Confident Off-Policy Evaluation and Selection through Self-Normalized Importance Weighting

Csaba Szepesvári

June 25, 2020

University of Alberta and DeepMind
IST, Lisbon, June 25, 2020

Collaborators

- Ilja Kuzborskij
- Claire Vernade
- András György

Off-Policy Contextual Bandit Model

Model: $\left(P_{X}, P_{R \mid X, A}, \pi_{b}\right)$

- $P_{X}-$ prob. measure over context space \mathcal{X}
- $P_{R \mid X, A}$ - prob. kernel producing reward dist. given $X \in \mathcal{X}$ and action $A \in[K]$
- π_{b} - behaviour policy, e.g. $\pi_{b}(\cdot \mid X)$

Off-Policy Contextual Bandit Model

Model: $\left(P_{X}, P_{R \mid X, A}, \pi_{b}\right)$

- P_{X} - prob. measure over context space \mathcal{X}
- $P_{R \mid X, A}$ - prob. kernel producing reward dist. given $X \in \mathcal{X}$ and action $A \in[K]$
- π_{b} - behaviour policy, e.g. $\pi_{b}(\cdot \mid X)$

Contextual off-policy evaluation problem

- An agent observes indep. $S=\left(\left(X_{1}, A_{1}, R_{1}\right), \ldots,\left(X_{n}, A_{n}, R_{n}\right)\right)$ $A_{i} \sim \pi_{b}\left(\cdot \mid X_{i}\right), X_{i} \sim P_{X}, R_{i} \sim P_{R \mid X, A}$
- An agent follows a randomized target policy π

Goal: estimate the value $v(\pi)$ of that policy:

$$
\begin{aligned}
& v(\pi)=\int_{\mathcal{X}} \sum_{a \in[K]} \pi(a \mid x) r(x, a) \mathrm{d} P_{X}(x) \\
& \text { where } r(x, a)=\int u \mathrm{~d} P_{R \mid X, A}(u \mid x, a)
\end{aligned}
$$

Value estimation through Importance Sampling

Many ways to do that...
At the core of many is to use importance weights

$$
W_{i}=\frac{\pi\left(A_{i} \mid X_{i}\right)}{\pi_{b}\left(A_{i} \mid X_{i}\right)} \quad i \in[n]
$$

For example, (unbiased) importance sampling estimator

$$
\hat{v}^{\mathrm{IS}}(\pi)=\frac{1}{n} \sum_{i=1}^{n} W_{i} R_{i}
$$

Value estimation through Importance Sampling

Many ways to do that...
At the core of many is to use importance weights

$$
W_{i}=\frac{\pi\left(A_{i} \mid X_{i}\right)}{\pi_{b}\left(A_{i} \mid X_{i}\right)} \quad i \in[n]
$$

For example, (unbiased) importance sampling estimator

$$
\hat{v}^{\mathrm{IS}}(\pi)=\frac{1}{n} \sum_{i=1}^{n} W_{i} R_{i}
$$

High variance!
For example, $W_{i} \sim p$, where p is heavy-tailed (disagreeing policies)

Value estimation through DR

Another popular estimator is Doubly-Robust estimator

$$
\hat{v}^{\mathrm{DR}}(\pi)=\frac{1}{n} \sum_{i} \pi\left(A_{i} \mid X_{i}\right) \hat{\eta}\left(X_{i}, A_{i}\right)+\frac{1}{n} \sum_{i} W_{i}\left(R_{i}-\hat{\eta}\left(X_{i}, A_{i}\right)\right)
$$

for some fixed $\hat{\eta}:(x, a) \rightarrow[0,1]$ (typically a reward estimator learned on a held-out dataset).

- Unbiased
- Reduces variance, but we need a reward modeling (training, tuning, dataset splitting)...

