

QM3 Quantum Matter meets Maths

Topological theory of non-Hermitian photonic systems

Mário G Silveirinha ário

Topological photonics

Semina

لمنتبعة

Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry

F.D.M. Haldane and S. Raghu*

TÉCNICO
LISBOA

Lisboa 24th June, mario.silveirinha@co.it.pt

n ar yn y gwys

SAMPLE

There is no way to "close" a topological system (with a opaquetype) boundary without creating edge states

M. G. Silveirinha, "Proof of the bulk-edge correspondence through a link between topological photonics and fluctuation-electrodynamics", Phys. Rev. X, 9, 011037, 2019.

Theory of Wave Propagation in Magnetized Near-Zero-Epsilon Metamaterials: **Evidence for One-Way Photonic States and Magnetically Switched Transparency and Opacity**

Arthur R. Davoyan* and Nader Engheta[†]

TÉCNICO
LISBOA

Lisboa 24th June, mario.silveirinha@co.it.pt

SAMPLE

Topological photonics in a continuum

M. G. Silveirinha, "Chern Invariants for Continuous Media", Phys. Rev. B, 92, 125153, 2015.

6

Electromagnetic continua

$$
\overline{\varepsilon} = \begin{pmatrix} \varepsilon_t & -i\varepsilon_g & 0 \\ i\varepsilon_g & \varepsilon_t & 0 \\ 0 & 0 & \varepsilon_a \end{pmatrix}
$$

المتمازية

TÉCNICO
LISBOA

Lisboa 24th June, mario.silveirinha@co.it.pt

 $\overline{7}$

Topological band theory

$$
\mathcal{C} = \frac{1}{2\pi} \iint dk_x dk_y \mathcal{F}_{\mathbf{k}}
$$

$$
\mathcal{F}_{\mathbf{k}} = \frac{\partial \mathcal{A}_{y}}{\partial k_{x}} - \frac{\partial \mathcal{A}_{x}}{\partial k_{y}}
$$

If the wave vector space is a closed surface with no boundary the Chern number is an integer

Photonic crystals (BZ is ^a torus):

TÉCNICO
LISBOA

المتحددة

TÉCNICO
LISBOA

Should not the Chern number be an integer?

Stokes theorem:

$$
\mathcal{C}_{n} = -\frac{1}{2\pi} \sum_{\mathbf{k}_{s,i}} \oint_{C_{s,i}} \mathbf{A}_{n\mathbf{k}} \cdot \mathbf{dl}
$$

TÉCNICO
LISBOA

Hamiltonian varies smoothly with the wave vector!

 $\lVert \cdot \rVert$

 $=\frac{1}{2\pi}\iint dk_{x}dk_{y}\hat{\mathbf{z}}\cdot\nabla\times$ $\mathcal{C} = \frac{1}{\sqrt{2}} \int dk_x dk_y \hat{\mathbf{z}} \cdot \nabla \times \mathcal{A}$

 $\frac{1}{2\pi}$, $\int dx_x dx_y$

 \equiv

 $\sim 10^{10}$ m $_{\odot}$

Why is the Chern number an integer for the highfrequency band?

(eigenfunctions can be chosen real-valued)

 -400 -1

For large wave vectors the material response b i ll h h ! becomes asymptotically t he same as t he vacuum!

SOFF

M. G. Silveirinha, "Chern Invariants for Continuous Media", Phys. Rev. B, 92, 125153, 2015. M. G. Silveirinha, "Bulk edge correspondence for topological photonic continua", Phys. Rev. B, 94, 205105, 2016.

Number of unidirectiona l edge modes = gap Chern number

M. G. Silveirinha, "Bulk-edge correspondence for topological photonic continua", Phys. Rev. B, 94, 205105, 2016. M. G. Silveirinha, "Proof of the bulk-edge correspondence through a link between topological photonics and fluctuation-electrodynamics", Phys. Rev. X, 9, 011037, 2019.

