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Why a “Theory of the insulating state”?

Quantum geometry & Hilbert spaces
m Polarization
m A Z, topological invariant
m Resta-Sorella localization length
m Drude weight

Paradigmatic examples of insulators
m Band insulator
m Linear chain of H atoms
m A topological transition in 1d

Geometry within open boundary conditions
m Model Anderson insulator in 1d
m Local theory of the insulating state
m Anderson metal-insulator transition in 3d
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Why a “Theory of the insulating state”?



The textbook picture

(Bloch 1928, Wilson 1931)

Insulator Metal
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N\ | /
\V

m Bloch theorem applies to noninteracting electrons in a periodic
crystalline potential.

m “Noninteracting” means in a mean field
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m Bloch theorem applies to noninteracting electrons in a periodic
crystalline potential.

m “Noninteracting” means in a mean field

m Main message:
The insulating state requires a spectral gap



“Exotic” insulators

m In some materials, the insulating character is dominated
by disorder: Anderson insulators.

m In some materials, the insulating character is dominated
by electron-electron interaction: Mott insulators.

m Other kinds of exotic insulators exist.
Example: a two-dimensional electron fluid in the
quantum-Hall regime.

m The nonexotic textbook insulators will be called in the
following band insulators.



Which property characterizes all insulators?

(band insulators & exotic insulators)

PHYSICAL REVIEW VOLUME 133, NUMBER 1A 6 JANUARY 1964

Theory of the Insulating State*

WALTER KonN
University of California, San Diego, La Jolla, California
(Received 30 August 1963)

In this paper a new and more comprehensive characterization of the insulating state of matter is developed.
This characterization includes the conventional insulators with energy gap as well as systems discussed by
Mott which, in band theory, would be metals. The essential property is this: Every low-lying wave function ®
of an insulating ring breaks up into a sum of functions, ®= 2__* &3, which are localized in disconnected
regions of the many-particle configuration space and have essentially vanishing overlap. This property is
the analog of localization for a single particle and leads directly to the electrical properties characteristic of
insulators. An Appendix deals with a soluble model exhibiting a transition between an insulating and a con-
ducting state.

m Kohn’s revolutionary message:
m The insulating behavior reflects a certain type of
organization of the electrons in their ground state
m Spectral gap not required
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Theory of the Insulating State*

WALTER KonN
University of California, San Diego, La Jolla, California
(Received 30 August 1963)

In this paper a new and more comprehensive characterization of the insulating state of matter is developed.
This characterization includes the conventional insulators with energy gap as well as systems discussed by
Mott which, in band theory, would be metals. The essential property is this: Every low-lying wave function ®
of an insulating ring breaks up into a sum of functions, ®= 2__* &3, which are localized in disconnected
regions of the many-particle configuration space and have essentially vanishing overlap. This property is
the analog of localization for a single particle and leads directly to the electrical properties characteristic of
insulators. An Appendix deals with a soluble model exhibiting a transition between an insulating and a con-
ducting state.

m Kohn’s revolutionary message:
m The insulating behavior reflects a certain type of
organization of the electrons in their ground state
m Spectral gap not required
m What Kohn did not provide:
m A “marker” (quantitative probe) for the insulating state



Kohn’s theory revisited since 1999
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m In the original paper:
Theory of the insulating state and theory of polarization
based on the same formalism

m More recent findings:
Even dc conductivity stems from the same formalism



Conductivity vs. polarization

m Phenomenologically:
m Metal: Has a nonzero dc conductivity
m Insulator: Has a zero dc conductivity
(at zero temperature)

m But also
m Metal: Macroscopic electrical polarization is trivial:
It is not a bulk effect.
m Insulator: Macroscopic polarization is nontrivial:
It is a bulk effect, material dependent.



