Confident Off-Policy Evaluation and Selection through Self-Normalized Importance Weighting

Csaba Szepesvári

June 25, 2020

University of Alberta and DeepMind IST, Lisbon, June 25, 2020

Collaborators

- Ilja Kuzborskij
- Claire Vernade
- András György

Off-Policy Contextual Bandit Model

Model: $(P_X, P_{R|X,A}, \pi_b)$

- P_X prob. measure over context space \mathcal{X}
- $P_{R|X,A}$ prob. kernel producing reward dist. given $X \in \mathcal{X}$ and action $A \in [K]$
- π_b behaviour policy, e.g. $\pi_b(\cdot|X)$

Off-Policy Contextual Bandit Model

Model: $(P_X, P_{R|X,A}, \pi_b)$

- P_X prob. measure over context space \mathcal{X}
- $P_{R|X,A}$ prob. kernel producing reward dist. given $X \in \mathcal{X}$ and action $A \in [K]$
- π_b behaviour policy, e.g. $\pi_b(\cdot|X)$

Contextual off-policy evaluation problem

- An agent observes indep. $S = ((X_1, A_1, R_1), \dots, (X_n, A_n, R_n))$ $A_i \sim \pi_b(\cdot|X_i), X_i \sim P_X, R_i \sim P_{R|X,A}$
- An agent follows a randomized target policy π

Goal: estimate the value $v(\pi)$ of that policy:

$$v(\pi) = \int_{\mathcal{X}} \sum_{a \in [K]} \pi(a|x) r(x, a) dP_X(x)$$

where
$$r(x, a) = \int u \, \mathrm{d}P_{R|X,A}(u|x, a)$$
.

Value estimation through Importance Sampling

Many ways to do that...

At the core of many is to use importance weights

$$W_i = rac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)}$$
 $i \in [n]$.

For example, (unbiased) importance sampling estimator

$$\hat{\mathbf{v}}^{ ext{IS}}(\pi) = rac{1}{n}\sum_{i=1}^{n}W_{i}R_{i}$$
 .

Value estimation through Importance Sampling

Many ways to do that...

At the core of many is to use importance weights

$$W_i = rac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)} \qquad i \in [n] \; .$$

For example, (unbiased) importance sampling estimator

$$\hat{v}^{\scriptscriptstyle \mathrm{IS}}(\pi) = rac{1}{n} \sum_{i=1}^n W_i R_i \; .$$

High variance!

For example, $W_i \sim p$, where p is heavy-tailed (disagreeing policies)

Value estimation through DR

Another popular estimator is Doubly-Robust estimator

$$\hat{v}^{\mathrm{DR}}(\pi) = rac{1}{n}\sum_i \pi(A_i|X_i)\hat{\eta}(X_i,A_i) + rac{1}{n}\sum_i W_i(R_i - \hat{\eta}(X_i,A_i)),$$

for some fixed $\hat{\eta} : (x, a) \rightarrow [0, 1]$ (typically a reward estimator learned on a held-out dataset).

- Unbiased
- Reduces variance, but we need a reward modeling (training, tuning, dataset splitting)...

Value estimation through Importance Sampling

Something simpler — a weighted importance sampling estimator

$$\hat{v}^{\text{WIS}}(\pi) = \frac{\sum_{i=1}^{n} W_i R_i}{\sum_{i=1}^{n} W_i}$$

- Biased (asymptotically unbiased (IID))
- In practice, low variance (self-normalization)

Some intuition:
$$\operatorname{Var}(\hat{\mathbf{v}}^{\text{WIS}}(\pi)) \leq \mathbb{E}\left[\sum_{k} \frac{W_{k}^{2}}{\left(\sum_{i} W_{i}\right)^{2}}\right]$$

What about $v(\pi)$?

• Of course, estimator alone is not enough. We want:

$$1-e^{-x} \leq \mathbb{P}\Big(\hat{\mathbf{v}}(\pi)+arepsilon(x,S,\pi,\pi_b)\leq \mathbf{v}(\pi)\Big) \qquad x>0 \;.$$

Some challenges:

- Even for basic importance sampling $(W_1R_1 + \cdots + W_nR_n)/n$ it's non-trivial: unbiased, but W_i are **unbounded**
 - Excludes Hoeffding/Bernstein/McDiarmid

What about $v(\pi)$?

