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The textbook picture
(Bloch 1928, Wilson 1931)

Bloch theorem applies to noninteracting electrons in a periodic
crystalline potential.

“Noninteracting” means in a mean field

Main message:
The insulating state requires a spectral gap
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The textbook picture
(Bloch 1928, Wilson 1931)

Bloch theorem applies to noninteracting electrons in a periodic
crystalline potential.

“Noninteracting” means in a mean field

Main message:
The insulating state requires a spectral gap
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“Exotic” insulators

In some materials, the insulating character is dominated
by disorder: Anderson insulators.

In some materials, the insulating character is dominated
by electron-electron interaction: Mott insulators.

Other kinds of exotic insulators exist.
Example: a two-dimensional electron fluid in the
quantum-Hall regime.

The nonexotic textbook insulators will be called in the
following band insulators.
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Which property characterizes all insulators?
(band insulators & exotic insulators)

Kohn’s revolutionary message:
The insulating behavior reflects a certain type of
organization of the electrons in their ground state
Spectral gap not required

What Kohn did not provide:
A “marker” (quantitative probe) for the insulating state
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Which property characterizes all insulators?
(band insulators & exotic insulators)

Kohn’s revolutionary message:
The insulating behavior reflects a certain type of
organization of the electrons in their ground state
Spectral gap not required

What Kohn did not provide:
A “marker” (quantitative probe) for the insulating state
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Kohn’s theory revisited since 1999

VOLUME 82, NUMBER 2 PHY S I CA L REV I EW LE T T ER S 11 JANUARY 1999

Electron Localization in the Insulating State

Raffaele Resta
Istituto Nazionale di Fisica della Materia (INFM), Strada Costiera 11, I-34014 Trieste, Italy

and Dipartimento di Fisica Teorica, Università di Trieste, I-34014 Trieste, Italy

Sandro Sorella
Istituto Nazionale di Fisica della Materia (INFM), Via Beirut 4, I-34014 Trieste, Italy

and Scuola Internazionale Superiore di Studı̂ Avanzati (SISSA), Via Beirut 4, 34014, Trieste Italy
(Received 11 August 1998)

The insulating state of matter is characterized by the excitation spectrum, but also by qualitative
features of the electronic ground state. The insulating ground wave function in fact (i) sustains
macroscopic polarization, and (ii) is localized. We give a sharp definition of the latter concept
and we show how the two basic features stem from essentially the same formalism. Our approach
to localization is exemplified by means of a two-band Hubbard model in one dimension. In the
noninteracting limit, the wave function localization is measured by the spread of the Wannier orbitals.
[S0031-9007(98)08159-9]

PACS numbers: 71.10.Fd, 71.23.An

In a milestone paper that appeared in 1964 [1],
W. Kohn investigated the very basic features which
discriminate between an insulator and a metal: he gave
evidence that localization of the electronic ground wave
function implies zero dc conductivity, and therefore char-
acterizes the insulating state. In this Letter, we provide a
definition of localization which is deeply rooted into the
modern theory of polarization [2–5], and rather different
from Kohn’s. Indeed, besides zero dc conductivity,
the property which obviously discriminates between
insulators and metals is dielectric polarization: whenever
the bulk symmetry is low enough, an insulator displays
nontrivial static polarization. Here, we show that the
whole information needed for describing both localization
and polarization is embedded into the same many-body
expectation value, namely, the complex number zN de-
fined in Eq. (10) below. It was previously shown [5] that
macroscopic polarization is essentially the phase of zN :
here we show that the modulus of zN yields a definition of
localization length which is sharper and more meaningful
than the available ones. In our formalism a vanishing zN
implies a delocalized wave function and an ill-defined
polarization: this characterizes the metallic state. Our
definition is first demonstrated for a one-dimensional
crystalline system of independent electrons, in which case
our localization length coincides (for insulators) with the
spread of the Wannier orbitals. We then study a two-band
Hubbard model undergoing a Mott-like transition: both
in the band regime (below the transition) and in the
highly correlated regime (above the transition) the wave
function turns out to be localized, while the localization
length diverges at the transition point, thus indicating a
metallic ground state. Our approach to localization in
a many-electron system sharply discriminates between a
conducting and nonconducting ground state, yet avoids
any reference to the excitation spectrum.

Let us start with a single one-dimensional electron:
the distinction between localized (bound) and delocalized
(scattering) states is a clearcut one when the usual
boundary conditions are adopted; much less so when
periodic Born–von Kàrmàn boundary conditions (BvK)
are adopted, implying a ring topology for the one-
dimensional system. Within the latter choice—which
is almost mandatory in condensed matter physics—all
states appear in a sense as “delocalized” since all wave
functions csxd are periodic over the BvK period: csx 1
Ld ≠ csxd. We show that the key parameter to study
localization of an electronic state within BvK is the
dimensionless complex number z, defined as

z ≠
Z L

0
dx eis2pyLdx

jcsxdj2, (1)

whose modulus is no larger than 1. In the case of extreme
delocalization, one has jcsxdj2 ≠ 1yL and z ≠ 0, while
in the case of extreme localization,

jcsxdj2 ≠
X̀

m≠2`

dsx 2 x0 2 mLd , (2)

and we get z ≠ eis2pyLdx0 . In the most general case, de-
picted in Fig. 1, the electron density jcsxdj2 can always
be written as a superposition of a function nloc, normal-
ized over s2`, `d, and of its periodic replicas:

jcsxdj2 ≠
X̀

m≠2`

nlocsx 2 x0 2 mLd . (3)

Both x0 and nlocsxd have a large arbitrariness: we restrict
it a little bit by imposing that x0 is the center of the
distribution, in the sense that

R`
2` dx xnlocsxd ≠ 0.

Using Eq. (3), z can be expressed in terms of the
Fourier transform of nloc as

z ≠ eis2pyLdx0 ñloc

µ
2

2p

L

∂
. (4)

370 0031-9007y99y82(2)y370(4)$15.00 © 1999 The American Physical Society

In the original paper:
Theory of the insulating state and theory of polarization
based on the same formalism
More recent findings:
Even dc conductivity stems from the same formalism
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Conductivity vs. polarization

Phenomenologically:
Metal: Has a nonzero dc conductivity
Insulator: Has a zero dc conductivity
(at zero temperature)

But also
Metal: Macroscopic electrical polarization is trivial:
It is not a bulk effect.
Insulator: Macroscopic polarization is nontrivial:
It is a bulk effect, material dependent.

Change of paradigm about polarization in the 1990s:
Polarization is a geometrical ground state observable
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Conductivity vs. polarization

Phenomenologically:
Metal: Has a nonzero dc conductivity
Insulator: Has a zero dc conductivity
(at zero temperature)

But also
Metal: Macroscopic electrical polarization is trivial:
It is not a bulk effect.
Insulator: Macroscopic polarization is nontrivial:
It is a bulk effect, material dependent.

Change of paradigm about polarization in the 1990s:
Polarization is a geometrical ground state observable
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1 Why a “Theory of the insulating state”?

2 Quantum geometry & Hilbert spaces
Polarization
A Z2 topological invariant
Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d
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The simplest geometrical property: Distance

Two state vectors |Ψ1⟩ and |Ψ2⟩ in the same Hilbert space

D2
12 = − ln |⟨Ψ1|Ψ2⟩|2

D2
12 clearly gauge-invariant

D2
12 = 0 if the two quantum states coincide

apart for an irrelevant phase

D2
12 = ∞ if the two states are orthogonal

Caveat: It is a pseudodistance
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A second geometrical property: Connection

D2
12 = − ln |⟨Ψ1|Ψ2⟩|2 = − ln⟨Ψ1|Ψ2⟩ − ln⟨Ψ2|Ψ1⟩

The two terms are not gauge-invariant
Each of the two terms is a complex number
What is the meaning of Im ln ⟨Ψ1|Ψ2⟩ ?