Conductivity vs. polarization

m Phenomenologically:

m Metal: Has a nonzero dc conductivity
m Insulator: Has a zero dc conductivity
(at zero temperature)

m But also

m Metal: Macroscopic electrical polarization is trivial:
It is not a bulk effect.

m Insulator: Macroscopic polarization is nontrivial:
It is a bulk effect, material dependent.

m Change of paradigm about polarization in the 1990s:
Polarization is a geometrical ground state observable
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Quantum geometry & Hilbert spaces



The simplest geometrical property: Distance

Two state vectors |W4) and |V,) in the same Hilbert space

D%y = —In|(Wy|Wp)[?
m D2, clearly gauge-invariant

m D?, =0 if the two quantum states coincide
apart for an irrelevant phase

m D?, = oo if the two states are orthogonal

m Caveat: It is a pseudodistance



A second geometrical property: Connection

D2, = — In [{(W1|W2)[2 = — In(Wy|Wya) — In(Wp|Wy)

m The two terms are not gauge-invariant
m Each of the two terms is a complex number
m What is the meaning of Im In (W|W5) ?
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—ImIn (Wy|W3) = 042, Y21 = — P12

m The connection fixes the phase difference
m The connection is arbitrary



A second geometrical property: Connection

Dy = —In[(W4[W2)[? = — In(Wy W) — In(Wo|Wy)

m The two terms are not gauge-invariant
m Each of the two terms is a complex number
m What is the meaning of Im In (W|W5) ?

(Wy W) = [(Wy|Wo) ez
—ImIn (Wy|W3) = 042, Y21 = — P12

m The connection fixes the phase difference
m The connection is arbitrary
m Given that it is arbitrary, why bother?



Sir Michael

M.V. Berry,
“Quantal phase factors accompanying adiabatic changes”,
Proc. R. Soc. Lond. 1984



Metric, connection, curvature

m |V,) a differentiable function of
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m Quantum metric g, 3(k):
DI2<.‘,,K/+dK', = Gap(k)dradrg
m Berry connection A, (k):

PR.E+dK = Aa(k)dkq



Metric, connection, curvature

m |V,) a differentiable function of

m Quantum metric g, 3(k):
DI2<.‘,,K/+dK', = Gap(k)dradrg
m Berry connection A, (k):
PR,K+dK = Aa(k)dEq
m Berry curvature Q,z(x) (curl of the connection):

Qop(k)dradrpg = [0k, Ag(k) — Ok Aa(k)]dradrg



Metric, connection, curvature

m Quantum metric gauge-invariant 2-form:
9ap(k) = Re (0x,Vk|0k, Vi) — (0n, Ve VK) (VK |0k,VE)
m Berry connection (gauge-dependent 1-form):
Aa(r) = (VK0 Vi)
m Berry curvature (gauge-invariant 2-form):
Qop(k) = i( (05, VE|0k,Vk) = (0k, VK|0k, V) )

=-21Im <8HQWR|8KB\U[<;,>



Metric, connection, curvature

m Quantum metric gauge-invariant 2-form:
9ap(k) = Re (0x,Vk|0k, Vi) — (0n, Ve VK) (VK |0k,VE)
m Berry connection (gauge-dependent 1-form):
Aa(k) = (VK |0, Vi)
m Berry curvature (gauge-invariant 2-form):
Qap(K) = I( {0k, VK|Ok, VK) — (0k;VK|0k, Vi) )
=—21m (0x, VK |0k; V)
m One more gauge-invariant 2-form:

(Oko Vi|(H — Ek)|0k, Vi)



Kohn’s Hamiltonian

m N electrons in a cubic box of volume L4
m Eventually N — oo, L — co, N/L9 constant

m Hamiltonian with a “flux” (a gauge transformation):

N
~ 1 > ~

i=1

m V includes one-body and two-body terms
m Crystalline and noncrystalline systems
m Thermodynamic limit after taking x-derivatives



Geometrical forms

m All forms evaluated on the ground state at x =0
m All forms real and extensive

m Connection:
An(k) = 1{(Vkg|0k, Vi)
m Metric:
9as(K) = Re (0x.Vk |0k, Vk) = (Or VK VE) (VK |0k, Vi)
m Curvature:
QO&B(K’) = I( <anawl<,|an5wﬂ> - <8nawl<:|an5wh',> )
m One more 2-form: A
Gap(k) = (OxVk|( Hk — Eor )|0k, Vi)



Two different Hilbert spaces

N
~ 1 5 ~
Hn:%E lpi + hel? + V

i=1

m OBC: the flux is easily “gauged away”
m Eigenvalues k-independent
m [Dok) = e ™Twg),  F=Y0,
B |Wok) obeys Schrédinger Eq. and OBCs at any



