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Neumann eigenvalue problem

⌦ ⇢ Rn bounded, Lipschitz domain, p > 1
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��pu = µ|u|p�2u in ⌦

@u
@⌫⌦

= 0 on @⌦

It is well-known that the first nontrivial eigenvalue can be variationally
characterized as

µ1,p(⌦) = min
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Z
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: ' 2 W 1,p(⌦) \ {0},
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⌦

|'|p�2' = 0

9
>>=

>>;

and µ1,p(⌦)1/p coincides with the best constant in the Poincaré-Wirtinger
inequality

C⌦,p inf
t2R

||'� t||p  ||D'||p, ' 2 W 1,p(⌦).
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The Szegő-Weinberger inequality (1954, 1956)

Since exact values of µ1,p(⌦) are known only for specific values of p and special
domains ⌦, it is natural to look for (sharp) estimates for µ1,p(⌦) in terms of
(simple) geometric quantities such as measure, perimeter, diameter and so on.

Unfortunately, as is well-known, many di�culties arise in estimating µ1,p(⌦).
One reason for this is the lack of monotonicity of eigenvalues with respect to
set inclusion. Another is the fact that eigenfunctions corresponding to µ1,p(⌦)
must change sign, and localizing the nodal line seems to be a hard problem.

The most celebrated example is the Szegő-Weinberger inequality (p = 2):

(SW) µ1,2(⌦)|⌦|2/n  µ1,2(B)|B|2/n,

equality holding if and only if ⌦ is a n-dimensional ball B.

We recall that the proof of (SW) crucially exploits some peculiarities of the
Laplacian, like linearity and the knowledge of the explicit form of eigenfunctions
on balls. Its validity is still an open problem for p 6= 2.
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A remark on the Szegő-Weinberger inequality

We recall that when n = 2, (SW) inequality can be sharpened. Namely,
Weinberger noticed that Szegő’s proof gives

(1)
1
|⌦|

✓
1

µ1,2(⌦)
+

1
µ2,2(⌦)

◆
� 1

|B|

✓
1

µ1,2(B)
+

1
µ2,2(B)

◆

for every simply connected domain, where B is any open disc and µ2,2 means
the second nontrivial Neumann eigenvalue.
By recalling that for a disc µ1,2 = µ2,2, (1) immediately implies (SW) for simply
connected sets in R2.
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for every simply connected domain, where B is any open disc and µ2,2 means
the second nontrivial Neumann eigenvalue.
By recalling that for a disc µ1,2 = µ2,2, (1) immediately implies (SW) for simply
connected sets in R2.

Remark

A quantitative improvement of (1) was made by Nadirashvilli in 1997 (see also
[Brasco - de Philippis, 2016]). He proved that there exists a constant C > 0 such
that for every smooth simply connected open set ⌦ ⇢ R2 we have
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◆
� CA(⌦)

where A(⌦) is the Fraenkel asymmetry of ⌦.
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for every simply connected domain, where B is any open disc and µ2,2 means
the second nontrivial Neumann eigenvalue.
By recalling that for a disc µ1,2 = µ2,2, (1) immediately implies (SW) for simply
connected sets in R2.

Remark

Inequality (1) in turn can be sharpened. Indeed, Hersch and Monkewitz in 1971
have shown that there exists a constant c > 0 such that for every simply
connected open set ⌦ ⇢ R2 we have
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A remark on the Szegő-Weinberger inequality

We recall that when n = 2, (SW) inequality can be sharpened. Namely,
Weinberger noticed that Szegő’s proof gives
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for every simply connected domain, where B is any open disc and µ2,2 means
the second nontrivial Neumann eigenvalue.
By recalling that for a disc µ1,2 = µ2,2, (1) immediately implies (SW) for simply
connected sets in R2.

Remark

For a general sharp quantitative version of (SW) we have to wait until 2012,
when Brasco and Pratelli proved that, if ⌦ ⇢ Rn is a connected, open set with
Lipschitz boundary, then

µ1,2(B)|B|2/n � µ1,2(⌦)|⌦|2/n

µ1,2(B)|B|2/n � cnA(⌦)2.
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By recalling that for a disc µ1,2 = µ2,2, (1) immediately implies (SW) for simply
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Remark

The higher dimensional analogue of (1), conjectured by Ashbaugh-Benguria in
1993, would be
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,

but its validity is still an open problem. Recently, in 2018, Wang and Xia proved
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The Payne-Weinberger inequality (1960)

⌦ ⇢ Rn convex, bounded domain, p = 2
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>:

��u = µu in ⌦

@u
@⌫⌦

= 0 on @⌦

W

(PW) µ1,2(⌦) �
⇡2

diam(⌦)2

Remarks.