⟨Ψ1|Ψ2⟩ = |⟨Ψ1|Ψ2⟩|eiφ12

−Im ln ⟨Ψ1|Ψ2⟩ = φ12, φ21 = −φ12

The connection fixes the phase difference
The connection is arbitrary
Given that it is arbitrary, why bother?
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Sir Michael

M.V. Berry,
“Quantal phase factors accompanying adiabatic changes”,
Proc. R. Soc. Lond. 1984
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Metric, connection, curvature

|Ψκ⟩ a differentiable function of κ

Quantum metric gαβ(κ):

D2
κ,κ+dκ = gαβ(κ)dκαdκβ

Berry connection Aα(κ):

φκ,κ+dκ = Aα(κ)dκα

Berry curvature Ωαβ(κ) (curl of the connection):

Ωαβ(κ)dκαdκβ = [∂καAβ(κ)− ∂κβ
Aα(κ)]dκαdκβ
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Aα(κ)]dκαdκβ
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Metric, connection, curvature

Quantum metric gauge-invariant 2-form:

gαβ(κ) = Re ⟨∂καΨκ|∂κβ
Ψκ⟩ − ⟨∂καΨκ|Ψκ⟩⟨Ψκ|∂κβ

Ψκ⟩

Berry connection (gauge-dependent 1-form):

Aα(κ) = i⟨Ψκ|∂κα
Ψκ⟩

Berry curvature (gauge-invariant 2-form):

Ωαβ(κ) = i( ⟨∂κα
Ψκ|∂κβ

Ψκ⟩ − ⟨∂κβ
Ψκ|∂κα

Ψκ⟩ )

= −2 Im ⟨∂κα
Ψκ|∂κβ

Ψκ⟩

One more gauge-invariant 2-form:

⟨∂καΨκ|(Hκ − Eκ)|∂κβ
Ψκ⟩
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Kohn’s Hamiltonian

N electrons in a cubic box of volume Ld

Eventually N → ∞, L → ∞, N/Ld constant

Hamiltonian with a “flux” (a gauge transformation):

Ĥκ =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂

V̂ includes one-body and two-body terms
Crystalline and noncrystalline systems
Thermodynamic limit after taking κ-derivatives
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Geometrical forms

All forms evaluated on the ground state at κ = 0
All forms real and extensive

Connection:
Aα(κ) = i⟨Ψκ|∂καΨκ⟩
Metric:
gαβ(κ) = Re ⟨∂καΨκ|∂κβ

Ψκ⟩ − ⟨∂καΨκ|Ψκ⟩⟨Ψκ|∂κβ
Ψκ⟩

Curvature:
Ωαβ(κ) = i( ⟨∂καΨκ|∂κβ

Ψκ⟩ − ⟨∂καΨκ|∂κβ
Ψκ⟩ )

One more 2-form:
Gαβ(κ) = ⟨∂καΨκ|( Ĥκ − E0κ )|∂κβ

Ψκ⟩
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Two different Hilbert spaces

Ĥκ =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂

OBC: the flux is easily “gauged away”
Eigenvalues κ-independent
|Ψ̃0κ⟩ = e−iκ·̂r|Ψ0⟩, r̂ =

∑N
i=1 ri

|Ψ̃0κ⟩ obeys Schrödinger Eq. and OBCs at any κ

Born-von-Kàrmàn PBCs violate gauge invariance
The coordinates riα are actually angles φiα = 2πriα/L
The position r̂ =

∑N
i=1 ri is a forbidden operator

E0κ does depend on κ.
|Ψ̃0κ⟩ = e−iκ·̂r|Ψ0⟩ does not obey PBCs
(for a generic κ)
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A lattice of special κ vectors

If the κ components are integer multiples of 2π/L then:
|Ψ̃0κ⟩ = e−iκ·̂r|Ψ0⟩ obeys Schrödinger Eq. and PBCs
It is an eigenstate of Ĥκ with eigenvalue E0

Set κ1 =
(2π

L ,0,0
)
:

z
(x)
N = ⟨Ψ̃0κ1 |Ψ0⟩ = ⟨Ψ0| ei 2π

L
∑

i xi |Ψ0⟩ = ⟨Ψ0|U |Ψ0⟩

U many-body unitary operator

z
(x)
N complex number, |z(x)N | ≤ 1

Theory of polarization and RS theory of the insulating state
both rooted in z

(x)
N (in the large-N limit)
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Discretized connection and metric

Phase difference between |Ψ̃0κ1⟩ and |Ψ0⟩:

γ
(el)
x = Im ln ⟨Ψ0| ei 2π

L
∑

i xi |Ψ0⟩ = Im ln z
(x)
N

Single-point Berry phase (electronic term)
Discretized connection in a specific gauge:

γ
(el)
x ≃ A(0) ·∆κ = Ax(0)

2π
L

Quantum distance between |Ψ̃0κ1⟩ and |Ψ0⟩:

D2
0,κ1

= −ln |⟨Ψ̃0κ1 |Ψ0⟩|2 = −ln |z(x)N |2

Discretized metric:

−ln |z(x)N |2 ≃ gxx(0)(∆κx)
2 = gxx(0)

(
2π
L

)2
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Outline

1 Why a “Theory of the insulating state”?

2 Quantum geometry & Hilbert spaces
Polarization
A Z2 topological invariant
Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d
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Center of charge (1d & quasi-1d systems)

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the
center of negative charge”

N spinless electrons in a segment of lenght L:

Ψ0 = Ψ0(x1, x2, . . . xj , . . . xN),

Periodic boundary conditions:

Ψ0 = Ψ0(x1, x2, . . . xj , . . . xN) = Ψ0(x1, x2, . . . xj+L, . . . xN)

Nuclei of charge eZℓ at sites Xℓ

Centers of charge:∑
ℓ

ZℓXℓ − ⟨Ψ0|
∑

j

xj |Ψ0⟩
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Center of charge, better
R. Resta, Phys. Rev. Lett. 1998

Within PBCs coordinates are actually angles
The two “centers” must be defined modulo L
Their difference must be origin-invariant∑

ℓ

ZℓXℓ − ⟨Ψ0|
∑

j

xj |Ψ0⟩

−→ L
2π

Im ln ei 2π
L

∑
ℓ ZℓXℓ +

L
2π

Im ln ⟨Ψ0|e−i 2π
L

∑
j xj |Ψ0⟩

Polarization:

P = − e
2π

Im ln ⟨Ψ0|ei 2π
L (

∑
j xj−

∑
ℓ ZℓXℓ)|Ψ0⟩
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The single-point Berry phase

γ = Im ln zN + γ(nucl) = Im ln ⟨Ψ0|ei 2π
L (

∑
j xj−

∑
ℓ ZℓXℓ)|Ψ0⟩

P = −e
γ

2π
defined modulo e

γ is the Berry phase in disguise
γ includes the nuclear contribution
P is a multivalued bulk observable:
“modulo” ambiguity fixed after terminations are specified

Matrix element real in centrosymmetric systems:
γ is a Z2 topological invariant
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Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Z2 classification of centrosymmetric polymers

Z2-even: P = 0 mod e
Alternant polyacetilene, model molecular crystal.....

Z2-odd: P = e/2 mod e
Model ionic crystal.....

Z2 invariant topological:
Independent e.g. of ionicity difference
Independent of the theory level
(tight-binding, first-principle...)
Robust by continuous deformation of the wavefunction
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Simple tight-binding Hamiltonians

Z2-even: Onsite ϵi constant, alternating hoppings t and t ′

Z2-odd: Constant hopping t , alternating ϵi

Z2 invariant protected by centrosymmetry
When joining the two with a
continuous & centrosymmetric deformation of the
Hamiltonian the gap closes!
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Polarization is a multivalued observable
(K. Kudin, R. Car, & R. Resta, J. Chem Phys. 2007)

Quantization of the dipole moment and of the end charges
in push-pull polymers
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A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2799514$

I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length

a"Electronic mail: kkudin@princeton.edu

FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.
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0021-9606/2007/127"19!/194902/9/$23.00 © 2007 American Institute of Physics127, 194902-1

Downloaded 16 Nov 2007 to 147.122.10.31. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Centrosymmetric “bulk”

Two different
asymmetric terminations

dipole/length = P

Polyacetylene
is Z2-even

final statement is that the end charges Qend of the most gen-
eral polymeric chain, whose bulk region is centrosymmetric,
may only assume !in the large-Nc limit" values which are
integer multiples of 1 /2. We have previously anticipated this
statement !Sec. II" and demonstrated it heuristically !Sec. III"
using a simple binary chain as test case. Although we used
for pedagogical purposes a strongly ionic system, the theo-
rem is general and holds for systems of any ionicity. Further-
more, in all cases, the actual value of Qend is determined,
within the set of quantized values, by the chemical nature of
the system.