Two different Hilbert spaces

N
~ 1 5 ~
Hn:%E lpi + hel? + V

i=1

m OBC: the flux is easily “gauged away”
m Eigenvalues k-independent
m [Uog) =eRTwg), = POHIN/
B |Wok) obeys Schrédinger Eq. and OBCs at any

m Born-von-Karman PBCs violate gauge invariance
m The coordinates r;, are actually angles ¢;, = 271, /L
m The position f = "N, r; is a forbidden operator
m Ey, does depend on k.
m Vo) = e *FWy) does not obey PBCs
(for a generic k)



A lattice of special k vectors

m If the kK components are integer multiples of 27 /L then:
m Vo) = e *Fwy) obeys Schrédinger Eq. and PBCs
m Itis an eigenstate of Ay with eigenvalue £,
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m Setry = (2%,0,0):
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A lattice of special k vectors

m If the kK components are integer multiples of 27 /L then:
m Vo) = e *Fwy) obeys Schrédinger Eq. and PBCs
m Itis an eigenstate of Ay with eigenvalue £,

m Setry = (2%,0,0):

~ 2T ;
i) = (o, [Wo) = (Wol e/ T X% [wo) = (Wo| U |Wo)

m U many-body unitary operator
] 35\’;) complex number, |3$\),()| <1
m Theory of polarization and RS theory of the insulating state

both rooted in 3\ (in the large-N limit)



Discretized connection and metric

m Phase difference between |\TJ0,.@1> and |Wy):

A = Im In (W& Zi% W) = Im In 3

m Single-point Berry phase (electronic term)
m Discretized connection in a specific gauge:
2T

A = A(0) - Ak = A(0) T



Discretized connection and metric

m Phase difference between |\TJ0,.@1> and |Wy):
A = Im In (W& Zi% W) = Im In 3

m Single-point Berry phase (electronic term)
m Discretized connection in a specific gauge:

¥ ~ A(0) - Ak = AX(0)2T7T

m Quantum distance between |Uq,) and [Wy):

DSJ% = —In |{Wog, [Wo)[? = —In |55\)/()\2

m Discretized metric:

x ZAW
0 52 = gu(0)(Are)? = 90) (7 )



Outline

Quantum geometry & Hilbert spaces
m Polarization



Center of charge (1d & quasi-1d systems)

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the
center of negative charge”



Center of charge (1d & quasi-1d systems)

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the
center of negative charge”

m N spinless electrons in a segment of lenght L:
Vg = Wo(X1,X2,... X}, ... XN),
m Periodic boundary conditions:
Vo = Vo(Xy,X2,... X}, ... Xn) = Vo(X1, X2, ... Xj+L, ... XN)

m Nuclei of charge eZ; at sites X;
m Centers of charge:

20X — (W] D x| Wo)
¢ j



Center of charge, better

R. Resta, Phys. Rev. Lett. 1998

m Within PBCs coordinates are actually angles
m The two “centers” must be defined modulo L
m Their difference must be origin-invariant

> ZiXo — (Wol > x; |Wo)
¢ J

L 2w L 27 .
— 5-Imin el T XeiXe 4 5 ImIn (Wole T X% |wy)



Center of charge, better

R. Resta, Phys. Rev. Lett. 1998

m Within PBCs coordinates are actually angles
m The two “centers” must be defined modulo L
m Their difference must be origin-invariant

> ZiXo — (Wol > x; |Wo)
¢ J

L 2w L 27 .
— 5-Imin el T XeiXe 4 5 ImIn (Wole T X% |wy)

m Polarization:
e

5-Imin (Wole! T (97220 20X [y

P=-



The single-point Berry phase

v =Iminjy+ ,y(nucl) — Imin <\U0|ei2TW(ZfXFZ£ZeX£)‘\Uo>
P = —el defined modulo e
2m

m ~ is the Berry phase in disguise
m ~ includes the nuclear contribution

m P is a multivalued bulk observable:
“modulo” ambiguity fixed after terminations are specified



The single-point Berry phase

v =Iminjy+ ,y(nucl) — Imin <\U0|ei2TW(ZfXFZ£ZeX£)‘\Uo>
P = —el defined modulo e
2m

m ~ is the Berry phase in disguise
m ~ includes the nuclear contribution

m P is a multivalued bulk observable:
“modulo” ambiguity fixed after terminations are specified

m Matrix element real in centrosymmetric systems:
v is a Zy topological invariant



Outline

Quantum geometry & Hilbert spaces

m A Z, topological invariant



Z» classification of centrosymmetric polymers

Zo-even: P=0 mode
Alternant polyacetilene, model molecular crystal.....

