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® PRrix,a — prob. kernel producing reward dist. given X € X
and action A € [K]
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Off-Policy Contextual Bandit Model
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and action A € [K]

® 7, — behaviour policy, e.g. mp(+|X)

Contextual off-policy evaluation problem

® An agent observes indep. S = ((X1, A1, R1),...,(Xn, An, Rn))
Ai ~ mp(-[X;), Xi ~ Px, Ri ~ Prix,a
® An agent follows a randomized target policy

Goal: estimate the value v(7) of that policy:

v(r) = /X S w(alx)r(x, a) dPx(x)

a€[K]

where r(x,a) = [ udPgx a(ulx, a).



Value estimation through Importance Sampling

Many ways to do that...

At the core of many is to use importance weights

_ m(AilX)

i—m i€ln].

For example, (unbiased) importance sampling estimator
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Value estimation through Importance Sampling

Many ways to do that...

At the core of many is to use importance weights
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For example, (unbiased) importance sampling estimator

‘ 1 —
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High variance!

For example, W; ~ p, where p is heavy-tailed (disagreeing policies)



Value estimation through DR

Another popular estimator is Doubly-Robust estimator

OPR (1) = %Z?T(A,"X (Xi, Aj) ZW (X, Ai),

i

for some fixed 7 : (x, a) — [0, 1] (typically a reward estimator
learned on a held-out dataset).

® Unbiased

® Reduces variance, but we need a reward modeling (training,
tuning, dataset splitting)...



Value estimation through Importance Sampling

Something simpler — a weighted importance sampling estimator

oVS(7) = 27:1 WiR; )
i Wi

® Biased (asymptotically unbiased (1ID))

® In practice, low variance (self-normalization)

Some intuition: Var(vV'(7)) < E {Zk (Zw‘fv)z]



What about v(7)?

e Of course, estimator alone is not enough. We want:
l—e*< IP’(\A/(W) +e(x,S,m,mp) < v(7r)> x>0.

Some challenges:
® Even for basic importance sampling (Wi Ry + -+ W,R,)/n
it's non-trivial: unbiased, but W; are unbounded
® Excludes Hoeffding/Bernstein/McDiarmid
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® Variance is important: need bounds with empirical variance.

® Sometimes, estimator is not a sum of indep. elements
(self-normalization).



Semi-empirical Efron-Stein Bound for WIS

Let's go back and pick WIS:

n

oIS ZWR,, Z=) W.

i=1

Theorem W.h.p.,
Q ; / 1 1
V(w) = (B. (o‘“s(ﬂ—) YA VA ) _ )
n Vvn .
, Wk w
WIS __ k
Vv ZE ( G )>
B [ X{ - i
= min (E [? ‘ 1} ,1) , (bias)

where Z(K) = Z + (W] — W), and W] indep. dist. as Wi.

Wk, X ("variance”)




Semi-empirical Efron-Stein Bound for WIS
Theorem W.h.p.,,

ﬁ ~WIS WIS 1 — L
v(7r):<B-<v (m) =4/ V —I—n> ﬁ)+

VW‘S—ZE ( <+ W4)>
B = min <E [2 ’ Xl”] ,1) , (bias)

where Z(K) = Z + (W] — W), and W] indep. dist. as W,.

® No truncation! No hyperparameters.

W1k7 Xln

("variance”)

e Contexts are fixed.
® Needs knowledge of 7w, — only partly empirical:

VWS and B can be computed exactly. Cost: n® :-(
Can approximate using Monte-Carlo simulation! :-)



Semi-empirical Efron-Stein Bound for WIS
Theorem W.h.p.,

N
VW‘S—ZE (Wk Wk)>
B = min (E[Z‘X{’] ,1) :

where Z(K) = Z + (W]

W1k7 Xf

("variance”)

(bias)

), and W] indep. dist. as Wj
® No truncation! No hyperparameters

e Contexts are fixed

~ w2\ 2
Recall some intuition: Var(vV'*(7)) <E |3, (%)



Is it any good?

The Best Policy Identification problem

® We have a finite set of target policies I.
® We do # € arg max, . V(7).

® We want to maximize v(7)
— we'll use confidence bounds as 7°t.

()

\"J Best
Policy
(Xiy Aiy Ri)iz1.n @ ion A ~est
7 € maxge|y) O (k)
behavior policy: i (scoring
function)
Logged Dataset Candidate target policies

(contexts, actions chosen, bandit feedback)  (possibly trained on logged data)



Synthetic Experiments — Setup

Fix K >0

mp(a) o erHa=1}

m(a) er1a=1)

Ri = T{A; = k}, Ai ~ mp(")

As 7 — 0, mp and 7™ become increasingly misaligned



Results
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Nonsynthetic Experiments — Setup

Target policies are {wideal,we's,wew's} where

Oy = k| x) erx O

with two choices of parameters given by the optimization problems:

Os € argmin 5(7®) | Owis € argmin VWS (7).