• Of course, estimator alone is not enough. We want:

$$1-e^{-x} \leq \mathbb{P}\Big(\hat{\mathbf{v}}(\pi)+arepsilon(x,S,\pi,\pi_b)\leq \mathbf{v}(\pi)\Big) \qquad x>0 \;.$$

Some challenges:

- Even for basic importance sampling $(W_1R_1 + \cdots + W_nR_n)/n$ it's non-trivial: unbiased, but W_i are **unbounded**
 - Excludes Hoeffding/Bernstein/McDiarmid
 - We can "truncate", e.g. $W_i^{\lambda} = \pi(A_i|X_i)/(\pi_b(A_i|X_i) + \lambda)$ for some h.p. $\lambda > 0$.
 - Ugly! Needs tuning, doesn't always work...

What about $v(\pi)$?

• Of course, estimator alone is not enough. We want:

$$1-e^{-x} \leq \mathbb{P}\Big(\hat{\mathbf{v}}(\pi)+arepsilon(x,S,\pi,\pi_b)\leq \mathbf{v}(\pi)\Big) \qquad x>0 \;.$$

Some challenges:

- Even for basic importance sampling $(W_1R_1 + \cdots + W_nR_n)/n$ it's non-trivial: unbiased, but W_i are **unbounded**
 - Excludes Hoeffding/Bernstein/McDiarmid
 - We can "truncate", e.g. $W_i^{\lambda} = \pi(A_i|X_i)/(\pi_b(A_i|X_i) + \lambda)$ for some h.p. $\lambda > 0$.
 - Ugly! Needs tuning, doesn't always work...
- Variance is important: need bounds with empirical variance.
- Sometimes, estimator is not a sum of indep. elements (self-normalization).

Semi-empirical Efron-Stein Bound for WIS

Let's go back and pick WIS:

$$\hat{v}^{\text{WIS}}(\pi) = rac{1}{Z} \sum_{i=1}^{n} W_i R_i , \qquad Z = \sum_{i=1}^{n} W_i .$$

Theorem W.h.p.,

$$\begin{split} & v(\pi) \stackrel{\widetilde{\Omega}}{=} \left(B \cdot \left(\hat{v}^{\text{WIS}}(\pi) - \sqrt{V^{\text{WIS}} + \frac{1}{n}} \right) - \frac{1}{\sqrt{n}} \right)_{+} \\ & V^{\text{WIS}} = \sum_{k=1}^{n} \mathbb{E} \left[\left(\frac{W_{k}}{Z} + \frac{W_{k}'}{Z^{(k)}} \right)^{2} \middle| W_{1}^{k}, X_{1}^{n} \right] \qquad (" \text{ variance"}) \\ & B = \min \left(\mathbb{E} \left[\frac{n}{Z} \middle| X_{1}^{n} \right]^{-1}, 1 \right) , \qquad (\text{bias}) \end{split}$$

where $Z^{(k)} = Z + (W'_k - W_k)$, and W'_k indep. dist. as W_k .

Semi-empirical Efron-Stein Bound for WIS

Theorem W.h.p.,

$$v(\pi) \stackrel{\widetilde{\Omega}}{=} \left(B \cdot \left(\hat{v}^{\text{WIS}}(\pi) - \sqrt{V^{\text{WIS}} + \frac{1}{n}} \right) - \frac{1}{\sqrt{n}} \right)_{+}$$

$$V^{\text{WIS}} = \sum_{k=1}^{n} \mathbb{E} \left[\left(\frac{W_k}{Z} + \frac{W'_k}{Z^{(k)}} \right)^2 \middle| W_1^k, X_1^n \right] \qquad (" \text{ variance"})$$

$$B = \min \left(\mathbb{E} \left[\frac{n}{Z} \middle| X_1^n \right]^{-1}, 1 \right) , \qquad (\text{bias})$$

where $Z^{(k)} = Z + (W'_k - W_k)$, and W'_k indep. dist. as W_k .

- No truncation! No hyperparameters.
- Contexts are fixed.
- Needs knowledge of π_b only partly empirical:
 V^{WIS} and B can be computed exactly. Cost: n^K :-(Can approximate using Monte-Carlo simulation! :-)

Semi-empirical Efron-Stein Bound for WIS

Theorem W.h.p.,

$$v(\pi) \stackrel{\widetilde{\Omega}}{=} \left(B \cdot \left(\hat{v}^{\text{WIS}}(\pi) - \sqrt{V^{\text{WIS}} + \frac{1}{n}} \right) - \frac{1}{\sqrt{n}} \right)_{+}$$
$$V^{\text{WIS}} = \sum_{k=1}^{n} \mathbb{E} \left[\left(\frac{W_k}{Z} + \frac{W'_k}{Z^{(k)}} \right)^2 \middle| W_1^k, X_1^n \right] \qquad (" \text{ variance"})$$
$$B = \min \left(\mathbb{E} \left[\frac{n}{Z} \middle| X_1^n \right]^{-1}, 1 \right) , \qquad (\text{bias})$$

where $Z^{(k)} = Z + (W'_k - W_k)$, and W'_k indep. dist. as W_k .