1. (PW) is sharp since µ1,2(⌦)diam(⌦)2 goes to ⇡2 for a parallelepiped all
but one of whose dimensions shrink to zero.

2. The convexity assumption cannot be relaxed. It is enough to consider the
classical example of a planar domain made by two equal squares connected
by a thin corridor.
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The Payne-Weinberger inequality (1960)

⌦ ⇢ Rn convex, bounded domain, p = 2
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>:

��u = µu in ⌦

@u
@⌫⌦

= 0 on @⌦

W

(PW) µ1,2(⌦) �
⇡2

diam(⌦)2

Remarks.

3. Generalizations of (PW) can be found, for example, in [Acosta - Duran 2003],

[V. Ferone - Nitsch - Trombetti 2012], [Esposito - Nitsch - Trombetti 2013], [Valtorta 2012],

[Esposito - Kawohl - Nitsch - Trombetti 2015], [Rossi - Saintier 2016], [Della Pietra -

Gavitone - Piscitelli 2017].
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A lower bound for µ1,p

We allow the set to be non-convex and in place of the diameter our estimate
will involve Kn(⌦), the best isoperimetric constant relative to ⌦, that is

Kn(⌦) = inf
E⇢⌦

P⌦(E)
(min{|E |, |⌦ \ E |})1�1/n

.

Theorem

Let ⌦ be a bounded, Lipschitz domain of Rn. Then

(2) µ1,p(⌦) � 2p/n
✓

Kn(⌦)
Kn(Rn)

◆p

�1,p(⌦
]),

where �1,p(⌦]) is the first Dirichlet eigenvalue of ��p in the ball ⌦] having
the same measure as ⌦.
Furthermore (2) is sharp at least in the case n = p = 2.

Kn(Rn
) = n!1/n

n
classical isoperimetric constant

!n = |B1|
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A remark

Let  p(r) > 0 be a solution to the following Sturm-Liouville problem

8
<

:

�(p � 1)
�� 0

p

��p�2
 00

p � n�1

r

�� 0
p

��p�1
=  p�1

p in (0, p)

 0
p(0) =  p( p) = 0.
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A remark

Let  p(r) > 0 be a solution to the following Sturm-Liouville problem

8
<

:

�(p � 1)
�� 0

p

��p�2
 00

p � n�1

r

�� 0
p

��p�1
=  p�1

p in (0, p)

 0
p(0) =  p( p) = 0.

Clearly, when p = 2,  p(r) coincides with r 1�n/2Jn/2�1,1 and  p is the first
positive zero jn/2�1,1 of the Bessel function of the first kind Jn/2�1,1.
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A remark

Let  p(r) > 0 be a solution to the following Sturm-Liouville problem

8
<

:

�(p � 1)
�� 0

p

��p�2
 00

p � n�1

r

�� 0
p

��p�1
=  p�1

p in (0, p)

 0
p(0) =  p( p) = 0.

Estimate (2) can be rewritten as

µ1,p(⌦) � 2p/n
Kn(⌦)

p

|⌦|p/n

✓
 p

n

◆p

.

When p = n = 2:

µ1,2(⌦) � 2
K2(⌦)2

|⌦|

✓
j0,1
2

◆
2

j0,1 first zero of the Bessel

function of the first kind J0
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A special class of planar domains

If ⌦ ⇢ R2 is convex and it is symmetric about a point, then (see [Cianchi ’89])

K2(⌦)
2 =

2w(⌦)2

|⌦| ,

where w(⌦) stands for the width of ⌦. In this case

µ1,2(⌦) � j20,1
w(⌦)2

|⌦|2

If ⌦ satisfies

|⌦| < j0,1
⇡

w(⌦)diam(⌦)

✓
j0,1
⇡

⇡ 0.7655

◆
,

we get

µ1,2(⌦) �
⇡2

diam(⌦)2
(1 + �(⌦)) ,

with �(⌦) =
⇣

j0,1w(⌦)diam(⌦)

⇡|⌦|

⌘
2

� 1 > 0.
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Example

In the class of rhombi with side 1 and acute angle �, condition

|⌦| < j0,1
⇡

w(⌦)diam(⌦)

✓
j0,1
⇡

⇡ 0.7655

◆
,

is satisfied if

cos
�
2
>

⇡
2j0,1

⇡ 0.6532.