E. The correlated case

Throughout this work, we have worked at the level of
single-particle approaches, such as HF or DFT. The specific
tools used in our detailed proof !i.e., localized Boys’/
Wannier orbitals" prevent us from directly extending the
present proof to correlated wave function methods. Nonethe-
less, the exact quantization of end charges !in the large-
system limit" still holds, as a robust topological phenom-
enon, even for correlated wavefunctions. In this respect, the
phenomenon is similar to the fractional quantum Hall effect,
where correlated wavefunctions are an essential ingredient.16

We have stated above that the bulk dipole per cell !or per
monomer" p0 is defined in terms of Berry phases; more de-
tails about this can be found in our previous paper,26 where a
QC reformulation of the so-called “modern theory of
polarization”7–10 is presented. The ultimate reason for the
occurrence of charge quantization is the modulo 2! arbitrari-
ness of any phase, as, e.g., in Eq. !17". A correlated wave
function version of the modern theory of polarization, also
based on Berry phases, does exist.10,27,28 The quantization
features, as discussed here for polymeric chains, remain un-
changed. While not presenting a complete account here, we
provide below the expression for p0 in the correlated case.

Suppose we loop the polymer onto itself along the z
coordinate, with the loop of length L, where L equals a times
the number of monomers. Let "!r1 ,r2 , . . . ,rN" be the many-
body ground state wave function, where spin variables are
omitted for the sake of simplicity. Since z is the coordinate
along the loop, " is periodic with period L with respect to
the zi coordinate of each electron. We define the !unitary and
periodic" many-body operator

Û = ei!2!/L"#i=1
N zi, !18"

nowadays called the “twist” operator,28 and the dimension-
less quantity

# = Im ln$"%Û%"& . !19"

This #, defined modulo 2!, is a Berry phase in disguise,
which is customarily called a “single-point” Berry phase.27

In order to get p0 in the correlated case, it is enough to
replace the sum of single-band Berry phases occurring in Eq.
!17" with the many-body Berry phase #, as defined in Eq.
!19".

Notice that the large-L limit of Eq. !19" is quite non-
trivial, since as L increases, Û approaches the identity, but
the number of electrons N in the wave function " increases;

nonetheless, this limit is well-defined in insulators !and only
in insulators".29,30 In the special case where " is a Slater
determinant !i.e., uncorrelated single-particle approaches",
the large-L limit of # converges to the sum of the Berry
phases of the occupied bands, each given by Eq. !13". This
result is proved in Refs. 10 and 27. Therefore, for a single-
determinant ", the correlated p0 defined via # in Eq. !19"
coincides !in the large-L limit" with p0 discussed throughout
this paper.

V. CALCULATIONS FOR A CASE OF CHEMICAL
INTEREST

Our realistic example is a set of fully conjugated trans-
polyacetylene oligomers with the C2H2 repeat unit !a
=4.670 114 817 4 a.u.", such as shown in Fig. 1. For the
monomer unit, the bond distances and angles are r!CvC"
=1.363Å, r!C–C"=1.428Å, r!C–H"=1.09Å, $!CCC"
=124.6°, and $!CvC–H"=117.0°. Note that due to alter-
nating single-double carbon bond length, such a system is
insulating. The chain with the equal carbon bonds would be
conducting and, therefore, the theorem would not be appli-
cable. The calculations were carried out at the RHF/30-21G
level of the theory with the GAUSSIAN 03 code,6 up to Nc
=257 C2H2 units in the largest oligomer !Fig. 4". In order to
save computational time, all the monomers were taken to be
identical, i.e., each one with the same geometry. For the
structure with the noncharged groups 'Fig. 1!a"(, we compute
p!257"=8.0%10−7, i.e., both p, and Qend vanish, with a very
small finite-size error. The charge-transfer structure 'Fig.
1!b"( yields instead p!257"=4.669 728 2, which corresponds
to Qend=1 to an accuracy of 8.0%10−5. Thus, by modifying
the end groups, one can observe the quantization theorem in
a conjugated system, and again, the quantization is extremely
accurate. For comparison, we have also carried out full peri-
odic calculations31 of the dipole moment via the Berry-phase
approach,26,32 utilizing 1024 k points in the reciprocal space.
Since these calculations were closed shell, the electronic di-
pole was computed for only one spin and then doubled. If the

FIG. 4. Longitudinal dipole moment per monomer p!Nc" of the trans-
polyacetylene oligomers, exemplified in Fig. 1, as a function of Nc: dia-
monds for the neutral structure 'NN( 'Fig. 1!a"( and squares for the charge-
tranfer structure '&¯'( 'Fig. 1!b"(. The double arrow indicates their
difference, which is exactly equal to one quantum.
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Polarization is a multivalued observable
(K. Kudin, R. Car, & R. Resta, J. Chem Phys. 2007)

Quantization of the dipole moment and of the end charges
in push-pull polymers

Konstantin N. Kudina! and Roberto Car
Department of Chemistry and Princeton Institute for Science, and Technology of Materials (PRISM),
Princeton University, Princeton, New Jersey 08544, USA

Raffaele Resta
CNR-INFM DEMOCRITOS National Simulation Center, Via Beirut 2, I-34014 Trieste, Italy
and Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy
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A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2799514$

I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length

a"Electronic mail: kkudin@princeton.edu

FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.
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Centrosymmetric “bulk”

Two different
asymmetric terminations

dipole/length = P

Polyacetylene
is Z2-even

final statement is that the end charges Qend of the most gen-
eral polymeric chain, whose bulk region is centrosymmetric,
may only assume !in the large-Nc limit" values which are
integer multiples of 1 /2. We have previously anticipated this
statement !Sec. II" and demonstrated it heuristically !Sec. III"
using a simple binary chain as test case. Although we used
for pedagogical purposes a strongly ionic system, the theo-
rem is general and holds for systems of any ionicity. Further-
more, in all cases, the actual value of Qend is determined,
within the set of quantized values, by the chemical nature of
the system.

E. The correlated case

Throughout this work, we have worked at the level of
single-particle approaches, such as HF or DFT. The specific
tools used in our detailed proof !i.e., localized Boys’/
Wannier orbitals" prevent us from directly extending the
present proof to correlated wave function methods. Nonethe-
less, the exact quantization of end charges !in the large-
system limit" still holds, as a robust topological phenom-
enon, even for correlated wavefunctions. In this respect, the
phenomenon is similar to the fractional quantum Hall effect,
where correlated wavefunctions are an essential ingredient.16

We have stated above that the bulk dipole per cell !or per
monomer" p0 is defined in terms of Berry phases; more de-
tails about this can be found in our previous paper,26 where a
QC reformulation of the so-called “modern theory of
polarization”7–10 is presented. The ultimate reason for the
occurrence of charge quantization is the modulo 2! arbitrari-
ness of any phase, as, e.g., in Eq. !17". A correlated wave
function version of the modern theory of polarization, also
based on Berry phases, does exist.10,27,28 The quantization
features, as discussed here for polymeric chains, remain un-
changed. While not presenting a complete account here, we
provide below the expression for p0 in the correlated case.