OcRIXK OcRIxK

® Trained by GD with = 0.01, T = 10°.

e 7 =0.1 — cold! Almost deterministic.



Table: Average test rewards of the target policy when chosen by each
method of the benchmark.

name Ecoli Vehicle Yeast
Size 336 846 1434
ESLB 0.913 + 0.263 | 0.716 + 0.389 | 0.912 + 0.267
DR 0.656 + 0.410 | 0.610 & 0.443 0.563 + 0.392
IS (trunc+Bern) —00 —00 0.916 + 0.262
Chebyshev-WIS —00 —00 —00
Emp.Lik. 0.511 4+ 0.298 | 0.455 4 0.405 0.312 + 0.325
PageBlok OptDigits Satlmage PenDigits
5473 5620 6435 10992
0.910 + 0.270 | 0.843 + 0.325 | 0.910 + 0.270 | 0.910 + 0.270
0.888 £ 0.291 | 0.616 4+ 0.344 | 0.423 + 0.361 | 0.565 + 0.382
0.910 £ 0.270 | 0.748 £ 0.404 | 0.658 + 0.413 | 0.810 &+ 0.345
—00 —00 —00 —00
0.669 + 0.409 | 0.285 4+ 0.359 | 0.634 4+ 0.409 | 0.549 + 0.426




Proof sketch

v(m) = Ev(m) | X7+ E[v(m) | X7] = E [0**(m) | X[] +E [0**(7) | X[] — 0*(r)

Concentration of contexts Bias Concentration

1. Concentration of contexts — Hoeffding since X{" are IID.
E[v(m) | X{] = E [} 5, WiRi | X{].

2. Bias — IS is unbiased, let's try to “split” WIS into IS and
denominator.
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Concentration of contexts Bias Concentration

1. Concentration of contexts — Hoeffding since X{" are IID.
E[v(m) | X[]=E [5 X; WiRi [ X7].
2. Bias — IS is unbiased, let's try to “split” WIS into IS and

denominator.

Harris’ inequality. Let f : R” — R be a non-increasing and
g : R" — R be a non-decreasing function. Then for
real-valued random variables (Xi,..., X,) independent from
each other, we have

E[f(X1,..., X)g(X1, ..., X)) < E[f(X1,...,X)]E[g(X1,...,X)].
This gives us:

E [ZZ:l Wi Rk
ZZ:1 Wi

1

~r 1/ Xy
Zk:l Wi '

Xl"] E

] <

Z W, Ry
k=1
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® Variance is important: need bounds with empirical variance.

® Sometimes, estimator is not a sum of indep. elements
(self-normalization).



Concentration of ("
Goal: lower bound on E [0V3(7) | X'] — V™V'S(7r).

Theorem Assume elements of S = (X1, Xa,..., X,) are
independent, and let

A =f(S)—E[f(S)], V= ZE[ S) — £(sWY) ‘Xl,...xk}.

Then, forany x > 2, y >0,

P (1A= VIV+y) @+ + V/y))x) = e

Take f = U™'S, condition on X/, and choose y = 1/n. Algebra

gives that V obeys
k A
Z(k)

W1k7 )<1,7

V<ZE




Canonical Pairs — [dIPLS08]

We call (A, B) a canonical pair if B > 0 and

)\2
sup E [exp <)\A— 82>] <1.
AER 2



Theorem 12.4 of [dIPLS08]

Theorem
Let (A, B) be a canonical pair. Then, for any t > 0,

A 2
IP’( 7+ (E[B]) Zt)gﬁe .

In addition, for all t > /2 and y > 0,

Al

P((Bz+y)(1+;|n(1+3;)) >t)

IA
('D‘
N



Recall

= £(S) —E[f(S)], V= ZE[(f £(s)) ‘xl,...
Lemma
(A,V/V) is a canonical pair.
Proof.

Let E4[-] stand for E[- | X1, ..., Xk]. The Doob martingale
decomposition of 7(S) — E[f(S)] gives

F(S) — EIf(S ]—Zok,

where Dy = E[f(S)] — Ex_1[f(S)] = Ex[f(S) — F(S¥))] and the

last equality follows from the elementary identity
Er—1[f(S)] = Ex[F(SM)].



Conclusions

Confident off-policy estimation

Self-normalized importance weighting estimator
® Harris-inequality + Efron-Stein: Value lower bound

® Appears to be tighter than alternatives

Where is the limit? Bootstrapping? Honest coverage?



[dIPLS08] V. H. de la Pefia, T. L. Lai, and Q.-M. Shao.
Self-normalized processes: Limit theory and Statistical
Applications. Springer Science & Business Media, 2008.