This last condition is always fulfilled since �
2
< ⇡

4
.

Optimality for n=p=2

Consider a rhombus R� of side 1 and acute angle �

�

K2(R�) =
p
2 sin � [Cianchi í89]

What happens to u1 as � goes to 0+?

F. Chiacchio (Univ. di Napoli ìFederico IIî) Nonlinear Neumann Eigenvalues ICNODEA 2015 15 / 22
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µ1,p(⌦) � 2
p/n Kn(⌦)

p

|⌦|p/n

⇣
 p

n

⌘p

: main steps of the proof

Let u1 be an eigenfunction corresponding to µ1,p(⌦) such that

|⌦+| =
��supp

�
u+

1

���  |⌦|
2

.

1. We first prove a reverse Hölder inequality for u+

1
. Namely, we show that

||u+

1 ||Lq(⌦)  C ||u+

1 ||Lr (⌦), 0 < r < q < +1,

where C = C (n, p, q, r ,Kn(⌦), µ1,p(⌦)) > 0 is explicitly given.

2. From the above inequality we deduce the lower bound for µ1,p.

3. Finally we prove that such a bound is sharp, for n = p = 2, by considering
a sequence of rhombi R�m having side 1 and acute angle �m = 2⇡

m
(m > 4).
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Step 3: optimality for n=p=2

Consider a rhombus R� having side 1 and acute angle �

Optimality for n=p=2

Consider a rhombus R� of side 1 and acute angle �

�

K2(R�) =
p
2 sin � [Cianchi í89]

What happens to u1 as � goes to 0+?

F. Chiacchio (Univ. di Napoli ìFederico IIî) Nonlinear Neumann Eigenvalues ICNODEA 2015 15 / 22

µ1,2(R�) is simple [Banuelos - Burdzy ’99, Jerison-Nadirashvili ’00, Atar - Burdzy ’04]

+
The nodal line cannot enclose a subdomain
=) The nodal line of u1 has just two possibilities
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Optimality for n=p=2

Consider a rhombus R� of side 1 and acute angle �

�

K2(R�) =
p
2 sin � [Cianchi í89]

What happens to u1 as � goes to 0+?

F. Chiacchio (Univ. di Napoli ìFederico IIî) Nonlinear Neumann Eigenvalues ICNODEA 2015 15 / 22

µ1,2(R�) is simple [Banuelos - Burdzy ’99, Jerison-Nadirashvili ’00, Atar - Burdzy ’04]

+
The nodal line cannot enclose a subdomain
=) The nodal line of u1 has just two possibilities

The nodal line is one of the two diagonals

µ1(R�) is simple

[Banuelos - Burdzy í99, Jerison-Nadirashvili í00, Atar - Burdzy í04]
+

The nodal line cannot enclose a subdomain
+

The nodal line of u1 has just two possibilities

Case 1 Case 2

F. Chiacchio (Univ. di Napoli ìFederico IIî) Nonlinear Neumann Eigenvalues ICNODEA 2015 16 / 22
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The nodal line of u1

Proposition

Case 2 occurs: the nodal line of u1 is the shortest diagonal for each � 2 (0, �̃),
where �̃ is the unique zero in (0,⇡/2) of the function g(�) = sin �

cos2(�/2)
+ � � ⇡

⇣
�̃ ' 1.4209

⌘
.

We consider a sequence of rhombi with acute angles �m = 2⇡
m

(m > 4) and side
1. Then

µ1,2(R�m ) = �DN

1,2 (T�m )
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𝐴௠ 

𝐵௠ 

𝐷௠ 

݉ 𝑆ᇱ 𝑆ᇱᇱ ݉ 
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Step 3: optimality for n=p=2

j20,1 = �DN

1,2 (S
00
m )  �DN

1,2 (T�m )  �DN

1,2 (S
0
m) =

j20,1
cos2

�
�m
2

�

Hence
lim

m!+1
µ1,2(R�m ) = lim

m!+1
�DN

1,2 (T�m ) = j20,1.

On the other side our estimate reads as

µ1,2(R�m ) � 2

✓
K2(R�m )

2
p
⇡

◆
2

�1,2(R
]
�m

) = 2

✓p
2 sin�m
2
p
⇡

◆2 ⇡j20,1
sin�m

= j20,1.
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Step 1: a reverse Hölder inequality

Proposition

Let u1 be an eigenfunction corresponding to µ1,p(⌦) and 0 < r < q. There
exists a positive constant C = C(n, p, q, r , µ1,p(⌦),Kn(⌦)) such that

||u+

1 ||Lq(⌦)  C ||u+

1 ||Lr (⌦).