Lisboa 24th June, mario.silveirinha@co.it.pt 18

TÉCNICO
LISBOA

 \mathbb{R}^n

Unidirectional propagation V/m $100 75.8 51.5 27.3 0 - \vec{e}$ $-27.3 -51.5 -75.8 -100 -$ **CST**

Gyrotropic Material

September

richte.

A first taste of the topological classification with the Green with the s' function

M. G. Silveirinha, "Topological classification of Chern-type insulators by means of the photonic Green function", *Phys. Rev. B***, 97, 115146, 2018.**

TÉCNICO
LISBOA

Lisboa 24th June, mario.silveirinha@co.it.pt 21

 $\mathcal{A}^{m \times n}$

Chern number calculated by means of the system G ' f ti Green's function

ˆ $\boldsymbol{\mathsf{Eigenvalue}}$ problem: $\quad \boldsymbol{L}_{\mathbf{k}} \cdot \mathbf{Q}_{n\mathbf{k}} = \mathcal{O}_{n\mathbf{k}} \mathbf{M}_{_S} \cdot \mathbf{Q}_{n\mathbf{k}}$

 $\left(\omega\right) = i\left(\hat{L}_{\mathbf{k}} - \mathbf{M}_{g}\omega\right)^{-1}$ ω $\textbf{Green's function:}~~\mathcal{G}_{\mathbf{k}}\left(\omega\right)=i\big(\hat{\boldsymbol{L}}_{\mathbf{k}}-\mathbf{M}_{_{\mathrm{g}}}\omega\big)^{\top}$

SAMPLE

Chern number calculated by means of the system G ' f ti (t) Green's function (con t.)

$$
\mathcal{C} = \frac{1}{(2\pi)^2} \iint\limits_{B.Z.} d^2\mathbf{k} \int\limits_{\omega_{\text{gap}}-i\infty}^{\omega_{\text{gap}}+i\infty} d\omega \operatorname{Tr} \left\{ \partial_1 \mathcal{G}_{\mathbf{k}}^{-1} \cdot \mathcal{G}_{\mathbf{k}} \cdot \partial_2 \mathcal{G}_{\mathbf{k}}^{-1} \cdot \partial_{\omega} \mathcal{G}_{\mathbf{k}} \right\}
$$

$$
\mathcal{G}_{\mathbf{k}}\left(\omega\right)=i\left(\hat{L}_{\mathbf{k}}-\mathbf{M}_{g}\omega\right)^{-1}
$$

 $\sim 10^{10-1}$).

Numerical example (magnetized plasma)

$$
\mathcal{C} = \int_{\omega_{\text{gap}} - i\infty}^{\omega_{\text{gap}} + i\infty} d\omega \frac{1}{(2\pi)^2} \iint_{B.Z.} d^2\mathbf{k} \operatorname{Tr} \left\{ \partial_1 \mathcal{G}_{\mathbf{k}}^{-1} \cdot \mathcal{G}_{\mathbf{k}} \cdot \partial_2 \mathcal{G}_{\mathbf{k}}^{-1} \cdot \partial_{\omega} \mathcal{G}_{\mathbf{k}} \right\}
$$

 1900

Non-Hermitian Systems

M. G. Silveirinha, "Topological theory of non-Hermitian photonic systems", Phys. Rev. B, 99, 125155, 2019.

instituto de **TÉCNICO**
LISBOA **Lisboa 24th June, mario.silveirinha@co.it.pt 25**nunicacões

 \mathcal{A}^{max} .