Suppose we loop the polymer onto itself along the z
coordinate, with the loop of length L, where L equals a times
the number of monomers. Let "!r1 ,r2 , . . . ,rN" be the many-
body ground state wave function, where spin variables are
omitted for the sake of simplicity. Since z is the coordinate
along the loop, " is periodic with period L with respect to
the zi coordinate of each electron. We define the !unitary and
periodic" many-body operator

Û = ei!2!/L"#i=1
N zi, !18"

nowadays called the “twist” operator,28 and the dimension-
less quantity

# = Im ln$"%Û%"& . !19"

This #, defined modulo 2!, is a Berry phase in disguise,
which is customarily called a “single-point” Berry phase.27

In order to get p0 in the correlated case, it is enough to
replace the sum of single-band Berry phases occurring in Eq.
!17" with the many-body Berry phase #, as defined in Eq.
!19".

Notice that the large-L limit of Eq. !19" is quite non-
trivial, since as L increases, Û approaches the identity, but
the number of electrons N in the wave function " increases;

nonetheless, this limit is well-defined in insulators !and only
in insulators".29,30 In the special case where " is a Slater
determinant !i.e., uncorrelated single-particle approaches",
the large-L limit of # converges to the sum of the Berry
phases of the occupied bands, each given by Eq. !13". This
result is proved in Refs. 10 and 27. Therefore, for a single-
determinant ", the correlated p0 defined via # in Eq. !19"
coincides !in the large-L limit" with p0 discussed throughout
this paper.

V. CALCULATIONS FOR A CASE OF CHEMICAL
INTEREST

Our realistic example is a set of fully conjugated trans-
polyacetylene oligomers with the C2H2 repeat unit !a
=4.670 114 817 4 a.u.", such as shown in Fig. 1. For the
monomer unit, the bond distances and angles are r!CvC"
=1.363Å, r!C–C"=1.428Å, r!C–H"=1.09Å, $!CCC"
=124.6°, and $!CvC–H"=117.0°. Note that due to alter-
nating single-double carbon bond length, such a system is
insulating. The chain with the equal carbon bonds would be
conducting and, therefore, the theorem would not be appli-
cable. The calculations were carried out at the RHF/30-21G
level of the theory with the GAUSSIAN 03 code,6 up to Nc
=257 C2H2 units in the largest oligomer !Fig. 4". In order to
save computational time, all the monomers were taken to be
identical, i.e., each one with the same geometry. For the
structure with the noncharged groups 'Fig. 1!a"(, we compute
p!257"=8.0%10−7, i.e., both p, and Qend vanish, with a very
small finite-size error. The charge-transfer structure 'Fig.
1!b"( yields instead p!257"=4.669 728 2, which corresponds
to Qend=1 to an accuracy of 8.0%10−5. Thus, by modifying
the end groups, one can observe the quantization theorem in
a conjugated system, and again, the quantization is extremely
accurate. For comparison, we have also carried out full peri-
odic calculations31 of the dipole moment via the Berry-phase
approach,26,32 utilizing 1024 k points in the reciprocal space.
Since these calculations were closed shell, the electronic di-
pole was computed for only one spin and then doubled. If the

FIG. 4. Longitudinal dipole moment per monomer p!Nc" of the trans-
polyacetylene oligomers, exemplified in Fig. 1, as a function of Nc: dia-
monds for the neutral structure 'NN( 'Fig. 1!a"( and squares for the charge-
tranfer structure '&¯'( 'Fig. 1!b"(. The double arrow indicates their
difference, which is exactly equal to one quantum.
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A Z2 topological invariant
Resta-Sorella localization length
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3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d
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Basic postulate
R. Resta & S. Sorella, Phys. Rev. Lett. 82, 370 (1999)

Electronic term in polarization

P(el) = − e
2π

Im ln lim
N→∞

zN

It is impossible to define polarization whenever

lim
N→∞

zN = 0

all insulators: lim
N→∞

|zN | = 1 all metals: lim
N→∞

zN = 0
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A quantitative probe of the insulating character

λ2 = − lim
N→∞

1
N

(
L

2π

)2

ln |zN |2 = lim
N→∞

1
N

gxx(0)

Intensive quantity (tensor in 3d)
λ2 is finite in all insulators
λ2 diverges in all metals

Very general: all kinds of insulators:
Correlated insulator
Independent electrons, crystalline
a.k.a. “band insulator”
Independent electrons, disordered
Quantum Hall insulator
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A quantitative probe of the insulating character

λ2 = − lim
N→∞

1
N

(
L

2π

)2

ln |zN |2 = lim
N→∞

1
N

gxx(0)

Intensive quantity (tensor in 3d)
λ2 is finite in all insulators
λ2 diverges in all metals

Very general: all kinds of insulators:
Correlated insulator
Independent electrons, crystalline
a.k.a. “band insulator”
Independent electrons, disordered
Quantum Hall insulator
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Definition

Charge transport in a metal is a balance between free
acceleration and dissipation (Ohm’s law)

QM addresses the free-acceleration side of the problem

The Drude weight D (a.k.a. adiabatic charge stiffness)
measures the inverse inertia of the many-electron system

D = 0 in insulators

It is a ground-state property
(also retrieved from the Kubo formula for conductivity)
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Free electrons

Classical physics (Ashcroft-Mermin, Ch.1)

σ(ω) = Dfree

[
δ(ω) +

i
πω

]
, Dfree = πe2 n

m

Quantum physics (Kittel ISSP, Ch. 6):

In an E field the velocity grows linearly with time
Dfree = πe2 n

m same as in the classical case
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Longitudinal conductivity (zero T, no dissipation)

In a real metal:

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i
πω

]
+ σ

(regular)
αβ (ω)

= σ
(Drude)
αβ (ω) + σ

(regular)
αβ (ω)

The insulating state requires both:

Dαβ = 0
Re σ(regular)

αβ (ω) goes to zero for ω → 0

The metallic state requires either:
Dαβ > 0 (in crystalline systems, including correlation)
Re σ(regular)

αβ (0) > 0 (only allowed in noncrystalline systems)
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Drude weight (Kohn’s formula)

Dαβ = πe2
( n

m

)
effective

=
πe2

ℏ2Ld
∂2E0κ
∂κα∂κβ

∣∣∣∣
κ=0

(PBCs)

Equivalent geometrical expression (gauge-invariant 2-form)

Dαβ = Dfreeδαβ − 2πe2

ℏ2Ld Re ⟨∂καΨ0| (Ĥ − E0) |∂κβ
Ψ0⟩

Spectral weight transferred from D to the regular term

f -sum rule∫ ∞

0
dω Re σαβ(ω) =

Dαβ

2
+

∫ ∞

0
dω Re σ(regular)

αβ (ω) =
Dfree

2
δαβ
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f -sum rule∫ ∞

0
dω Re σαβ(ω) =
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Why λ2 discriminate insulators from metals

If the κ components are integer multiples of 2π/L then:
|Ψ̃0κ⟩ = e−iκ·̂r|Ψ0⟩ obeys Schrödinger Eq. and PBCs
It is an eigenstate of Ĥκ with eigenvalue E0

Does it coincide with the genuine |Ψ0κ⟩
(evaluated according to Kohn’s prescription)?