Value estimation through Importance Sampling

Something simpler - a weighted importance sampling estimator

$$
\hat{v}^{\mathrm{WIS}}(\pi)=\frac{\sum_{i=1}^{n} W_{i} R_{i}}{\sum_{i=1}^{n} W_{i}} .
$$

- Biased (asymptotically unbiased (IID))
- In practice, low variance (self-normalization)

$$
\text { Some intuition: } \operatorname{Var}\left(\hat{v}^{\mathrm{WIS}}(\pi)\right) \leq \mathbb{E}\left[\sum_{k} \frac{w_{k}^{2}}{\left(\sum_{i} w_{i}\right)^{2}}\right]
$$

What about $v(\pi)$?

- Of course, estimator alone is not enough. We want:

$$
1-e^{-x} \leq \mathbb{P}\left(\hat{v}(\pi)+\varepsilon\left(x, S, \pi, \pi_{b}\right) \leq v(\pi)\right) \quad x>0
$$

Some challenges:

- Even for basic importance sampling $\left(W_{1} R_{1}+\cdots+W_{n} R_{n}\right) / n$ it's non-trivial: unbiased, but W_{i} are unbounded
- Excludes Hoeffding/Bernstein/McDiarmid

What about $v(\pi)$?

- Of course, estimator alone is not enough. We want:

$$
1-e^{-x} \leq \mathbb{P}\left(\hat{v}(\pi)+\varepsilon\left(x, S, \pi, \pi_{b}\right) \leq v(\pi)\right) \quad x>0 .
$$

Some challenges:

- Even for basic importance sampling $\left(W_{1} R_{1}+\cdots+W_{n} R_{n}\right) / n$ it's non-trivial: unbiased, but W_{i} are unbounded
- Excludes Hoeffding/Bernstein/McDiarmid
- We can "truncate", e.g. $W_{i}^{\lambda}=\pi\left(A_{i} \mid X_{i}\right) /\left(\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda\right)$ for some h.p. $\lambda>0$.
- Ugly! Needs tuning, doesn't always work...

What about $v(\pi)$?

- Of course, estimator alone is not enough. We want:

$$
1-e^{-x} \leq \mathbb{P}\left(\hat{v}(\pi)+\varepsilon\left(x, S, \pi, \pi_{b}\right) \leq v(\pi)\right) \quad x>0 .
$$

Some challenges:

- Even for basic importance sampling $\left(W_{1} R_{1}+\cdots+W_{n} R_{n}\right) / n$ it's non-trivial: unbiased, but W_{i} are unbounded
- Excludes Hoeffding/Bernstein/McDiarmid
- We can "truncate", e.g. $W_{i}^{\lambda}=\pi\left(A_{i} \mid X_{i}\right) /\left(\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda\right)$ for some h.p. $\lambda>0$.
- Ugly! Needs tuning, doesn't always work...
- Variance is important: need bounds with empirical variance.
- Sometimes, estimator is not a sum of indep. elements (self-normalization).

Semi-empirical Efron-Stein Bound for WIS

Let's go back and pick WIS:

$$
\hat{v}^{\mathrm{WIS}}(\pi)=\frac{1}{Z} \sum_{i=1}^{n} W_{i} R_{i}, \quad Z=\sum_{i=1}^{n} W_{i}
$$

Theorem W.h.p.,

$$
\begin{aligned}
& v(\pi) \stackrel{\tilde{\Omega}}{=}\left(B \cdot\left(\hat{v}^{\mathrm{WIS}}(\pi)-\sqrt{V^{\mathrm{WIS}}+\frac{1}{n}}\right)-\frac{1}{\sqrt{n}}\right)_{+} \\
& V^{\mathrm{WIS}}=\sum_{k=1}^{n} \mathbb{E}\left[\left.\left(\frac{W_{k}}{Z}+\frac{W_{k}^{\prime}}{Z^{(k)}}\right)^{2} \right\rvert\, W_{1}^{k}, X_{1}^{n}\right] \\
& B=\min \left(\mathbb{E}\left[\left.\frac{n}{Z} \right\rvert\, X_{1}^{n}\right]^{-1}, 1\right),
\end{aligned}
$$

where $Z^{(k)}=Z+\left(W_{k}^{\prime}-W_{k}\right)$, and W_{k}^{\prime} indep. dist. as W_{k}.