Zo-0dd: P=e/2 mod e
Model ionic crystal.....




Z» classification of centrosymmetric polymers

Zo-even: P=0 mode
Alternant polyacetilene, model molecular crystal.....

Zo-0dd: P=e/2 mod e
Model ionic crystal.....

m 7, invariant topological:
m Independent e.g. of ionicity difference
m Independent of the theory level
(tight-binding, first-principle...)
m Robust by continuous deformation of the wavefunction



Simple tight-binding Hamiltonians

Zo-even: Onsite ¢; constant, alternating hoppings t and t/

Zo-0dd: Constant hopping t, alternating e;

m Z, invariant protected by centrosymmetry

m When joining the two with a
continuous & centrosymmetric deformation of the
Hamiltonian the gap closes!



Polarization is a multivalued observable

(K. Kudin, R. Car, & R. Resta, J. Chem Phys. 2007)

o9 M‘flﬁir% Centrosymmetric “bulk”
& » B ® ¥ B

Two different

o . o
asymmetric terminations
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Polarization is a multivalued observable

(K. Kudin, R. Car, & R. Resta, J. Chem Phys. 2007)

e N (&(&(1\,* ®»  Centrosymmetric “bulk”
Srtrtrtrteh®

" Two different
asymmetric terminations
0984 8g8,5,5
9 ] o o v ‘g/";

il S ]

o8

dipole/length = P

Polyacetylene
is Zo-even

AR ON

Lo - MW R @ o ~
]

1 10 100

dipole per monomer
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Quantum geometry & Hilbert spaces

m Resta-Sorella localization length



Basic postulate

R. Resta & S. Sorella, Phys. Rev. Lett. 82, 370 (1999)

m Electronic term in polarization
e
PE) = — —Imin i
2T Ninooz,N
m |t is impossible to define polarization whenever

li =0
NinooéN

all insulators: lim |35 =1 all metals: |lim 3y =0
N—oo N—oo



A quantitative probe of the insulating character




A quantitative probe of the insulating character

m Intensive quantity (tensor in 3d)
m )2 is finite in all insulators
m )2 diverges in all metals

m Very general: all kinds of insulators:

m Correlated insulator

m Independent electrons, crystalline
a.k.a. “band insulator”

m Independent electrons, disordered

m Quantum Hall insulator



Outline

Quantum geometry & Hilbert spaces

m Drude weight



Definition

m Charge transport in a metal is a balance between free
acceleration and dissipation (Ohm’s law)

m QM addresses the free-acceleration side of the problem

m The Drude weight D (a.k.a. adiabatic charge stiffness)
measures the inverse inertia of the many-electron system

m D = 0ininsulators

m It is a ground-state property
(also retrieved from the Kubo formula for conductivity)



Free electrons

m Classical physics (Ashcroft-Mermin, Ch.1)

W

U(w) = Dfree |:5(w) + I:| 3 Dfree = 7732[,%

m Quantum physics (Kittel ISSP, Ch. 6):

Fermi sphere 1
at time# = 0 Y

.............

m In an E field the velocity grows linearly with time
Diree = 7“92% same as in the classical case



Longitudinal conductivity (zero T, no dissipation)

m In a real metal:

i reoular
aé;)(aJ) = Dup [(5(w) + m] +Ug;gu1a)(w)
o_((l];rude) (w) + O_g;gular) (w)

m The insulating state requires both:
u Dag =0

m Re ag;g““f) (w) goes to zero for w — 0

m The metallic state requires either:

m D,s > 0 (in crystalline systems, including correlation)

m Re ag;g"laf)(m > 0 (only allowed in noncrystalline systems)



Drude weight (Kohn’s formula)

2 a2
5/ N e 0°Egg
_ _ s PBC
Daﬂ me (m)effective h2Ld OkaOkp K=0 ( ¥




Drude weight (Kohn’s formula)

D :71'92 (£> = Lez azEOH/
op m/ effective thd 6%8/{5 k=0

(PBCs)

m Equivalent geometrical expression (gauge-invariant 2-form)