Yes (modulo a phase) if D = 0

No if D ̸= 0:
E0κ > E0, |Ψ0κ⟩ orthogonal to |Ψ̃0κ⟩
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Why RS discriminate insulators from metals (cont’d)

⟨Ψ̃0κ1 |Ψ0κ1⟩ = ⟨Ψ0| eiκ1 ·̂r |Ψ0κ1⟩ = 0, D ̸= 0

⟨Ψ̃0κ1 |Ψ0κ1⟩ = ⟨Ψ0| eiκ1 ·̂r |Ψ0κ1⟩ = eiγ , D = 0

To lowest order in 1/L:

|zN | = | ⟨Ψ0| eiκ1 ·̂r |Ψ0⟩ | ≃ 0, D ̸= 0
|zN | = | ⟨Ψ0| eiκ1 ·̂r |Ψ0⟩ | ≃ 1, D = 0
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Why RS discriminate insulators from metals (cont’d)

⟨Ψ̃0κ1 |Ψ0κ1⟩ = ⟨Ψ0| eiκ1 ·̂r |Ψ0κ1⟩ = 0, D ̸= 0

⟨Ψ̃0κ1 |Ψ0κ1⟩ = ⟨Ψ0| eiκ1 ·̂r |Ψ0κ1⟩ = eiγ , D = 0

To lowest order in 1/L:

|zN | = | ⟨Ψ0| eiκ1 ·̂r |Ψ0⟩ | ≃ 0, D ̸= 0
|zN | = | ⟨Ψ0| eiκ1 ·̂r |Ψ0⟩ | ≃ 1, D = 0
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Bloch orbitals in 1d (insulator)
Before the thermodynamic limit: N and L finite

PBCs over 14 cells: L = Ma, M = 14 in this drawing:

14 Bloch vectors in the Brillouin zone
14 orbitals in a band

The ground state |Ψ0⟩ is a Slater determinant:
14 Bloch orbitals (spinless electrons); Bloch vectors kj
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Bloch orbitals in 1d (insulator)
Before the thermodynamic limit: N and L finite

PBCs over 14 cells: L = Ma, M = 14 in this drawing:

14 Bloch vectors in the Brillouin zone
14 orbitals in a band

The ground state |Ψ0⟩ is a Slater determinant:
14 Bloch orbitals (spinless electrons); Bloch vectors kj
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P when |Ψ0⟩ is a Slater determinant

zN = ⟨Ψ0|ei 2π
L

∑
j xj |Ψ0⟩ = ⟨Ψ0|U|Ψ0⟩ = ⟨Ψ0|Ψ̃0⟩

Even |Ψ̃0⟩ is a Slater determinant

Theorem: ⟨Ψ|Ψ̃⟩ = det S

Single band case:

S(kj , kj ′) = ⟨ψkj |ψ̃kj′
⟩ =

∫ L

0
dx ψ∗

kj
(x)ei 2π

L xψkj′
(x).
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P when |Ψ0⟩ is a Slater determinant

zN = ⟨Ψ0|ei 2π
L

∑
j xj |Ψ0⟩ = ⟨Ψ0|U|Ψ0⟩ = ⟨Ψ0|Ψ̃0⟩

Even |Ψ̃0⟩ is a Slater determinant

Theorem: ⟨Ψ|Ψ̃⟩ = det S

Single band case:

S(kj , kj ′) = ⟨ψkj |ψ̃kj′
⟩ =

∫ L

0
dx ψ∗

kj
(x)ei 2π

L xψkj′
(x).
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P when |Ψ0⟩ is a Slater determinant

zN = ⟨Ψ0|ei 2π
L

∑
j xj |Ψ0⟩ = ⟨Ψ0|U|Ψ0⟩ = ⟨Ψ0|Ψ̃0⟩

Even |Ψ̃0⟩ is a Slater determinant

Theorem: ⟨Ψ|Ψ̃⟩ = det S

Single band case:

S(kj , kj ′) = ⟨ψkj |ψ̃kj′
⟩ =

∫ L

0
dx ψ∗

kj
(x)ei 2π

L xψkj′
(x).
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The (connection) matrix is very sparse

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0


The matrix element vanishes unless kj ′ = kj − 2π/L,
that is j ′ = j−1: the determinant factors.

zN = det S =
M∏

j=1

S(kj , kj−1)
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The Berry phase

Periodic factor in a Bloch orbital: ψk (x) = eikxuk (x)

S(kj , kj−1) =

∫ L

0
dx ψ∗

kj
(x)ei 2π

L xψkj−1(x)

=

∫ L

0
dx u∗

kj
(x)ukj−1(x)

= ⟨ukj |ukj−1⟩

γ(el) = Im ln
M∏

j=1

S(kj , kj−1) = −Im ln
M∏

j=1

⟨ukj−1 |ukj ⟩

King-Smith & Vanderbilt discretized formula (1993):

γ(el) =

∫
BZ

dk A(k) = i
∫

BZ
dk ⟨uk |

d
dk

uk ⟩ = − lim
M→∞

Im ln
M∏

j=1

⟨ukj−1 |ukj ⟩
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The Berry phase

Periodic factor in a Bloch orbital: ψk (x) = eikxuk (x)
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j=1

S(kj , kj−1) = −Im ln
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j=1

⟨ukj−1 |ukj ⟩

King-Smith & Vanderbilt discretized formula (1993):

γ(el) =

∫
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dk A(k) = i
∫
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Band insulators vs. band metals

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state (N = M),
7 occupied orbitals in the metallic state (N = M/2).
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Crystalline system of independent electrons
Before the thermodynamic limit: N and L finite

|Ψ0⟩ is written as a determinant of occupied Bloch orbitals,
in both the insulating and the metallic case.

Key difference:
The whole band is used to build the insulating |Ψ0⟩, while
only one half of the band is used for the metallic |Ψ0⟩.
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Insulators vs. metal

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0



Zero determinant in the metallic case!
In a band metal λ2 = ∞ even at finite N
In a band insulator λ2 ∝ Wannier fct’s quadratic spread ΩI



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Why a “Theory of the insulating state”?

2 Quantum geometry & Hilbert spaces
Polarization
A Z2 topological invariant
Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d
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Mott metal-insulator transition in HN chains
Stella, Attaccalite, Sorella & Rubio, PRB 2011

STRONG ELECTRONIC CORRELATION IN THE HYDROGEN . . . PHYSICAL REVIEW B 84, 245117 (2011)
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FIG. 1. (Color online) (a) Total energy per atom as a function
of the interatomic distance from VMC calculations of periodic
chains with 18, 34, 50, and 66 H atoms in the supercell. (Data are
almost superimposed at the scale of this figure; see also Table I.)
(b) Comparison between the total energy per atom of a finite H50

chain obtained by VMC and DMRG (Ref. 3).

III. RESULTS

In Fig. 1(a), we show the convergence of the total energy
per atom by increasing the number of H atoms per supercell
for several interatomic distances. We note that the H50 periodic
H chain is already well converged at the scale of this figure.
To follow the fine detail of the convergence, the values of the
total energy per atom details have been also listed in Table I.

In Fig. 1(b), a direct comparison between the VMC total
energy for the H50 finite chain and the benchmark DMRG
results obtained by using a STO-6G basis set3 demonstrates the
accuracy of our optimized JAGP variational wave function.27

In this case, to have a fair comparison against the DMRG
data, PBCs have not been employed to obtain the VMC results
showed in Fig. 1(b). The difference between the total energy
of H50 chains with and without PBCs and the same interatomic
distance is of the order of few mHa per atom.

Having verified the quality of the variational wave function,
in Fig. 2(a) we plot the electronic localization length λN in
units of the interatomic distance a as a function of a. For all

TABLE I. Total energy per atom as a function of the interatomic
distance a for the same periodic chains of Fig. 1(a). The VMC error
on the last digit is indicated in parentheses.

a H18 H34 H50 H66

1.0 −0.40751(4) −0.41639(3) −0.41380(3) −0.41358(2)
1.5 −0.55402(2) −0.55156(1) −0.55099(1) −0.55070(1)
2.0 −0.56480(2) −0.56329(1) −0.56296(1) −0.56284(1)
2.5 −0.54747(2) −0.54699(1) −0.54639(1) −0.54682(1)
3.0 −0.52796(2) −0.52770(2) −0.52717(1) −0.52727(1)
3.5 −0.51263(3) −0.51308(2) −0.51459(2) −0.51508(1)
4.0 −0.50458(3) −0.50556(4) −0.50599(2) −0.50626(1)
4.5 −0.50080(3) −0.50206(1) −0.50222(1) −0.50237(1)
5.0 −0.50014(2) −0.50029(1) −0.50047(1) −0.50063(1)
6.0 −0.49962(1) −0.49971(1) −0.49972(1) −0.49965(1)
7.0 −0.49980(1) −0.49981(1) −0.49979(1) −0.49972(1)

 0
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λ N
 /a

(a)

VMC H18 
VMC H34 
VMC H50 
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FIG. 2. (Color online) (a) Electronic localization length λN

divided by the interatomic distance a as a function of a, for the
same chains of Fig. 1(a). (d) Modulus of the complex polarization
|zN | as a function of the interatomic distance for the same chains
of (c).