ˆ $L_{\mathbf{k}}$, \mathbf{M}_{g} do not need to be Hermitian ˆ $L_{\bf k}$ is parameterized by a real-valued wave vector ${\bf k} = k_x \hat{\bf x} + k_y \hat{\bf y}$

Green's function operator

$$
\mathcal{G}_{\mathbf{k}}\left(\omega\right) = i\left(\hat{L}_{\mathbf{k}} - \mathbf{M}_{g}\omega\right)^{-1}
$$

Band gaps

Vertical strips in the complex frequency plane where the Green's function is analytic (no modes)

 $\omega_L < \text{Re}\{\omega\} < \omega_U$

Plane waves with a real-valued wave vector

Definition

$$
\mathcal{C} = \frac{1}{(2\pi)^2} \iint\limits_{B.Z.} d^2\mathbf{k} \int\limits_{\omega_{\text{gap}}-i\infty}^{\omega_{\text{gap}}+i\infty} d\omega \operatorname{Tr} \left\{ \partial_1 \mathcal{G}_{\mathbf{k}}^{-1} \cdot \mathcal{G}_{\mathbf{k}} \cdot \partial_2 \mathcal{G}_{\mathbf{k}}^{-1} \cdot \partial_{\omega} \mathcal{G}_{\mathbf{k}} \right\}
$$

"Deformation" of the system

ufi

$$
\hat{L}_{\mathbf{k}}=\hat{L}_{\mathbf{k}}\left(\alpha\right)
$$

The key result

B. A. Bernervig, T. Hughes, Topological Insulators and Topological Superconductors, Princeton University Press, 2013.

"Chern theorem in non-Hermitian systems": Poor's man proo f

ˆ

ˆ

$$
\hat{L}_{k}(\alpha)
$$
\n
$$
0 \leq \alpha \leq 1
$$
\n
$$
\hat{L}_{k}(0) \text{ is Hermitian}
$$
\n
$$
\hat{L}_{k}(1) = \hat{L}_{k} \text{ possibly non-Hermitian}
$$

$$
\mathcal{C}(\alpha = 0)
$$
 is an integer
\n
$$
\frac{\partial \mathcal{C}}{\partial \alpha} = 0
$$
\n $\longrightarrow \mathcal{C} = \mathcal{C}(\alpha = 1)$ is an integer

Limitation: the proof only holds true if the band gap is not closed by th d f ti the e formation

General proof

Assumptions: $\hat{L}_{\bf k}$ are diagonalizable $-\mathbf{k}$ [or weak perturbations (that do not close gaps) of diagonalizable operators]

Key step:

$$
\mathcal{C} = \frac{1}{(2\pi)^2} \iint_{B.Z.} d^2 \mathbf{k} \int_{\omega_{\text{gap}} - i\infty}^{\omega_{\text{gap}} + i\infty} d\omega \operatorname{Tr} \left\{ \partial_1 \mathcal{G}_k^{-1} \cdot \mathcal{G}_k \cdot \partial_2 \mathcal{G}_k^{-1} \cdot \partial_\omega \mathcal{G}_k \right\}
$$

=
$$
\frac{1}{2\pi} \iint_{B.Z.} d^2 \mathbf{k} \left(\partial_1 \mathcal{A}_2 - \partial_2 \mathcal{A}_1 \right)
$$

Link with the Berry potential

Reduction to ^a standard eigenvalue problem:

$$
\hat{\mathcal{L}}_{\mathbf{k}} = \mathbf{M}_g^{-1/2} \hat{L}_{\mathbf{k}} \mathbf{M}_g^{-1/2}
$$

$$
\hat{\mathcal{L}}_{\mathbf{k}} \cdot \mathcal{Q}_{n\mathbf{k}} = \omega_{n\mathbf{k}} \mathcal{Q}_{n\mathbf{k}}
$$

$$
\mathcal{Q}_{n\mathbf{k}} = \mathbf{M}_{g}^{1/2} \cdot \mathbf{Q}_{n\mathbf{k}}
$$

$$
\mathbf{Q}_{n\mathbf{k}} = \mathbf{M}_g^{1/2} \cdot \mathbf{Q}_{n\mathbf{k}}
$$

 $n = 1, 2, ... N_F$, "filled" bands $n = N_F + 1,...$ "empty" bands

See also: H. Shen, B. Zhen, and L. Fu, Topological Band Theory for Non-Hermitian Hamiltonians, Phys. Rev. , , ,pg y , y Lett. 120, 146402 (2018).

