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Off-Policy Contextual Bandit Model
Model: (PX ,PR|X ,A, πb)

• PX – prob. measure over context space X
• PR|X ,A – prob. kernel producing reward dist. given X ∈ X

and action A ∈ [K ]

• πb – behaviour policy, e.g. πb(·|X )

Contextual off-policy evaluation problem

• An agent observes indep. S = ((X1,A1,R1), . . . , (Xn,An,Rn))

Ai ∼ πb(·|Xi ), Xi ∼ PX , Ri ∼ PR|X ,A
• An agent follows a randomized target policy π

Goal: estimate the value v(π) of that policy:

v(π) =

∫
X

∑
a∈[K ]

π(a|x)r(x , a)dPX (x)

where r(x , a) =
∫
u dPR|X ,A(u|x , a).
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Value estimation through Importance Sampling

Many ways to do that...

At the core of many is to use importance weights

Wi =
π(Ai |Xi )

πb(Ai |Xi )
i ∈ [n] .

For example, (unbiased) importance sampling estimator

v̂ is(π) =
1

n

n∑
i=1

WiRi .

High variance!

For example, Wi ∼ p, where p is heavy-tailed (disagreeing policies)
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Value estimation through DR

Another popular estimator is Doubly-Robust estimator

v̂dr(π) =
1

n

∑
i

π(Ai |Xi )η̂(Xi ,Ai ) +
1

n

∑
i

Wi (Ri − η̂(Xi ,Ai )),

for some fixed η̂ : (x , a)→ [0, 1] (typically a reward estimator
learned on a held-out dataset).

• Unbiased

• Reduces variance, but we need a reward modeling (training,
tuning, dataset splitting)...



Value estimation through Importance Sampling

Something simpler — a weighted importance sampling estimator

v̂wis(π) =

∑n
i=1 WiRi∑n
i=1 Wi

.

• Biased (asymptotically unbiased (IID))
• In practice, low variance (self-normalization)

Some intuition: Var(v̂wis(π)) ≤ E
[∑

k
W 2

k

(
∑

i Wi)
2

]



What about v(π)?

• Of course, estimator alone is not enough. We want:

1− e−x ≤ P
(
v̂(π) + ε(x ,S , π, πb) ≤ v(π)

)
x > 0 .

Some challenges:
• Even for basic importance sampling (W1R1 + · · ·+ WnRn)/n

it’s non-trivial: unbiased, but Wi are unbounded
• Excludes Hoeffding/Bernstein/McDiarmid

• We can “truncate”, e.g. W λ
i = π(Ai |Xi )/(πb(Ai |Xi ) + λ) for

some h.p. λ > 0.
• Ugly! Needs tuning, doesn’t always work...

• Variance is important: need bounds with empirical variance.

• Sometimes, estimator is not a sum of indep. elements
(self-normalization).
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Semi-empirical Efron-Stein Bound for WIS

Let’s go back and pick WIS:

v̂wis(π) =
1

Z

n∑
i=1

WiRi , Z =
n∑

i=1

Wi .

Theorem W.h.p.,

v(π)
Ω̃
=

(
B ·

(
v̂wis(π)−

√
Vwis +

1

n

)
− 1√

n

)
+

Vwis =
n∑

k=1

E

[(
Wk

Z
+

W ′
k

Z (k)

)2
∣∣∣∣∣W k

1 ,X
n
1

]
(”variance”)

B = min

(
E
[ n
Z

∣∣∣ X n
1

]−1
, 1

)
, (bias)

where Z (k) = Z + (W ′
k −Wk), and W ′

k indep. dist. as Wk .
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k indep. dist. as Wk .

• No truncation! No hyperparameters.

• Contexts are fixed.
• Needs knowledge of πb — only partly empirical:

Vwis and B can be computed exactly. Cost: nK :-(
Can approximate using Monte-Carlo simulation! :-)
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Is it any good?

The Best Policy Identification problem

• We have a finite set of target policies Π.

• We do π̂ ∈ arg maxπ∈Π v̂ est(π).

• We want to maximize v(π̂)
— we’ll use confidence bounds as v̂ est.

Best 
Policy

Selection

(scoring
function)

behavior policy: 

Logged Dataset 
(contexts, actions chosen, bandit feedback)

Candidate target policies
(possibly trained on logged data)

 ...



Synthetic Experiments – Setup

• Fix K > 0

• πb(a) ∝ e
1
τ
I{a=1}

• π(a) ∝ e
1
τ
I{a=1}

• Ri = I{Ai = k}, Ai ∼ πb(·)
• As τ → 0, πb and π become increasingly misaligned
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Nonsynthetic Experiments – Setup

Target policies are
{
πideal, πΘ̂IS , πΘ̂WIS

}
where

πΘ(y = k | x) ∝ e
1
τ
x>θk

with two choices of parameters given by the optimization problems:

Θ̂IS ∈ arg min
Θ∈Rd×K

v̂ is(πΘ) , Θ̂WIS ∈ arg min
Θ∈Rd×K

v̂wis(πΘ) .

• Trained by GD with η = 0.01, T = 105.

• τ = 0.1 — cold! Almost deterministic.