the supercells considered, we find that

λN/a ∝
{ |a − ac|η if a < ac,

a−1 if a > ac,
(6)

where η ≃ 0.5 and ac ≃ 3.5 (a.u.). This critical behavior is also
in agreement with the sudden switch from |z| ≃ 0 to |z| ≃ 1
visible in Fig. 2(b), i.e., to the crossover between a (finite-size)
metal and an insulator, namely a Mott-Hubbard insulator.1

To further characterize the nature of the weakly and strongly
correlated regimes of the H chain, we have investigated the
spin-spin,

fss(i − j ) = ⟨#N |Ŝ(i)
z Ŝ(j )

z |#N ⟩, (7)

and the dimer-dimer,

fdd (i − j ) = ⟨#N |Ŝ(i)
z Ŝ(i+1)

z Ŝ(j )
z Ŝ(j+1)

z |#N ⟩, (8)

correlation functions, where Ŝ(i)
z measures the transverse

component of the electronic spin about the ith H atom of the
chain. By neglecting logarithmic corrections, we have fitted
these functions by28

fss(i − j ) = ass

(i − j )2
+ bss

cos[π (i − j )]
(i − j )Kss

, (9)

fdd (i − j ) = add + bdd

cos[π (i − j )]
(i − j )Kdd

(10)

245117-3

Paradigmatic system
for the Mott transition

λ2
N = − 1

N

(
L

2π

)2

ln |zN |2

Transition: ≃ 3.5 bohr



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Why a “Theory of the insulating state”?

2 Quantum geometry & Hilbert spaces
Polarization
A Z2 topological invariant
Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Model 1d ionic crystal

γ = Im ln ⟨Ψ0|ei 2π
L (

∑
j xj−

∑
ℓ ZℓXℓ)|Ψ0⟩ = π (mod 2π)

Z2-odd: P = e/2 mod e

Tight-binding Hamiltonian:

H =
∑

j

[ (−1)j∆ |j⟩⟨j | − t |j + 1⟩⟨j | − t |j⟩⟨j + 1| ]

In second quantization notations:

H =
∑

j

[ (−1)j∆ c†
j cj − t c†

j cj+1 − t c†
j+1cj ]
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Model 1d ionic crystal

γ = Im ln ⟨Ψ0|ei 2π
L (

∑
j xj−

∑
ℓ ZℓXℓ)|Ψ0⟩ = π (mod 2π)

Z2-odd: P = e/2 mod e

Tight-binding Hamiltonian:

H =
∑

j

[ (−1)j∆ |j⟩⟨j | − t |j + 1⟩⟨j | − t |j⟩⟨j + 1| ]

In second quantization notations:

H =
∑

j

[ (−1)j∆ c†
j cj − t c†

j cj+1 − t c†
j+1cj ]
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Model 1d ionic crystal

Band structure:

ϵ(k) = ±
√
∆2 + 4t2 cos2 ka/2

Insulator at half filling
Density of states D(ϵ)dϵ : Red plot
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Tight binding 1d binary crystal again

Introducing spin:

H =
∑
jσ

[ (−1)j∆ c†
jσcjσ − t(c†

jσcj+1σ + H.c.) ]

Introducing Hubbard on-site repulsion:

H =
∑
jσ

[ (−1)j∆ c†
jσcjσ − t(c†

jσcj+1σ + H.c.)] + U
∑

j

nj↑nj↓.
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The Z2 invariant

P = − e
2π

Im ln ⟨Ψ0|ei 2π
L (

∑
j xj−

∑
ℓ ZℓXℓ)|Ψ0⟩

Matrix element real in inversion-symmetric systems:
⟨Ψ0|U |Ψ0⟩ > 0 =⇒ Z2-even
⟨Ψ0|U |Ψ0⟩ < 0 =⇒ Z2-odd

Topological invariant “protected” by inversion symmetry
Parity may switch only crossing a metallic state:

|⟨Ψ0|ei 2π
L (

∑
j xj−

∑
ℓ ZℓXℓ)|Ψ0⟩| = |⟨Ψ0|ei 2π

L
∑

j xj |Ψ0⟩| = |zN | = 0
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Topological insulator-insulator transition

Plot of λ2 at half filling:

⟨x2⟩c measures the localization of the many–body

wavefunction as a whole (no single–particle orbitals

exist for U ≠ 0).

Wavefunction localized in the band regime and in

the Mott regime; delocalized at the transition.

U

⟨x2⟩c

R. Resta – Insulators and metals – 27
Metallic only for a special U value
On the left it is a band-like insulator
On the right it is a Mott-like insulator
Topological transition: From Z2-odd to Z2-even
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Topological insulator-insulator transition

Plot of λ2 at half filling:

⟨x2⟩c measures the localization of the many–body

wavefunction as a whole (no single–particle orbitals

exist for U ≠ 0).

Wavefunction localized in the band regime and in

the Mott regime; delocalized at the transition.

U

⟨x2⟩c

R. Resta – Insulators and metals – 27
Metallic only for a special U value
On the left it is a band-like insulator
On the right it is a Mott-like insulator
Topological transition: From Z2-odd to Z2-even
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1 Why a “Theory of the insulating state”?

2 Quantum geometry & Hilbert spaces
Polarization
A Z2 topological invariant
Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d
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Kohn’s Hamiltonian in the OBCs Hilbert space

Same Hamiltonian with a “flux”, but now within OBCs:

Ĥκ =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂

The operator r̂ =
∑

i ri is well defined
|Ψ̃0κ⟩ = e−iκ·̂r|Ψ0⟩ obeys Schrödinger Eq.
It also obeys OBCs

Ergo e−iκ·̂r|Ψ0(0)⟩ is the ground eigenstate of Ĥκ
with eigenvalue E0, κ-independent:

|∂καΨ0⟩ = i r̂α|Ψ0⟩
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Kohn’s Hamiltonian in the OBCs Hilbert space

Same Hamiltonian with a “flux”, but now within OBCs:

Ĥκ =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂

The operator r̂ =
∑

i ri is well defined
|Ψ̃0κ⟩ = e−iκ·̂r|Ψ0⟩ obeys Schrödinger Eq.
It also obeys OBCs

Ergo e−iκ·̂r|Ψ0(0)⟩ is the ground eigenstate of Ĥκ
with eigenvalue E0, κ-independent:

|∂καΨ0⟩ = i r̂α|Ψ0⟩
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Many-body quantum metric within OBCs

Quantum metric tensor (derivatives taken at κ = 0))

g̃αβ =
1
N
(Re ⟨∂καΨ0|∂κβ

Ψ0⟩ − ⟨∂καΨ0|Ψ0⟩⟨Ψ0|∂κβ
Ψ0⟩ )

Intensive ground state property, gauge-invariant
(dimensions: squared length)

Basic tenet of the theory of the insulating state:
The OBCs metric g̃αβ in the thermodynamic limit

Diverges in all metals
Converges in all insulators
g̃xx converges to λ2 (isotropic case)
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Many-body quantum metric within OBCs

g̃αβ =
1
N
(Re ⟨∂καΨ0|∂κβ

Ψ0⟩ − ⟨∂καΨ0|Ψ0⟩⟨Ψ0|∂κβ
Ψ0⟩ )

=
1
N
( ⟨Ψ0|r̂αr̂β|Ψ0⟩ − ⟨Ψ0|r̂α|Ψ0⟩⟨Ψ0|r̂βΨ0⟩ )

=
1

2N

∫
drdr′ (r − r′)α(r − r′)β[n(r)n(r′)− n(2)(r, r′) ]

Exchange-correlation hole (integrates to −1):

nxc(r, r′) = n(2)(r, r′)− n(r)n(r′)

g̃αβ is the second moment of the XC hole,
averaged over the sample
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Special case: independent electrons

Isotropic system in dimension d :

g̃xx = λ2 =
1

2Nd

∫
drdr′ |r − r′|2[n(r)n(r′)− n(2)(r, r′) ]