Semi-empirical Efron-Stein Bound for WIS

Theorem W.h.p.,

$$
\begin{aligned}
& v(\pi) \stackrel{\tilde{\Omega}}{=}\left(B \cdot\left(\hat{v}^{\mathrm{WIS}}(\pi)-\sqrt{V^{\mathrm{WIS}}+\frac{1}{n}}\right)-\frac{1}{\sqrt{n}}\right)_{+} \\
& V^{\mathrm{WIS}}=\sum_{k=1}^{n} \mathbb{E}\left[\left.\left(\frac{W_{k}}{Z}+\frac{W_{k}^{\prime}}{Z^{(k)}}\right)^{2} \right\rvert\, W_{1}^{k}, X_{1}^{n}\right] \\
& B=\min \left(\mathbb{E}\left[\left.\frac{n}{Z} \right\rvert\, X_{1}^{n}\right]^{-1}, 1\right),
\end{aligned}
$$

where $Z^{(k)}=Z+\left(W_{k}^{\prime}-W_{k}\right)$, and W_{k}^{\prime} indep. dist. as W_{k}.

- No truncation! No hyperparameters.
- Contexts are fixed.
- Needs knowledge of π_{b} - only partly empirical:
$V^{\text {wis }}$ and B can be computed exactly. Cost: $n^{k}:-($
Can approximate using Monte-Carlo simulation! :-)

Semi-empirical Efron-Stein Bound for WIS

Theorem W.h.p.,

$$
\begin{aligned}
& v(\pi) \stackrel{\tilde{\Omega}}{=}\left(B \cdot\left(\hat{v}^{\mathrm{WIS}}(\pi)-\sqrt{V^{\mathrm{WIS}}+\frac{1}{n}}\right)-\frac{1}{\sqrt{n}}\right)_{+} \\
& V^{\mathrm{WIS}}=\sum_{k=1}^{n} \mathbb{E}\left[\left.\left(\frac{W_{k}}{Z}+\frac{W_{k}^{\prime}}{Z^{(k)}}\right)^{2} \right\rvert\, W_{1}^{k}, X_{1}^{n}\right] \\
& B=\min \left(\mathbb{E}\left[\left.\frac{n}{Z} \right\rvert\, X_{1}^{n}\right]^{-1}, 1\right),
\end{aligned}
$$

where $Z^{(k)}=Z+\left(W_{k}^{\prime}-W_{k}\right)$, and W_{k}^{\prime} indep. dist. as W_{k}.

- No truncation! No hyperparameters.
- Contexts are fixed.

Recall some intuition: $\operatorname{Var}\left(\hat{v}^{\mathrm{WIS}}(\pi)\right) \leq \mathbb{E}\left[\sum_{k}\left(\frac{W_{k}^{2}}{Z}\right)^{2}\right]$

Is it any good?

The Best Policy Identification problem

- We have a finite set of target policies Π.
- We do $\hat{\pi} \in \arg \max _{\pi \in \Pi} \hat{v}^{\text {est }}(\pi)$.
- We want to maximize $v(\hat{\pi})$
- we'll use confidence bounds as $\hat{v}^{\text {est }}$.