Da,@ = Dfree(sa/g — ——Re <a,€a\|/0| (/:/ — Eo) |a,{6\|}0>

m Spectral weight transferred from D to the regular term

m f-sum rule

a regular Dr
/ dw Re o,p(w) = 5 / dw Re O'( gul )( )= f2ee5aﬁ




Why \? discriminate insulators from metals

If the k components are integer multiples of 27 /L then:
m |[Upk) = e ""F|lwy) obeys Schrédinger Eq. and PBCs
m It is an eigenstate of My with eigenvalue £

m Does it coincide with the genuine |Wq )
(evaluated according to Kohn'’s prescription)?

m Yes (modulo a phase) if D=0

m Noif D # 0: 3
Eox > Eo, |[Wok) orthogonal to |Wok)



Why RS discriminate insulators from metals (cont’'d)

(Wok, [Wor,) = (Wole®F|Wpe ) =0, D#0
<\TJ0K';1 ‘\U()K,1> = <w0| e/KH'r |WOK'/1> = el’y’ D=0



Why RS discriminate insulators from metals (cont’'d)

(Wok, [Wor,) = (Wole®F|Wpe ) =0, D#0
<\TJ0K';1 ‘\U()K,1> = <w0| e/KH'r |WOK'/1> = el’y’ D=0

To lowest order in 1/L:

vl = | (Wole® 1T |wo)|~0, D#0
lsnl = \<w0\e”“1‘f\\uo>\:1, D=0



Outline

Paradigmatic examples of insulators



Outline

Paradigmatic examples of insulators
m Band insulator



Bloch orbitals in 1d (insulator)

Before the thermodynamic limit: N and L finite

PBCs over 14 cells: L = Ma, M = 14 in this drawing:

14 Bloch vectors in the Brillouin zone
14 orbitals in a band



Bloch orbitals in 1d (insulator)

Before the thermodynamic limit: N and L finite

PBCs over 14 cells: L = Ma, M = 14 in this drawing:

14 Bloch vectors in the Brillouin zone
14 orbitals in a band

The ground state |WVy) is a Slater determinant:
14 Bloch orbitals (spinless electrons); Bloch vectors k;



P when |Vy) is a Slater determinant

j2m ¥ ~
v = (Wole! T 21 Wg) = (Wo| U|Wo) = (Wo|Wy)

Even |V) is a Slater determinant



P when |Vy) is a Slater determinant

j2m ¥ ~
v = (Wole! T 21 Wg) = (Wo| U|Wo) = (Wo|Wy)

Even |V) is a Slater determinant

Theorem: (W|U) =det S



P when |Vy) is a Slater determinant

j2m ¥ ~
v = (Wole! T 21 Wg) = (Wo| U|Wo) = (Wo|Wy)

Even |V) is a Slater determinant

Theorem: (W|U) =det S

Single band case:

~ L P27
Stk ky) = wglig) = [ a1 (0 E 4w, ).



The (connection) matrix is very sparse

eNeReR=R=X=2 K=
eNeReR=R=1 E=X=
[eNeNel=N ReR=X=
coocoococooonm

Boooocoooo

0
0
0
0
0
0
[ |
0

[eNoNel NeNoNoNol
[eNeol NeoeNoNoNoNe

The matrix element vanishes unless ki = k; — 2 /L,
that is j/ = j—1: the determinant factors.

M
sn = det S =[] S(k;. k1)
j=1



The Berry phase

Periodic factor in a Bloch orbital: ¢y (x) = e**uk(x)

L j2m
Stk k) = [ i (0e 0, (0
= /dxuk YUk, (X)
= (uglug 1>

A = Imin HS("/J‘/ 1)=—Imin H (U, |uK)
=1



The Berry phase

Periodic factor in a Bloch orbital: ¢y (x) = e**uk(x)

L 27
S(ki. k1) = / o v, () E Xy, (x)

= /dx U (X) Ui, (x)

= Uk|Uk >
A= Imin HS(k,-,k,- 1) =—Imin H k)
Jj=1
King-Smith & Vanderbilt discretized formula (1993):

e [ d
A& = [ dk AK) =i | dk (U] getre) = = Jim 1m In H )

BZ BZ



Band insulators vs. band metals

Insulator Metal

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.

14 occupied orbitals in the insulating state (N = M),
7 occupied orbitals in the metallic state (N = M/2).



Crystalline system of independent electrons

Before the thermodynamic limit: N and L finite

m |Vy) is written as a determinant of occupied Bloch orbitals,
in both the insulating and the metallic case.

m Key difference:
The whole band is used to build the insulating |Wy), while
only one half of the band is used for the metallic |W).