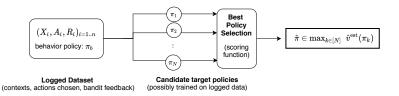
- No truncation! No hyperparameters.
- Contexts are fixed.

Recall some intuition:
$$\operatorname{Var}(\hat{\pmb{v}}^{\scriptscriptstyle\mathrm{WIS}}(\pi)) \leq \mathbb{E}\left[\sum_k \left(rac{W_k^2}{Z}
ight)^2
ight]$$

Is it any good?

The Best Policy Identification problem

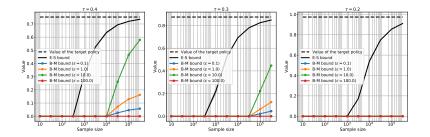
- We have a finite set of target policies Π .
- We do $\hat{\pi} \in \arg \max_{\pi \in \Pi} \hat{v}^{\text{est}}(\pi)$.
- We want to maximize $v(\hat{\pi})$
 - we'll use confidence bounds as \hat{v}^{est} .



Synthetic Experiments – Setup

- Fix *K* > 0
- $\pi_b(a) \propto e^{rac{1}{ au} \mathbb{I}\{a=1\}}$
- $\pi(a) \propto e^{rac{1}{ au} \mathbb{I}\{a=1\}}$
- $R_i = \mathbb{I}\{A_i = k\}, A_i \sim \pi_b(\cdot)$
- As $\tau \rightarrow 0$, π_b and π become increasingly misaligned

Results



Nonsynthetic Experiments – Setup

Target policies are
$$\left\{\pi^{\text{ideal}}, \pi^{\hat{\boldsymbol{\Theta}}_{\text{IS}}}, \pi^{\hat{\boldsymbol{\Theta}}_{\text{WIS}}}\right\}$$
 where
 $\pi^{\boldsymbol{\Theta}}(y = k \mid \boldsymbol{x}) \propto e^{\frac{1}{\tau} \boldsymbol{x}^{\top} \boldsymbol{\theta}_{k}}$

with two choices of parameters given by the optimization problems:

$$\hat{\boldsymbol{\Theta}}_{\mathsf{IS}} \in \argmin_{\boldsymbol{\Theta} \in \mathbb{R}^{d \times K}} \hat{\boldsymbol{\nu}}^{\scriptscriptstyle \mathrm{IS}}(\pi^{\boldsymbol{\Theta}}) \;, \qquad \hat{\boldsymbol{\Theta}}_{\mathsf{WIS}} \in \argmin_{\boldsymbol{\Theta} \in \mathbb{R}^{d \times K}} \hat{\boldsymbol{\nu}}^{\scriptscriptstyle \mathrm{WIS}}(\pi^{\boldsymbol{\Theta}}) \;.$$

- Trained by GD with $\eta = 0.01$, $T = 10^5$.
- $\tau = 0.1$ cold! Almost deterministic.

Table: Average test rewards of the target policy when chosen by each method of the benchmark.

name	Ecoli	Vehicle	Yeast
Size	336	846	1484
ESLB	$\textbf{0.913} \pm \textbf{0.263}$	$\textbf{0.716} \pm \textbf{0.389}$	$\textbf{0.912} \pm \textbf{0.267}$
DR	0.656 ± 0.410	0.610 ± 0.443	0.563 ± 0.392
IS (trunc+Bern)	$-\infty$	$-\infty$	$\textbf{0.916}\pm\textbf{0.262}$
Chebyshev-WIS	$-\infty$	$-\infty$	$-\infty$
Emp.Lik.	0.511 ± 0.298	0.455 ± 0.405	0.312 ± 0.325
PageBlok	OptDigits	SatImage	PenDigits
5473	5620	6435	10992
$\textbf{0.910} \pm \textbf{0.270}$	$\textbf{0.843} \pm \textbf{0.325}$	$\textbf{0.910} \pm \textbf{0.270}$	$\textbf{0.910} \pm \textbf{0.270}$
0.888 ± 0.291	0.616 ± 0.344	0.423 ± 0.361	0.565 ± 0.382
$\textbf{0.910} \pm \textbf{0.270}$	0.748 ± 0.404	0.658 ± 0.413	0.810 ± 0.345
$-\infty$	$-\infty$	$-\infty$	$-\infty$
0.669 ± 0.409	0.285 ± 0.359	0.634 ± 0.409	0.549 ± 0.426