Synthetic Experiments - Setup

- Fix $K>0$
- $\pi_{b}(a) \propto e^{\frac{1}{\tau} \mathbb{T}\{a=1\}}$
- $\pi(a) \propto e^{\frac{1}{\tau} \mathbb{T}\{a=1\}}$
- $R_{i}=\mathbb{I}\left\{A_{i}=k\right\}, A_{i} \sim \pi_{b}(\cdot)$
- As $\tau \rightarrow 0, \pi_{b}$ and π become increasingly misaligned

Results

Nonsynthetic Experiments - Setup

Target policies are $\left\{\pi^{\text {ideal }}, \pi^{\hat{\Theta}_{\text {IS }}}, \pi^{\hat{\Theta}_{\text {wis }}}\right\}$ where

$$
\pi^{\boldsymbol{\Theta}}(y=k \mid \boldsymbol{x}) \propto e^{\frac{1}{\tau} \boldsymbol{x}^{\top} \boldsymbol{\theta}_{k}}
$$

with two choices of parameters given by the optimization problems:

$$
\hat{\boldsymbol{\Theta}}_{\mathrm{IS}} \in \underset{\boldsymbol{\Theta} \in \mathbb{R}^{d \times K}}{\arg \min } \hat{v}^{\mathrm{IS}}\left(\pi^{\boldsymbol{\Theta}}\right), \quad \hat{\boldsymbol{\Theta}}_{\mathrm{WIS}} \in \underset{\boldsymbol{\Theta} \in \mathbb{R}^{d \times K}}{\arg \min } \hat{v}^{\mathrm{WIS}}\left(\pi^{\boldsymbol{\Theta}}\right) .
$$

- Trained by GD with $\eta=0.01, T=10^{5}$.
- $\tau=0.1$ - cold! Almost deterministic.

Table: Average test rewards of the target policy when chosen by each method of the benchmark.

name	Ecoli	Vehicle	Yeast
Size	336	846	1484
ESLB	$\mathbf{0 . 9 1 3} \pm \mathbf{0 . 2 6 3}$	$\mathbf{0 . 7 1 6} \pm \mathbf{0 . 3 8 9}$	$\mathbf{0 . 9 1 2} \pm \mathbf{0 . 2 6 7}$
DR	0.656 ± 0.410	0.610 ± 0.443	0.563 ± 0.392
IS (trunc+Bern)	$-\infty$	$-\infty$	$\mathbf{0 . 9 1 6} \pm \mathbf{0 . 2 6 2}$
Chebyshev-WIS	$-\infty$	$-\infty$	$-\infty$
Emp.Lik.	0.511 ± 0.298	0.455 ± 0.405	0.312 ± 0.325
PageBlok	OptDigits	SatImage	PenDigits
5473	5620	6435	10992
$\mathbf{0 . 9 1 0} \pm \mathbf{0 . 2 7 0}$	$\mathbf{0 . 8 4 3} \pm \mathbf{0 . 3 2 5}$	$\mathbf{0 . 9 1 0} \pm \mathbf{0 . 2 7 0}$	$\mathbf{0 . 9 1 0} \pm \mathbf{0 . 2 7 0}$
0.888 ± 0.291	0.616 ± 0.344	0.423 ± 0.361	0.565 ± 0.382
$\mathbf{0 . 9 1 0} \pm \mathbf{0 . 2 7 0}$	0.748 ± 0.404	0.658 ± 0.413	0.810 ± 0.345
$-\infty$	$-\infty$	$-\infty$	$-\infty$
0.669 ± 0.409	0.285 ± 0.359	0.634 ± 0.409	0.549 ± 0.426

Proof sketch

$$
\underbrace{v(\pi)-\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]}_{\text {Concentration of contexts }}+\underbrace{\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]-\mathbb{E}\left[\hat{v}^{\text {wis }}(\pi) \mid X_{1}^{n}\right]}_{\text {Bias }}+\underbrace{\mathbb{E}\left[\hat{v}^{\text {wis }}(\pi) \mid X_{1}^{n}\right]-\hat{v}^{\text {wis }}(\pi)}_{\text {Concentration }}
$$

1. Concentration of contexts - Hoeffding since X_{1}^{n} are IID. $\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]=\mathbb{E}\left[\left.\frac{1}{n} \sum_{i} W_{i} R_{i} \right\rvert\, X_{1}^{n}\right]$.
2. Bias - IS is unbiased, let's try to "split" WIS into IS and denominator.

