZ =X 2 + Y 2 + Z 2 + (ab + cd)X + (ac + bd)Y + (ad + bc)Z

+ (a2 + b2 + c2 + d2 + abcd − 4)

The three coordinate functions X , Y and Z correspond to traces
of loops around the three pants curves.
The coefficients a, b, c and d are given by traces around the four
simple loops.



Compactification of Painlevé VI

The affine cubic surfaces admit a compactification by a triangle of
lines, over which the holomorphic symplectic form extends with
simple poles.
For Painlevé VI, the resulting cubic surface is smooth for generic
values of the coefficients a, b, c, d .

The orthogonal complement to the triangle of lines defines a D4

sublattice of the Ẽ6 Picard lattice.

The 24 = 27− 3 lines in the interior represent partially reducible
local systems, which correspond to special ”truncated” solutions of
PVI .
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For Painlevé VI, the resulting cubic surface is smooth for generic
values of the coefficients a, b, c, d .

The orthogonal complement to the triangle of lines defines a D4

sublattice of the Ẽ6 Picard lattice.
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Compactification of the other Painlevé varieties

In the remaining cases, some of the intersections of the triangle of
lines at infinity meet at singular points of the cubic surface.
These surfaces can be realised by blowing up the projective plane
in six points in special position and blowing down effective
(-2)-curves.

The orthogonal complement to these (-2)-classes defines a
sublattice of the D4 lattice.

2A1

D4 A3 2A1 A1 A0

A2 A1



Compactification of the other Painlevé varieties
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Non-abelian Hodge and SYZ

The complements of the divisors in rational elliptic surfaces and
cubic surfaces are diffeomorphic, but not isomorphic as
holomorphic symplectic manifolds.

They belong to a one-dimensional family of holomorphic
symplectic manifolds, underlying a hyperkahler structure. This is
an example of the so-called non-abelian Hodge correspondence

{Higgs bundles} ↔ {Local systems}

Via hyperkahler rotation, we may view the elliptic fibration as
fibration by special Lagrangian tori, the input data for the SYZ
picture of mirror symmetry. We can reconstruct the cubic surface
from a scattering diagram drawn in the base of the fibration,
together with its coordinate functions as theta functions.
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Cohomological consequences

The middle cohomology of the complement of the singular fibre in
the rational elliptic surfaces is represented by an affine Dynkin
diagram, obtained as the orthogonal complement of the
components of the singular fibre in the Ẽ8 lattice

2Ã1

D̃4 Ã3 2Ã1 Ã1 Ã0

Ã2 Ã1

The complement to the class of a section is a sublattice isomorphic
to the lattice corresponding to the respective finite Dynkin
diagram.
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Quivers

We can associate a mutation-equivalence class of quivers to each
of the Painlevé equations.

Ã3 Ã2 Ã1

˜̃D4 D̃4 D̃3 A3 A2

D4 D3

The mutation equivalence classes each contain a quiver of Dynkin,
affine Dynkin or elliptic Dynkin type, in correspondence with the
rational, trigonometric and elliptic types of the Painlevé equations.



Stability conditions

The bases of the elliptic fibrations have interpretations as a slice of
the space of stability conditions of a Calabi-Yau-3 category
associated to the quiver.

The central charge is computed by integrating a meromorphic
1-form along loops in the fibres, whose exterior derivative is the
holomorphic symplectic form.

Z (S) =

∫
α

√
z3 + cz + Hdz

The scattering diagram from this perspective is understood through
counts of stable objects of a a given phase, and the theta functions
can be computed via counts of stable objects of a framed quiver.
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Cluster varieties

The total spaces of the families of affine cubic surfaces are
isomorphic in codimension two to the cluster X -variety of the
corresponding quiver.
The scattering diagram can be produced by an iterative process
from the data of the quiver and an atlas of toric charts with
certain birational maps as transition functions.

The natural functions on the character varieties can be written in
any chart as Laurent polynomials in Fock-Goncharov coordinates,
which are holonomies of C∗-local systems on the fibres of the
elliptic fibration.
It is expected that this abelianisation procedure provides an
expression for the theta functions.
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Scattering diagrams

Scattering diagrams for the Painlevé surfaces have (at most) three
incoming rays, corresponding to the three lines at infinity.

Can express the three theta functions as Laurent polynomials via
counting broken lines (cf X, Y, Z in Fock-Goncharov coordinates)

Can compute products of theta functions via counts of tropical
curves (cf cubic equation satisfied by X, Y, Z)
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Painlevé I

XYZ = X + Y + 1 X = x Y = y Z =
1 + x + y

xy
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Theta functions for Painlevé VI

In “The mirror of the cubic surface” we find the equation

ϑXϑYϑZ = ϑ2X + ϑ2Y + ϑ2Z + (
∑
L∩D1

zL)ϑX + (
∑
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zL)ϑY + (
∑
L∩D3

zL)ϑZ

+ (
∑
α∈D4

zα − 4)
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The sums are over lines meeting a given component Di of the
boundary respectively roots of the D4 lattice, which correspond
bijectively with tropical curves.
After appropriate identifications, this recovers the Fricke-Klein
family.
An analogous result holds for the remaining Painlevé surfaces.



Further Directions

I A uniform treatment

I Homological mirror symmetry

I Schottky uniformisation

I Non-abelian theta functions

I Higher dimensions

I Quantisation
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