$$\underbrace{\nu(\pi) - \mathbb{E}\left[\nu(\pi) \mid X_1^n\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[\nu(\pi) \mid X_1^n\right] - \mathbb{E}\left[\hat{\nu}^{\text{wis}}(\pi) \mid X_1^n\right]}_{\text{Bias}} + \underbrace{\mathbb{E}\left[\hat{\nu}^{\text{wis}}(\pi) \mid X_1^n\right] - \hat{\nu}^{\text{wis}}(\pi)}_{\text{Concentration}}$$

- 1. Concentration of contexts Hoeffding since X_1^n are IID. $\mathbb{E}[v(\pi) | X_1^n] = \mathbb{E}\left[\frac{1}{n}\sum_i W_i R_i | X_1^n\right].$
- 2. Bias IS is unbiased, let's try to "split" WIS into IS and denominator.

$$\underbrace{\nu(\pi) - \mathbb{E}\left[\nu(\pi) \mid X_1^n\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[\nu(\pi) \mid X_1^n\right] - \mathbb{E}\left[\hat{\nu}^{\text{wis}}(\pi) \mid X_1^n\right]}_{\text{Bias}} + \underbrace{\mathbb{E}\left[\hat{\nu}^{\text{wis}}(\pi) \mid X_1^n\right] - \hat{\nu}^{\text{wis}}(\pi)}_{\text{Concentration}}$$

- 1. Concentration of contexts Hoeffding since X_1^n are IID. $\mathbb{E}[v(\pi) | X_1^n] = \mathbb{E}\left[\frac{1}{n}\sum_i W_i R_i | X_1^n\right].$
- 2. Bias IS is unbiased, let's try to "split" WIS into IS and denominator.

Harris' inequality. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a non-increasing and $g : \mathbb{R}^n \to \mathbb{R}$ be a non-decreasing function. Then for real-valued random variables (X_1, \ldots, X_n) independent from each other, we have

$$\mathbb{E}[f(X_1,\ldots,X_n)g(X_1,\ldots,X_n)] \le \mathbb{E}[f(X_1,\ldots,X_n)] \mathbb{E}[g(X_1,\ldots,X_n)].$$

This gives us:

$$\mathbb{E}\left[\frac{\sum_{k=1}^{n} W_k R_k}{\sum_{k=1}^{n} W_k} \middle| X_1^n\right] \le \mathbb{E}\left[\frac{1}{\sum_{k=1}^{n} W_k} \middle| X_1^n\right] \mathbb{E}\left[\sum_{k=1}^{n} W_k R_k \middle| X_1^n\right]$$

$$\underbrace{\nu(\pi) - \mathbb{E}\left[\nu(\pi) \mid X_1^n\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[\nu(\pi) \mid X_1^n\right] - \mathbb{E}\left[\hat{\nu}^{\text{wis}}(\pi) \mid X_1^n\right]}_{\text{Bias}} + \underbrace{\mathbb{E}\left[\hat{\nu}^{\text{wis}}(\pi) \mid X_1^n\right] - \hat{\nu}^{\text{wis}}(\pi)}_{\text{Concentration}}$$

Concentration... (Remember) Some challenges:

- Even for basic importance sampling $(W_1R_1 + \cdots + W_nR_n)/n$ it's non-trivial: unbiased, but W_i are **unbounded**
 - Excludes Hoeffding/Bernstein/McDiarmid
 - We can "truncate", e.g. $W_i^{\lambda} = \pi(A_i|X_i)/(\pi_b(A_i|X_i) + \lambda)$ for some h.p. $\lambda > 0$.
 - Ugly! Needs tuning, doesn't always work...

$$\underbrace{\nu(\pi) - \mathbb{E}\left[\nu(\pi) \mid X_1^n\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[\nu(\pi) \mid X_1^n\right] - \mathbb{E}\left[\hat{\nu}^{\text{wis}}(\pi) \mid X_1^n\right]}_{\text{Bias}} + \underbrace{\mathbb{E}\left[\hat{\nu}^{\text{wis}}(\pi) \mid X_1^n\right] - \hat{\nu}^{\text{wis}}(\pi)}_{\text{Concentration}}$$