Proof sketch

$$
\underbrace{v(\pi)-\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]}_{\text {Concentration of contexts }}+\underbrace{\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]-\mathbb{E}\left[\hat{v}^{\text {wis }}(\pi) \mid X_{1}^{n}\right]}_{\text {Bias }}+\underbrace{\mathbb{E}\left[\hat{v}^{\text {wis }}(\pi) \mid X_{1}^{n}\right]-\hat{v}^{\text {wis }}(\pi)}_{\text {Concentration }}
$$

1. Concentration of contexts - Hoeffding since X_{1}^{n} are IID. $\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]=\mathbb{E}\left[\left.\frac{1}{n} \sum_{i} W_{i} R_{i} \right\rvert\, X_{1}^{n}\right]$.
2. Bias - IS is unbiased, let's try to "split" WIS into IS and denominator.
Harris' inequality. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a non-increasing and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a non-decreasing function. Then for real-valued random variables $\left(X_{1}, \ldots, X_{n}\right)$ independent from each other, we have
$\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) g\left(X_{1}, \ldots, X_{n}\right)\right] \leq \mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right] \mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right)\right]$.
This gives us:
$\mathbb{E}\left[\left.\frac{\sum_{k=1}^{n} W_{k} R_{k}}{\sum_{k=1}^{n} W_{k}} \right\rvert\, X_{1}^{n}\right] \leq \mathbb{E}\left[\left.\frac{1}{\sum_{k=1}^{n} W_{k}} \right\rvert\, X_{1}^{n}\right] \mathbb{E}\left[\sum_{k=1}^{n} W_{k} R_{k} \mid X_{1}^{n}\right]$

Proof sketch

$$
\underbrace{v(\pi)-\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]}_{\text {Concentration of contexts }}+\underbrace{\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]-\mathbb{E}\left[\hat{v}^{\text {wis }}(\pi) \mid X_{1}^{n}\right]}_{\text {Bias }}+\underbrace{\mathbb{E}\left[\hat{v}^{\text {wis }}(\pi) \mid X_{1}^{n}\right]-\hat{v}^{\text {wis }}(\pi)}_{\text {Concentration }}
$$

Concentration... (Remember) Some challenges:

- Even for basic importance sampling $\left(W_{1} R_{1}+\cdots+W_{n} R_{n}\right) / n$ it's non-trivial: unbiased, but W_{i} are unbounded
- Excludes Hoeffding/Bernstein/McDiarmid
- We can "truncate", e.g. $W_{i}^{\lambda}=\pi\left(A_{i} \mid X_{i}\right) /\left(\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda\right)$ for some h.p. $\lambda>0$.
- Ugly! Needs tuning, doesn't always work...

Proof sketch

$$
\underbrace{v(\pi)-\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]}_{\text {Concentration of contexts }}+\underbrace{\mathbb{E}\left[v(\pi) \mid X_{1}^{n}\right]-\mathbb{E}\left[\hat{v}^{\text {wis }}(\pi) \mid X_{1}^{n}\right]}_{\text {Bias }}+\underbrace{\mathbb{E}\left[\hat{v}^{\text {wis }}(\pi) \mid X_{1}^{n}\right]-\hat{v}^{\text {wis }}(\pi)}_{\text {Concentration }}
$$

Concentration... (Remember) Some challenges:

- Even for basic importance sampling $\left(W_{1} R_{1}+\cdots+W_{n} R_{n}\right) / n$ it's non-trivial: unbiased, but W_{i} are unbounded
- Excludes Hoeffding/Bernstein/McDiarmid
- We can "truncate", e.g. $W_{i}^{\lambda}=\pi\left(A_{i} \mid X_{i}\right) /\left(\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda\right)$ for some h.p. $\lambda>0$.
- Ugly! Needs tuning, doesn't always work...
- Variance is important: need bounds with empirical variance.
- Sometimes, estimator is not a sum of indep. elements (self-normalization).