Independent electrons: n(2)(r, r′) is a function of ⟨r| P |r′⟩:

n(r)n(r′)− n(2)(r, r′) = 2 |⟨r| P |r′⟩|2 (spinful)
= |⟨r| P |r′⟩|2 (spinless)

Special case: band insulators and band metals
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Special case: independent electrons

Isotropic system in dimension d :

g̃xx = λ2 =
1

2Nd

∫
drdr′ |r − r′|2[n(r)n(r′)− n(2)(r, r′) ]

Independent electrons: n(2)(r, r′) is a function of ⟨r| P |r′⟩:

n(r)n(r′)− n(2)(r, r′) = 2 |⟨r| P |r′⟩|2 (spinful)
= |⟨r| P |r′⟩|2 (spinless)

Special case: band insulators and band metals
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Outline

1 Why a “Theory of the insulating state”?

2 Quantum geometry & Hilbert spaces
Polarization
A Z2 topological invariant
Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d
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Tight binding 1d binary crystal

H =
∑

j

( ϵj |j⟩⟨j | − t |j + 1⟩⟨j | − t |j⟩⟨j + 1| )

Diagonal disorder: t fixed, ϵb − ϵa = 2∆ fixed

Crystalline case: ϵj = (−1)j∆
ABABABABABABABABABABABABABABABABABAB.............

Disordered case: random choice of ±1 factors
ABAABABBABABBAABABABBABAABABBABABBAA ............

Random choice with equal probability, average over many
replicas.
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Density of states
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At half filling both (crystalline and disordered) are insulating
At any other filling the crystalline is conducting and the
disordered is insulating.
What about g̃ (a.k.a. λ2)?
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Density of states
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At half filling both (crystalline and disordered) are insulating
At any other filling the crystalline is conducting and the
disordered is insulating.
What about g̃ (a.k.a. λ2)?
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Results of the simulations
(5000 sites, 1000 replicas, 1/2 & 1/4 filling)

g̃ =
1

2N

∫
dxdx ′ (x − x ′)2|⟨x | P |x ′⟩|2 =

a2

2N

N∑
ℓ,ℓ′=1

P2
ℓℓ′(ℓ− ℓ′)2

In the crystalline case g̃ converges to a finite limit for 1/2
filling, diverges for 1/4 (as expected).
In the disordered case g̃ always converge (to a very similar
value for the two cases).
The disordered case g̃ is about 20 times larger than the
crystalline one. Why?
The insulating mechanism (band vs. Anderson) is quite
different, despite the very similar Hamiltonian.
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1 Why a “Theory of the insulating state”?

2 Quantum geometry & Hilbert spaces
Polarization
A Z2 topological invariant
Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d
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A metal-semiconductor heterojunction

(001)Al/GaAs heterojunction

The local density of states at the Fermi level
is the obvious local marker to discriminate
insulating vs. metallic regions
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Local density of states at the Fermi level

LDOS
(macroscopic average)
at the Fermi level

Notice the evanescent
states
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The problem
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The local density of states at the Fermi level
cannot work for Anderson insulators: gapless

The OBCs quantum metric
Diverges in all metals
Converge to a finite value in all insulators
It can probe a inhomogeneous system locally
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The local density of states at the Fermi level
cannot work for Anderson insulators: gapless

The OBCs quantum metric
Diverges in all metals
Converge to a finite value in all insulators
It can probe a inhomogeneous system locally
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Simulations for 1d heterojunctions

Convert into a “localization density”

g̃ =
1
N

∫
dxdx ′ (x − x ′)2|⟨x | P |x ′⟩|2 (spinful)

n g̃ =
1
L

∫
dxdx ′ (x − x ′)2|⟨x | P |x ′⟩|2

= −1
L

∫
sample

dx ⟨x | P [x ,P] [x ,P] |x⟩

Local probe of the insulating state:

L(x) = −⟨x | P [x ,P] [x ,P] |x⟩
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Simulations for 1d heterojunctions
A. Marrazzo and R. Resta, Phys. Rev. Lett. 122, 166602 (2019)

Local OBCs metric

Given that the second line of Eq. (2) is (minus) the trace
of the operator P½rα;P"½rβ;P", divided by the sample
volume, we address here the issue of whether the insulating
or metallic organization of the electrons in the ground state
(in Kohn’s words) can be probed by evaluating the trace per
unit volume locally, i.e., by integrating the local function

F αβðrÞ ¼ −hrjP½rα;P"½rβ;P"jri ð3Þ

over a small region in the bulk of the sample. For a
homogeneous bounded crystallite, we therefore are going
to replace Lαβ, Eq. (2), with its local counterpart, i.e.,

L̃αβ ¼
1

Vcell

Z

cell
drF αβðrÞ; ð4Þ

where the cell is chosen at the crystallite center. An
analogous approach is adopted for either the disordered
cases (where the central cell is replaced by a larger region)
and for inhomogeneous cases (where the cell is chosen in
the appropriate region). The main object of the present
Letter is the real symmetric part of L̃αβ, which we are going
to name localization marker.
We start with 1D bounded chains, by adopting a tight-

binding nearest-neighbor Hamiltonian. In the crystalline
two-band case the chain is either insulating or metallic
according towhether the Fermi level lies in the gap or across
a band; in the disordered case the spectrum is gapless, but the
chain is always Anderson insulating [16]. We adopt the
same Hamiltonian as in Ref. [12], where the metric tensor
L ¼ Lxx, Eq. (2), has been addressed; as shown therein, L
diverges in metallic chains while it converges—to very
different values—in the band-insulating and Anderson-
insulating cases.
We have performed simulations over 1D “heterojunctions”

of up to 6 000 sites, made of two homogenous half-chains, in
all the possible combinations of metal, band insulator, and
Anderson insulator; the most significant results are displayed
in Fig. 1 [17]. The top panel shows the LDOS (crystalline
versus disordered), very similar to the global density of states
published in Ref. [12] (gapped versus gapless). This LDOS
implies that by setting μ ¼ 0 the left and right half-chains are
band insulating and Anderson insulating, respectively, while
by setting μ ¼ −1 the left and right half-chains are metallic
and Anderson insulating, respectively. In both cases the
LDOS cannot discriminate correctly, while L̃ accomplishes
the task; the metric tensor L, also shown, yields a kind of
average over the whole chain.
Next we switch to 2D simulations with model tight-

binding Hamiltonians on a honeycomb lattice with two
sites per primitive cell [17]; a typical flake is displayed
in Fig. 2. The electronic structure is described by the
orthonormal basis set jχRl

i, where Rl is a site index. The
ground-state projector, Eq. (2), assumes then the general
form

P ¼
X

RlRm

P ðRl;RmÞjχRl
ihχRm

j: ð5Þ

We start with the validation of our local theory in the
simplest cases, where the trace per unit volume of Eq. (3)
clearly discriminates the metallic versus insulating regions
and provides indeed the same message as the LDOS. We
stress once more the conceptual difference: the former
approach probes the ground state, while the latter probes
the spectrum.
Some results are provided in detail in the Supplemental

Material [17]; here we only discuss the insulating (half-
filling) homogeneous case: Fig. 3 shows the Cartesian trace
of Lαβ, of L̃αβ, and of an analogous “bulk” quantity where
the integral in Eq. (4) is evaluated over N=4 sites (see
Fig. 2), as a function of the flake size. It is remarkable that

FIG. 1. Results for 1D heterojunctions. Top panel: LDOS for a
chain which is crystalline in the left half, and disordered in the
right half. Middle panel: L̃ marker for a μ ¼ 0 chain (band
insulating in the left half, and Anderson insulating in the right
half). Botton panel: L̃ marker for a μ ¼ −1 chain (metallic in the
left half, and Anderson insulating in the right half).

PHYSICAL REVIEW LETTERS 122, 166602 (2019)

166602-2

Left half-chain: Metal Right half-chain: Anderson insulator
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1 Why a “Theory of the insulating state”?