Actually

C =
||v1||Lq(BR )

||v1||Lr (BR )

,

where v1 is any eigenfunction of the following Dirichlet eigenvalue problem in

BR corresponding to �1,p(BR) =
⇣

n!
1/n
n

Kn(⌦)

⌘p

µ1,p(⌦), i.e.

8
<

:

��pv1 = �1,p(BR)v1 in BR

v1 = 0 on @BR .
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Reverse Hölder Inequalities imply estimates for Dirichlet eigenvalues

⇢
��w1 = �1,2(⌦)w1 in ⌦
w1 = 0 on @⌦

When q = 2 and r = 1, [Payne-Rayner ’73] n = 2

||w1||L2(⌦) 
r
�1,2(⌦)

4⇡
||w1||L1(⌦)

When n � 2, if q ! 1 and r ! 0+ in the Chiti’s inequality (1982)

||w1||Lq(⌦) 
||z1||Lq(BR )

||z1||Lr (BR )

||w1||Lr (⌦)

we get

�1,2(⌦) �
!2/n
n j2

n/2�1,1

|⌦|2/n = �1,2(⌦
])
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Reverse Hölder Inequalities imply estimates for Dirichlet eigenvalues

⇢
��w1 = �1,2(⌦)w1 in ⌦
w1 = 0 on @⌦

When q = 2 and r = 1, [Payne-Rayner ’73] n = 2, [Kohler-Jobin ’77] n � 2:

||w1||L2(⌦) 
�1,2(⌦)n/4p
2n!n j

n/2�1

n/2�1,1

||w1||L1(⌦) ) �1,2(⌦) �
 
2n!n j

n�2

n/2�1,1

|⌦|

!2/n

When n � 2, if q ! 1 and r ! 0+ in the Chiti’s inequality (1982)

||w1||Lq(⌦) 
||z1||Lq(BR )

||z1||Lr (BR )

||w1||Lr (⌦)

we get

�1,2(⌦) �
!2/n
n j2

n/2�1,1

|⌦|2/n = �1,2(⌦
])

j
n/2�1,1 is the first positive zero of the Bessel function J

n/2�1,1

!n =
��B1

��
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n/2�1,1 is the first positive zero of the Bessel function J

n/2�1,1
BR is the ball with the same first Dirichlet eigenvalue as ⌦

!n =
��B1

��
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Step 2: eigenvalue estimate

||u+

1 ||Lq(⌦) 
||v1||Lq(BR )

||v1||Lr (BR )

||u+

1 ||Lr (⌦)

Höld. Ineq.)
��⌦+

�� 1q � 1

r 
||v1||Lq(BR )

||v1||Lr (BR )

We choose

v1(x) =  p

 ✓
µ1,p(⌦)
↵

◆
1/p

|x |
!
,

where ↵ =
⇣

Kn(⌦)

n!
1/n
n

⌘p

and  p is the solution to

8
<

:

�(p � 1)| 0
p|p�2 00

p � n�1

r
| 0

p|p�1 =  p�1

p in (0, p)

 0
p(0) =  p( p) = 0,

normalized in such a way that  p(0) = 1.
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Step 2: eigenvalue estimate

||v1||Lq(BR )

||v1||Lr (BR )

=

 
n!n

Z
R

0

tn�1 p

 ✓
µ1,p(⌦)
↵

◆
1/p

t

!q

dt

!1/q

 
n!n

Z
R

0

tn�1 p

 ✓
µ1,p(⌦)
↵

◆
1/p

t

!r

dt

!1/r

= (n!n)
1/q�1/r

✓
↵

µ1,p(⌦)

◆n/(pq)�n/(pr)

✓Z  p

0

tn�1 p(t)
qdt

◆1/q

✓Z  p

0

tn�1 p(t)
rdt

◆1/r

+

|⌦+|
1

q
� 1

r 
||v1||Lq(BR )

||v1||Lr (BR )
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Step 2: eigenvalue estimate

W

µ1,p(⌦) � ↵

✓
n!n

|⌦+|

◆p/n

✓Z  p

0

tn�1 p(t)
rdt

◆pq/n(q�r)