Concentration of $\hat{v}^{\text {wis }}$

Goal: lower bound on $\mathbb{E}\left[\hat{v}^{\mathrm{WIS}}(\pi) \mid X_{1}^{n}\right]-\hat{v}^{\mathrm{WIS}}(\pi)$.
Theorem Assume elements of $S=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are independent, and let

$$
\Delta=f(S)-\mathbb{E}[f(S)], \quad V=\sum_{k=1}^{n} \mathbb{E}\left[\left(f(S)-f\left(S^{(k)}\right)\right)^{2} \mid X_{1}, \ldots, X_{k}\right]
$$

Then, for any $x \geq 2, y>0$,

$$
\mathbb{P}(|\Delta| \geq \sqrt{(V+y)(2+\ln (1+V / y)) x}) \geq e^{-x}
$$

Take $f=\hat{v}^{\mathrm{WIS}}$, condition on X_{1}^{n}, and choose $y=1 / n$. Algebra gives that V obeys

$$
V \leq \sum_{k=1}^{n} \mathbb{E}\left[\left.\left(\frac{W_{k}}{Z}+\frac{W_{k}^{\prime}}{Z^{(k)}}\right)^{2} \right\rvert\, W_{1}^{k}, X_{1}^{n}\right]
$$

Canonical Pairs - [dIPLS08]

We call (A, B) a canonical pair if $B \geq 0$ and

$$
\sup _{\lambda \in \mathbb{R}} \mathbb{E}\left[\exp \left(\lambda A-\frac{\lambda^{2}}{2} B^{2}\right)\right] \leq 1 .
$$

Theorem 12.4 of [dIPLS08]

Theorem
Let (A, B) be a canonical pair. Then, for any $t>0$,

$$
\mathbb{P}\left(\frac{|A|}{\sqrt{B^{2}+(\mathbb{E}[B])^{2}}} \geq t\right) \leq \sqrt{2} e^{-\frac{t^{2}}{4}}
$$

In addition, for all $t \geq \sqrt{2}$ and $y>0$,

$$
\mathbb{P}\left(\frac{|A|}{\left(B^{2}+y\right)\left(1+\frac{1}{2} \ln \left(1+\frac{B^{2}}{y}\right)\right)} \geq t\right) \leq e^{-\frac{t^{2}}{2}}
$$

Recall
$\Delta=f(S)-\mathbb{E}[f(S)], \quad V=\sum_{k=1}^{n} \mathbb{E}\left[\left(f(S)-f\left(S^{(k)}\right)\right)^{2} \mid X_{1}, \ldots, X_{k}\right]$.

Lemma
(Δ, \sqrt{V}) is a canonical pair.
Proof.
Let $\mathbb{E}_{k}[\cdot]$ stand for $\mathbb{E}\left[\cdot \mid X_{1}, \ldots, X_{k}\right]$. The Doob martingale decomposition of $f(S)-\mathbb{E}[f(S)]$ gives

$$
f(S)-\mathbb{E}[f(S)]=\sum_{k=1}^{n} D_{k}
$$

where $D_{k}=\mathbb{E}_{k}[f(S)]-\mathbb{E}_{k-1}[f(S)]=\mathbb{E}_{k}\left[f(S)-f\left(S^{(k)}\right)\right]$ and the last equality follows from the elementary identity $\mathbb{E}_{k-1}[f(S)]=\mathbb{E}_{k}\left[f\left(S^{(k)}\right)\right]$.

Conclusions

- Confident off-policy estimation
- Self-normalized importance weighting estimator
- Harris-inequality + Efron-Stein: Value lower bound
- Appears to be tighter than alternatives
- Where is the limit? Bootstrapping? Honest coverage?
[dIPLS08] V. H. de la Peña, T. L. Lai, and Q.-M. Shao. Self-normalized processes: Limit theory and Statistical Applications. Springer Science \& Business Media, 2008.