Insulators vs. metal

Oo0oo0cocoo o
OCoo0cocomEoo
ococoocoomooo
cocoomEoooo
comEooooo
O ococoocoooo
Boocoooooo
cocoococoocoon

m Zero determinant in the metallic case!
m In a band metal A2 = 0o even at finite N
m In a band insulator A> «« Wannier fct's quadratic spread Q;



Outline

Paradigmatic examples of insulators

m Linear chain of H atoms



Mott metal-insulator transition in Hy chains

Stella, Attaccalite, Sorella & Rubio, PRB 2011

Ay /a

Izl

3 4 5 6
Interatomic distance, a (a.u.)

Paradigmatic system
for the Mott transition

1/ L\2
A= N <2W> In |5n]?

Transition: ~ 3.5 bohr



Outline

Paradigmatic examples of insulators

m A topological transition in 1d



Model 1d ionic crystal

@ @ @
y=Imin (Wole' T(EH-Ee2X) |wo) =« (mod 2r)

m Z,-0dd: P=¢/2 mod e



Model 1d ionic crystal

@ @ @
=Imin (Wole! T(Z%5~Ze2%) jyg) = 7+ (mod 2r)

m Z,-0dd: P=¢/2 mod e
m Tight-binding Hamiltonian:

H= Z[ VYA G =+ 1G] = tHG+11]

m In second quantization notations:

H=Y [(-1)Yac/g—tclg—tcl gl



Model 1d ionic crystal

m Band structure:

e(k) = :l:\/A2 + 412 cos? ka/2

m Insulator at half filling
m Density of states D(e)de : Red plot




Tight binding 1d binary crystal again

m Introducing spin:

H= Z[ (_1)]A C/Tg-cja - t(C/To.Cj+1O' + HC) ]
jo

m Introducing Hubbard on-site repulsion:

H=>[(-1YAc]go — t(c], 10+ HC)] + U myryy.
jo j



The Zo invariant

p— —%Im In (Wole! T (35520 ZeXe) )

m Matrix element real in inversion-symmetric systems:
m (Vo|U|Vp) > 0= Zp-even
] <\|/0| ) |\|/0> < 0 = Z»-0dd

m Topological invariant “protected” by inversion symmetry
m Parity may switch only crossing a metallic state:

(Wole! T (X920 2X0) 1) | = [(Wole! T Zi%|Wo)| = [3n] = O



Topological insulator-insulator transition

m Plot of \? at half filling:

m Metallic only for a special U value
m On the left it is a band-like insulator
m On the right it is a Mott-like insulator



Topological insulator-insulator transition

m Plot of \? at half filling:

m Metallic only for a special U value

m On the left it is a band-like insulator

m On the right it is a Mott-like insulator

m Topological transition: From Z,-odd to Z,-even



Outline

Geometry within open boundary conditions



Kohn’s Hamiltonian in the OBCs Hilbert space

m Same Hamiltonian with a “flux”, but now within OBCs:

m The operator f = >, r; is well defined
L |‘I’0n> = e*"'”|\llo> obeys Schrédinger Eq.
m It also obeys OBCs



Kohn’s Hamiltonian in the OBCs Hilbert space

m Same Hamiltonian with a “flux”, but now within OBCs:

m The operator f = >, r; is well defined
L I\T’on> = e*"'”|\llo> obeys Schrédinger Eq.
m It also obeys OBCs

m Ergo ¢ "%|wy(0)) is the ground eigenstate of Ay
with eigenvalue Ey, k-independent:

10k, Vo) = i To|Wo)



Many-body quantum metric within OBCs

m Quantum metric tensor (derivatives taken at k = 0))
. 1
Gap = 7;( R (0ra V0| Ok; Vo) — (Oka Vol V0)(Wo|Ox; Vo) )

m Intensive ground state property, gauge-invariant
(dimensions: squared length)

m Basic tenet of the theory of the insulating state:
The OBCs metric g,z in the thermodynamic limit
m Diverges in all metals
m Converges in all insulators
m g, converges to \? (isotropic case)



Many-body quantum metric within OBCs

N 1
Gos = 7j(Re (OraWo|0s; Vo) — (Do Vo[ Wo) (Wo|Or; W) )
1 N n o
= N( (WolTals|Wo) — (WolTa|Wo)(WolT5 Vo) )