✓Z  p

0

tn�1 p(t)
qdt

◆pr/n(q�r)

Setting

f (s) =

 R  p

0
tn�1 p(t)sdt
R  p

0
tn�1dt

!1/s

=

✓
n
 n

p

Z  p

0

tn�1 p(t)
sdt

◆1/s

,

and recalling that |⌦+|  |⌦|/2, we get

µ1,p(⌦) � ↵

✓
2!n

|⌦|

◆ p

n

✓
f (r)
f (q)

◆ pqr

n(q�r)

 p

p .
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Step 2: eigenvalue estimate

µ1,p(⌦) � ↵

✓
2!n

|⌦|

◆ p

n

✓
f (r)
f (q)

◆ pqr

n(q�r)

 p

p .

It is easy to check that

sup
0<r<q

✓
f (r)
f (q)

◆pqr/n(q�r)

= 1

W
µ1,p(⌦) � 2p/n↵

 p

p

✓
|⌦|
!n

◆p/n

↵ =
⇣

Kn(⌦)

n!
1/n
n

⌘p
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Comparison with Avinyo - Mora estimates

For any p � 2, our estimate

µ1,p(⌦) � 2p/n
Kn(⌦)p

|⌦|p/n

✓
 p

n

◆p

improves the following bound contained in [Avinyo and Mora ’98]

µ1,p(⌦) � 2p/n
Kn(⌦)p

|⌦|p/n

✓
n

p(n � 1)

◆p

To this aim it su�ces to verify that

 p >
n2

p(n � 1)
, p � 2, n � 2.

Indeed

 p � 2

p
jn/2�1,1 8p � 2 (Lindqvist ’90)

j2
n/2�1,1 >

n

2

�
n

2
+ 4

�
(Lorch ’93)

)  p >
n2

p(n � 1)
, p � 2, n � 2.
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A special class of non-convex planar domains

Let �(s) = (x(s), y(s)), s 2 [0, L], be a smooth, simple curve, such that

x(L� s) = �x(s), y(L� s) = y(s), s 2

0,

L
2

�
.

Let us consider the annular domain D consisting of the points on one side of �,
within a suitable distance � from �.

O x

y

�
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When µ1,2(D) has an odd eigenfunction?

Proposition

Suppose that � may be realized as the graph of a function. We denote by
⇧x(D) = (�P,P) the projection of D onto the x-axis. Let S(x) denote the
vertical cross sections of D, i.e., S(x) = {(ex , ey) 2 D : ex = x}, and define
S = max

x2[0,P)

|S(x)|. If

(3) S2 < P2

Z

D

sin2
⇣ ⇡
2P

x
⌘
dxdy

Z

D

cos2
⇣ ⇡
2P

x
⌘
dxdy

,

then

µ1,2(D) = µodd

1,2 (D).
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When µ1,2(D) has an odd eigenfunction?

Proposition

µ1,2(D) = µodd

1,2 (D)

if one of the following alternatives holds:

1) k(s) � 0 for all s 2 [0, L] and

max
s2[0,L]

�2(2 + �k(s))2 <
L2

⇡2

Z
L

0

✓Z �

0

cos2
⇣⇡
L
s
⌘
(1 + rk(s))dr

◆
ds

Z
L

0

✓Z �

0

sin2
⇣⇡
L
s
⌘ 1
1 + rk(s)

dr

◆
ds

;

2) k(s) < 0 for all s 2 [0, L] and

max
s2[0,L]

4�2

(1 + �k(s))2
<

L2

⇡2

Z
L

0

✓Z �

0

cos2
⇣⇡
L
s
⌘
(1 + rk(s))dr

◆
ds

Z
L

0

✓Z �

0

sin2
⇣⇡
L
s
⌘ 1
1 + rk(s)

dr

◆
ds

;
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When µ1,2(D) has an odd eigenfunction?

Proposition

µ1,2(D) = µodd

1,2 (D)

if one of the following alternatives holds:

3) k(s) changes its sign in [0, L], and

max

⇢
max
s2[0,L]

�2(2 + �k(s))2, max
s2[0,L]

4�2

(1 + �k(s))2

�

<
L2

⇡2

Z
L

0

✓Z �

0

cos2
⇣⇡
L
s
⌘
(1 + rk(s))dr

◆
ds

Z
L

0

✓Z �

0

sin2
⇣⇡
L
s
⌘ 1
1 + rk(s)

dr

◆
ds

.
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A special class of non-convex planar domains

Theorem

Suppose that the curvature k(s) of � is concave in [0, L] and let � > 0 be such
that 1 + k(s)� > 0 in [0, L]. If D is simply connected and one of the previous
geometric conditions is fulfilled, then

µ1,2(D) � B
⇡2

L2
,

where B =


1 + max

s2[0,L]
|k(s)| �

��2

, equality holding if � is a segment.
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Main steps of the proof

I We divide D into thin slices Di parallel to � where the considered
eigenfunction has zero mean value (adaptation of the slicing technique
introduced by Payne and Weinberger).