Concentration... (Remember) Some challenges:

- Even for basic importance sampling $(W_1R_1 + \cdots + W_nR_n)/n$ it's non-trivial: unbiased, but W_i are **unbounded**
 - Excludes Hoeffding/Bernstein/McDiarmid
 - We can "truncate", e.g. $W_i^{\lambda} = \pi(A_i|X_i)/(\pi_b(A_i|X_i) + \lambda)$ for some h.p. $\lambda > 0$.
 - Ugly! Needs tuning, doesn't always work...
- Variance is important: need bounds with empirical variance.
- Sometimes, estimator is not a sum of indep. elements (self-normalization).

Concentration of \hat{v}^{wis}

Goal: lower bound on $\mathbb{E}\left[\hat{v}^{\text{WIS}}(\pi) \mid X_1^n\right] - \hat{v}^{\text{WIS}}(\pi)$.

Theorem Assume elements of $S = (X_1, X_2, ..., X_n)$ are independent, and let

$$\Delta = f(S) - \mathbb{E}[f(S)] , \quad V = \sum_{k=1}^{n} \mathbb{E}\left[(f(S) - f(S^{(k)}))^2 \, \Big| \, X_1, \dots, X_k \right]$$

Then, for any $x \ge 2$, y > 0,

$$\mathbb{P}\left(|\Delta| \ge \sqrt{(V+y)\left(2 + \ln(1+V/y)\right)x}\right) \ge e^{-x}$$

Take $f = \hat{v}^{\text{WIS}}$, condition on X_1^n , and choose y = 1/n. Algebra gives that V obeys

$$V \leq \sum_{k=1}^{n} \mathbb{E}\left[\left(\frac{W_k}{Z} + \frac{W'_k}{Z^{(k)}}\right)^2 \middle| W_1^k, X_1^n\right]$$

Canonical Pairs – [dlPLS08]

We call (A, B) a canonical pair if $B \ge 0$ and

$$\sup_{\lambda \in \mathbb{R}} \mathbb{E} \left[\exp \left(\lambda A - rac{\lambda^2}{2} B^2
ight)
ight] \leq 1 \; .$$

Theorem 12.4 of [dlPLS08]

Theorem

Let (A, B) be a canonical pair. Then, for any t > 0,

$$\mathbb{P}\left(\frac{|A|}{\sqrt{B^2 + (\mathbb{E}[B])^2}} \ge t\right) \le \sqrt{2}e^{-\frac{t^2}{4}}$$

In addition, for all $t \ge \sqrt{2}$ and y > 0,

$$\mathbb{P}\left(\frac{|A|}{(B^2+y)\left(1+\frac{1}{2}\ln\left(1+\frac{B^2}{y}\right)\right)} \geq t\right) \leq e^{-\frac{t^2}{2}} \ .$$

Recall

$$\Delta = f(S) - \mathbb{E}[f(S)] , \quad V = \sum_{k=1}^{n} \mathbb{E}\left[(f(S) - f(S^{(k)}))^2 \, \middle| \, X_1, \ldots, X_k \right]$$

Lemma (Δ, \sqrt{V}) is a canonical pair.

Proof.

Let $\mathbb{E}_k[\cdot]$ stand for $\mathbb{E}[\cdot | X_1, \ldots, X_k]$. The Doob martingale decomposition of $f(S) - \mathbb{E}[f(S)]$ gives

$$f(S) - \mathbb{E}[f(S)] = \sum_{k=1}^{n} D_k \,,$$

where $D_k = \mathbb{E}_k[f(S)] - \mathbb{E}_{k-1}[f(S)] = \mathbb{E}_k[f(S) - f(S^{(k)})]$ and the last equality follows from the elementary identity $\mathbb{E}_{k-1}[f(S)] = \mathbb{E}_k[f(S^{(k)})].$

Conclusions

- Confident off-policy estimation
- Self-normalized importance weighting estimator
- Harris-inequality + Efron-Stein: Value lower bound
- Appears to be tighter than alternatives
- Where is the limit? Bootstrapping? Honest coverage?

[dIPLS08] V. H. de la Peña, T. L. Lai, and Q.-M. Shao. Self-normalized processes: Limit theory and Statistical Applications. Springer Science & Business Media, 2008.