2 Quantum geometry & Hilbert spaces
Polarization
A Z2 topological invariant
Resta-Sorella localization length
Drude weight

3 Paradigmatic examples of insulators
Band insulator
Linear chain of H atoms
A topological transition in 1d

4 Geometry within open boundary conditions
Model Anderson insulator in 1d
Local theory of the insulating state
Anderson metal-insulator transition in 3d
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The benchmark model 3d system

Need a 3d system to observe the M-I transition

A standard 3d tight-binding Hamiltonian is known from
previous literature to undergo the transition at Wc = 8.25
(W is the amount of tunable disorder, in appropriate units)

In our (and others’) simulations:
Computational samples are long rods of square section
Results are averaged over several disorder realizations

The novelty here: using the quantum metric to detect the
transition in the ground state
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Anderson transition as a ground-state property
T. Olsen, R. Resta, and I. Souza, Phys. Rev. B 95, 045109 (2017)

3

FIG. 1. (Color online). Localization length as a function of
rod length. The localization length diverges for small values
of W and saturates to a finite value for large values of W .

III. RESULTS

We consider the half-filled 3-dimensional tight-binding
model

H = t
X

<ij>

c†i cj +H.C.+W
X

i

"ic
†
i ci, (18)

where i, j denote sites on a simple cubic lattice, < ij >
are pairs of nearest neighbor sites and the onsite energies
"i are randomly picked from the interval [�1, 1]. W is
the disorder strength and the model has previously been
shown to exhibit an Anderson transition at Wc = W/t =
8.25.4–7

We have calculated the localization length within open
boundary conditions using Eq. (12) for various values of
W using rods of dimension L⇥ d⇥ d where L = 100 and
d = 3, 5, 7. To obtain the configurational average we cal-
culated 100 configurations and for each configuration the
long component of the localization tensor was obtained
by averaging the two short dimensions. In the following
we have put t = 1. The results for various values of W
are shown in Fig. 1 for di↵erent rod thicknesses d. We
clearly observe a tendency for the localization length to
saturate when W becomes large. In contrast, for small
W the localization length appears to be growing mono-
tonically with increasing rod length L. In the present
context the Anderson transition would emerge as a tran-
sition from a divergent to a finite localization length in
the limit of large L. While it seems plausible that this
may happen in the range of Wc = 8.25 it is very di�-
cult to extract a quantitative estimate of Wc from the
localization length alone. For example, for W = 10, the
localization length appears to be saturated at a finite
value for L ⇠ 100, but it is hard to verify if this is really
the case or if the localization length is merely increasing
too slowly to be observable on the present scale.

Instead, we will analyze the density matrix directly

FIG. 2. (Color online). Configurational averaged density
matrix. Top: density matrix with W = 5.0 with a double
logarithmic scale to the left and a semi-logarithmic scale to
the right. Bottom: same as top, but with W = 15.0. The
norm-squared density matrix is seen to be well approximated
by polynomial decay for W = 5.0 and exponential decay for
W = 15.0.

and show that the Anderson transition can be extracted
from the long range behavior of the configurational av-
eraged norm-squared density matrix. In Fig. 2 we
show the density matrix for W = 5 and for W = 15
on semi-logarithmic and double logarithmic scales calcu-
lated from 300 random disorder configurations. It should
be noted that when discussing the density matrix for dis-
ordered systems, one is usually referring to the configura-
tional average of the density matrix h⇢ic. The expression
for the localization length involves the norm square of the
density matrix and for disordered systems this should be
replaced by h|⇢|2ic which will be di↵erent from |h⇢ic|2.
In general it is therefore not possible to calculate the lo-
calization length in disordered systems from knowledge
of the density matrix alone. In fact, the density matrix
may exhibit exponential decay even though the localiza-
tion length is diverging. In Fig. 2 we display both h|⇢|2ic
and |h⇢ic|2 and while the two quantities seem to follow
similar scalings, h|⇢|2ic is a much smoother function and

Localization length λ =
√

g̃αα as a function of rod length L
(average over 100 disorder realizations)
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A smarter way to estimate Wc (by Thomas Olsen)

4

FIG. 3. (Color online). Cost functions calculated from a least
squares fit in the polynomial and exponentially decaying mod-
els. The displayed values of � are the fitted powers in the poly-
nomial model. The vertical red line in the value of W

c

= 8.25
obtained by di↵erent methods.4–7 The best estimate of the
metal insulator transition from the present method is where
C
Pol

/C
Exp

becomes unity. This happens at W ⇡ 8.5.

therefore easier to fit to a model. For W = 5, h|⇢|2ic ap-
pears to decay polynomially, whereas for W = 15, h|⇢|2ic
appears to decay exponentially. This is consistent with
Fig. 1, where it is seen that hx2ic appears diverging for
W = 5 and finite for W = 15. It should be noted, how-
ever, that exponential decay is a su�cient, but not a
necessary condition for a finite localization length. For
example, in a homogeneous system it can be seen from
Eq. (17) that the trace of the localization tensor will be
finite if h|⇢|2ic ⇠ r�� and � > 5.

In order to get a quantitative estimate for the Ander-
son transition, we consider two models for the long range
behavior of y = h|⇢|2ic representing polynomial and ex-
ponential decay:

ỹExp(r) = ae�br, (19)

ỹPol(r) = ↵r�� . (20)

Assuming Gaussian noise, the probability of obtaining
the data displayed in Fig. 2 within a model is given by

PModel ⇠ e�C
Model (21)

where CModel is the cost function

CModel =
X

i

(ỹModel(xi)� yi)2

2�2
i

. (22)

Here the index i represents lattice sites along the long
direction and yi are thus configurational averaged values
of h|⇢(xi)|2ic. We can then obtain the parameters in the
two models by a least squares fit and calculate the cost
function of either model. In Fig. 3 we show the fraction
of cost functions CPol/CExp obtained from a fit to the two

models and observe a very steep descent (two orders of
magnitude) between W = 8 and W = 9. Thus in the
limited model space of exponential and polynomial de-
cay, the probability of the norm squared density matrix
being exponentially decaying makes a transition from be-
ing nearly vanishing to being close to one in the vicinity
of the Anderson transition. It should also be noted that
the fitted powers in the region where polynomial decay is
most likely satisfy � < 5 such that the polynomial model
will yield a divergent localization tensor, whenever this
model is most likely.
In the present approach the critical disorder param-

eter Wc, where the Anderson transition occurs can be
estimated from the point where CPol/CExp = 1. From
the present simulations we get Wc ⇡ 8.5.

IV. CONCLUSIONS

This method could perhaps be used for ab initio pur-
poses ...
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Appendix A: Vertex corrections and the density
matrix

The evaluation of the localization tensor, can be for-
mulated either in terms of the conductivity tensor or the
density matrix. In this appendix we show that for the
localization tensor, the inclusion of vertex corrections
in the conductivity corresponds exactly to performing
the configurational average of the norm-squared density
h|⇢|2ic, whereas the quantity |h⇢ic|2 corresponds to ne-
glecting vertex corrections in the conductivity. For this
purpose we start by reviewing the Streda formula for
the dynamic conductivity. The result then follows im-
mediately by recasting the localization tensor in terms of
Greens functions.

1. Streda formula

The Kubo formula for the conductivity is straightfor-
ward to derive from time-dependent perturbation theory.
For non-interacting particles it reads

�ij(!) =
ie2

!⌦

X

mn

fm � fn
("n � "m � ~! + i⌘)

hm|v̂j |nihn|v̂i|mi,

(A1)

where the limit of ⌘ ! 0 is understood. We now write
this as

Our best estimate: Wc = 8.5
We are probing “the organization” of the electrons in their ground state
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Thank you for your
attention!


	Why a ``Theory of the insulating state''?
	Quantum geometry & Hilbert spaces
	Polarization
	A Z2 topological invariant
	Resta-Sorella localization length
	Drude weight

	Paradigmatic examples of insulators
	Band insulator
	Linear chain of H atoms
	A topological transition in 1d

	Geometry within open boundary conditions
	Model Anderson insulator in 1d
	Local theory of the insulating state
	Anderson metal-insulator transition in 3d