- ;W / drdr’ (r =)o (r — ¥)s[n(r)n(r) — n®(r,¥)]

m Exchange-correlation hole (integrates to —1):
nye(r, ') = n@(r,¥') — n(r)n(r)

m J.; is the second moment of the XC hole,
averaged over the sample



Special case: independent electrons

m Isotropic system in dimension d:

o= 2 = gy [ Rt £ ¥R(n()n(r) ~ n@)(. )



Special case: independent electrons

m Isotropic system in dimension d:

o= 2 = gy [ Rt £ ¥R(n()n(r) ~ n@)(. )

m Independent electrons: n®®)(r,r) is a function of (r| P |¥'):

nrn(ry — n@(r, ¥y = 2|(r|P|F)?  (spinful)
= |(r|P|F)]?  (spinless)

m Special case: band insulators and band metals



Outline

Geometry within open boundary conditions
m Model Anderson insulator in 1d



Tight binding 1d binary crystal

H=Y (glnil—tli+ 1§l —thG+1])
J

Diagonal disorder: t fixed, e, — €5 = 2A fixed

Crystalline case: ¢; = (—1)/A
ABABABABABABABABABABABABABABABABABAB.............

Disordered case: random choice of 41 factors
ABAABABBABABBAABABABBABAABABBABABBAA ............

Random choice with equal probability, average over many
replicas.



Density of states
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m At half filling both (crystalline and disordered) are insulating

m At any other filling the crystalline is conducting and the
disordered is insulating.



Density of states
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m At half filling both (crystalline and disordered) are insulating
m At any other filling the crystalline is conducting and the
disordered is insulating.

m What about g (a.k.a. \?)?



Results of the simulations

(5000 sites, 1000 replicas, 1/2 & 1/4 filling)

2
2N/dxdx (x — X")2|(x| P|x")|? ;1/3@,3,4 7?2

m In the crystalline case g converges to a finite limit for 1/2
filling, diverges for 1/4 (as expected).

m In the disordered case g always converge (to a very similar
value for the two cases).

m The disordered case g is about 20 times larger than the
crystalline one. Why?

m The insulating mechanism (band vs. Anderson) is quite
different, despite the very similar Hamiltonian.



Outline

Geometry within open boundary conditions

m Local theory of the insulating state



A metal-semiconductor heterojunction

m (001)Al/GaAs heterojunction

m The local density of states at the Fermi level
is the obvious local marker to discriminate
insulating vs. metallic regions



Local density of states at the Fermi level
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The problem

m The local density of states at the Fermi level
cannot work for Anderson insulators: gapless



The problem

m The local density of states at the Fermi level
cannot work for Anderson insulators: gapless

m The OBCs quantum metric
m Diverges in all metals
m Converge to a finite value in all insulators
m It can probe a inhomogeneous system locally



Simulations for 1d heterojunctions

m Convert into a “localization density”
g = /1\I/dXdX, (x =X VPIXIPIX)P (spinful)
o 1 / 2 N2
ng = | dxdx” (x — x')*|(x| P |x)|

_ 1] dx (x| P [x,P] [x, P] |x)

L sample

m Local probe of the insulating state:

L(x) = =(XIP [x, Pl [x, P] |x)



Simulations for 1d heterojunctions

A. Marrazzo and R. Resta, Phys. Rev. Lett. 122, 166602 (2019)

Local OBCs metric
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Outline

Geometry within open boundary conditions

m Anderson metal-insulator transition in 3d



The benchmark model 3d system

m Need a 3d system to observe the M-I transition

m A standard 3d tight-binding Hamiltonian is known from
previous literature to undergo the transition at W, = 8.25
(W is the amount of tunable disorder, in appropriate units)

m In our (and others’) simulations:

m Computational samples are long rods of square section
m Results are averaged over several disorder realizations

m The novelty here: using the quantum metric to detect the
transition in the ground state



Anderson transition as a ground-state property

T. Olsen, R. Resta, and I. Souza, Phys. Rev. B 95, 045109 (2017)

o.

Localization length A = /3., as a function of rod length L
(average over 100 disorder realizations)



A smarter way to estimate W, (by Thomas Olsen)

10°
10
Ny
53] 1
$) 10
~
£ 140
o 10 12
-1
10 3=2.8 $=32 B=438
-2
10 3=3.2
3 5 8 10 15
W

Our best estimate: W, = 8.5
We are probing “the organization” of the electrons in their ground state



Thank you for your
attention!
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