I We construct a Fermi coordinate system (r , s) whereby points (x , y) in D
are determined by specifying the distance r = dist�(x , y) to the curve �,
and the arc length s of the point on � nearest to (x , y).

s

x
r

g

In this way, D is mapped into the rectangle [0, L]⇥ [0, �].

I Since the slices Di are arbitrarily thin, we are led to a one-dimensional
problem, defined in the interval [0, L], which is easier to handle with.
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A simple example

Let 0 < a  arcsinh
⇣

1p
3

⌘
and let us consider the arch of catenary

⇢
x(s) = arcsinh(s � sinh a)
y(s) =

p
1 + (s � sinh a)2

, s 2 [0, L]

�

O x

y

If � is small enough (so that (3)
is satisfied), then

µ1,2(D) = µodd

1,2 (D) � ⇡2

4(1+�) sinh2 a
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Annular sector

Let R > 0 and consider the annular sector

D = {⇢e i✓ : R < ⇢ < R + �,
⇡
2
� ✓̃ < ✓ <

⇡
2
+ ✓̃},

with ✓̃ 2 (0,⇡).
If � satisfies

(2R� + �2)

✓
log

✓
R + �
R

◆◆
<

2✓̃2R2

⇡2
,

then

µ1,2(D) = µodd

1,2 (D) � ⇡2

4✓̃2(R+�)2
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Handlebar moustache

We begin by considering the following concave function on the interval [0, 1.6]:

k(s) =

8
<

:

50s � 25 if 0  s  0.6,
5 if 0.6  s  1,
�50s + 55 if 1  s  1.6.

Up to a rotation and a translation, there exists a unique curve
�(s) = (x(s), y(s)) (parametrized with respect to its arc length) having
curvature k(s):

�(s) =

✓Z
s

0

cos

✓Z
u

0

k(t)dt

◆
du,

Z
s

0

sin

✓Z
u

0

k(t)dt

◆
du

◆
, 0  s  1.6.

O x

y

γ By rotating and translating so

that � is symmetric with respect

to the y -axis, we may build D as

in figure.
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Handlebar moustache

If � is small enough (and we explicitly know how much), it holds that

µ1,2(D) = µodd

1,2 (D) � ⇡2

2.56(1 + 5�)2
.

O x

y

γ
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A generalization

As before, let �(s) = (x(s), y(s)), s 2 [0, L], be a smooth, simple curve, such
that

x(L� s) = �x(s), y(L� s) = y(s), s 2

0,

L
2

�
.

Let us consider the annular domain D consisting of the points on one side of �,
within a suitable non-constant distance �(s) � 0 from �. Using the normal
vector to �(s) obtained by rotating �0(s) clockwise by ⇡

2
, we may describe D

as follows

D =
�
(x(s) + ry 0(s), y(s)� rx 0(s)) : 0  s  L, 0  r  �(s)

 

The needed assumption is �(s) · k(s) to be concave.

Sharp lower bounds for Neumann eigenvalues Lisbon WADE June 30, 2020



A generalization

As before, let �(s) = (x(s), y(s)), s 2 [0, L], be a smooth, simple curve, such
that

x(L� s) = �x(s), y(L� s) = y(s), s 2

0,

L
2

�
.

Let us consider the annular domain D consisting of the points on one side of �,
within a suitable non-constant distance �(s) � 0 from �. Using the normal
vector to �(s) obtained by rotating �0(s) clockwise by ⇡

2
, we may describe D

as follows

D =
�
(x(s) + ry 0(s), y(s)� rx 0(s)) : 0  s  L, 0  r  �(s)

 

The needed assumption is �(s) · k(s) to be concave.

Sharp lower bounds for Neumann eigenvalues Lisbon WADE June 30, 2020



T HANK YOU FOR YOUR AT T ENT ION

Sharp lower bounds for Neumann eigenvalues Lisbon WADE June 30, 2020