Table: Average test rewards of the target policy when chosen by each
method of the benchmark.

name Ecoli Vehicle Yeast
Size 336 846 1484

ESLB 0.913 ± 0.263 0.716 ± 0.389 0.912 ± 0.267
DR 0.656 ± 0.410 0.610 ± 0.443 0.563 ± 0.392

IS (trunc+Bern) −∞ −∞ 0.916 ± 0.262
Chebyshev-WIS −∞ −∞ −∞

Emp.Lik. 0.511 ± 0.298 0.455 ± 0.405 0.312 ± 0.325

PageBlok OptDigits SatImage PenDigits
5473 5620 6435 10992

0.910 ± 0.270 0.843 ± 0.325 0.910 ± 0.270 0.910 ± 0.270
0.888 ± 0.291 0.616 ± 0.344 0.423 ± 0.361 0.565 ± 0.382

0.910 ± 0.270 0.748 ± 0.404 0.658 ± 0.413 0.810 ± 0.345
−∞ −∞ −∞ −∞

0.669 ± 0.409 0.285 ± 0.359 0.634 ± 0.409 0.549 ± 0.426



Proof sketch

v(π)− E [v(π) |X n
1 ]︸ ︷︷ ︸

Concentration of contexts

+E [v(π) |X n
1 ]− E

[
v̂wis(π) | X n

1

]︸ ︷︷ ︸
Bias

+E
[
v̂wis(π) | X n

1

]
− v̂wis(π)︸ ︷︷ ︸

Concentration

1. Concentration of contexts – Hoeffding since X n
1 are IID.

E [v(π) |X n
1 ] = E

[
1
n

∑
i WiRi |X n

1

]
.

2. Bias – IS is unbiased, let’s try to “split” WIS into IS and
denominator.

Harris’ inequality. Let f : Rn → R be a non-increasing and
g : Rn → R be a non-decreasing function. Then for
real-valued random variables (X1, . . . ,Xn) independent from
each other, we have

E[f (X1, . . . ,Xn)g(X1, . . . ,Xn)] ≤ E[f (X1, . . . ,Xn)]E[g(X1, . . . ,Xn)] .

This gives us:

E
[∑n

k=1 WkRk∑n
k=1 Wk

∣∣∣∣ X n
1

]
≤ E

[
1∑n

k=1 Wk

∣∣∣∣ X n
1

]
E

[
n∑

k=1

WkRk

∣∣∣∣∣ X n
1

]
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• Variance is important: need bounds with empirical variance.

• Sometimes, estimator is not a sum of indep. elements
(self-normalization).
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Concentration of v̂wis

Goal: lower bound on E [v̂wis(π) | X n
1 ]− v̂wis(π).

Theorem Assume elements of S = (X1,X2, . . . ,Xn) are
independent, and let

∆ = f (S)− E[f (S)] , V =
n∑

k=1

E
[
(f (S)− f (S (k)))2

∣∣∣X1, . . . ,Xk

]
.

Then, for any x ≥ 2, y > 0,

P
(
|∆| ≥

√
(V + y) (2 + ln(1 + V /y)) x

)
≥ e−x .

Take f = v̂wis, condition on X n
1 , and choose y = 1/n. Algebra

gives that V obeys

V ≤
n∑

k=1

E

[(
Wk

Z
+

W ′
k

Z (k)

)2
∣∣∣∣∣W k

1 ,X
n
1

]
.



Canonical Pairs – [dlPLS08]

We call (A,B) a canonical pair if B ≥ 0 and

sup
λ∈R

E
[

exp

(
λA− λ2

2
B2

)]
≤ 1 .



Theorem 12.4 of [dlPLS08]

Theorem
Let (A,B) be a canonical pair. Then, for any t > 0,

P

(
|A|√

B2 + (E[B])2
≥ t

)
≤
√

2e−
t2

4 .

In addition, for all t ≥
√

2 and y > 0,

P

 |A|

(B2 + y)
(

1 + 1
2 ln

(
1 + B2

y

)) ≥ t

 ≤ e−
t2

2 .



Recall

∆ = f (S)− E[f (S)] , V =
n∑

k=1

E
[
(f (S)− f (S (k)))2

∣∣∣X1, . . . ,Xk

]
.

Lemma
(∆,
√
V ) is a canonical pair.

Proof.
Let Ek [·] stand for E[· | X1, . . . ,Xk ]. The Doob martingale
decomposition of f (S)− E[f (S)] gives

f (S)− E[f (S)] =
n∑

k=1

Dk ,

where Dk = Ek [f (S)]− Ek−1[f (S)] = Ek [f (S)− f (S (k))] and the
last equality follows from the elementary identity
Ek−1[f (S)] = Ek [f (S (k))].



Conclusions

• Confident off-policy estimation

• Self-normalized importance weighting estimator

• Harris-inequality + Efron-Stein: Value lower bound

• Appears to be tighter than alternatives

• Where is the limit? Bootstrapping? Honest coverage?



[dlPLS08] V. H. de la Peña, T. L. Lai, and Q.-M. Shao.
Self-normalized processes: Limit theory and Statistical
Applications. Springer Science & Business Media, 2008.