Link with the Berry potential (contd.)

 \mathcal{Q}_{nk} – spans the entire space (operator is diagonalizable)

ˆ $\hat{\mathcal{L}}_{\mathbf{k}} \longrightarrow$ represented by the diagonal matrix $\Omega_{\mathbf{k}} = \left[\omega_{n\mathbf{k}} \delta_{m,n}\right]_{m,n=1,2,...}$ in the basis $\mathcal{Q}_{n\mathbf{k}}$

 $e_1, e_2, \ldots \longrightarrow$ some fixed basis of the vector space

Change of basis matrix $(Q_{nk} \rightarrow e_n): S_k$ (gauge dependent)

 $\hat{\mathcal{L}}_k \longrightarrow$ represented by $S_k \cdot \Omega_k \cdot S_k^{-1}$ in the basis e_n

Link with the Berry potential (contd.)

\n
$$
\mathcal{G}_{k} = i \left(\hat{\mathcal{L}}_{k} - \omega \mathbf{1} \right)^{-1}
$$
\nReplace in:

\n
$$
\mathcal{C} = \frac{1}{\left(2\pi \right)^{2}} \iint_{B(Z)} d^{2}k \int_{\omega_{gap} - i\infty}^{\omega_{gap} + i\infty} d\omega \operatorname{Tr} \left\{ \partial_{1} \mathcal{G}_{k}^{-1} \cdot \mathcal{G}_{k} \cdot \partial_{2} \mathcal{G}_{k}^{-1} \cdot \partial_{\omega} \mathcal{G}_{k} \right\}
$$
\n
$$
\int_{\omega_{gap} - i\infty}^{\omega_{gap} + i\infty} d\omega \frac{1}{\left(\omega_{0} - \omega \right)^{3}} = 0
$$

After simplifications:

$$
\mathcal{C}=\frac{1}{\left(2\pi\right)^2}\iint\limits_{B.Z.} d^2\mathbf{k} \int\limits_{\omega_{\text{gap}}-i\infty}^{\omega_{\text{gap}}+i\infty} d\omega \text{Tr}\left\{\left(\left[S^{-1}_\mathbf{k}\cdot\partial_1 S_\mathbf{k},\Omega_\mathbf{k}\right] \cdot \left(\Omega_\mathbf{k}\right) \cdot \left(\Omega_\mathbf{k}-1\omega\right)^{-1}\cdot \left(\left[S^{-1}_\mathbf{k}\cdot\partial_2 S_\mathbf{k},\Omega_\mathbf{k}\right] \cdot \left(\Omega_\mathbf{k}-1\omega\right)^{-2}\right\}\right\}
$$

u<mark>jí técnico</mark>

 \mathbb{R}^2

Link with the Berry potential (contd.)

$$
\mathcal{C} = \frac{1}{(2\pi)^2} \iint_{B.Z.} d^2 \mathbf{k} \int_{\omega_{\text{gap}}-i\infty}^{\omega_{\text{gap}}+i\infty} d\omega \operatorname{Tr} \left\{ \left[S_{\mathbf{k}}^{-1} \cdot \partial_1 S_{\mathbf{k}}, \Omega_{\mathbf{k}} \right] \cdot \left(\Omega_{\mathbf{k}} - 1 \omega \right)^{-1} \cdot \left[S_{\mathbf{k}}^{-1} \cdot \partial_2 S_{\mathbf{k}}, \Omega_{\mathbf{k}} \right] \cdot \left(\Omega_{\mathbf{k}} - 1 \omega \right)^{-2} \right\}
$$

Auxiliary result:

 $\int_{\alpha}^{\frac{1}{\cos \theta} + i\infty} 1$ 1 $\left(\frac{2\pi i}{\cos \theta} \operatorname{sgn}(\omega_{\text{gap}} - \operatorname{Re} {\{\omega_{n}\}}) \right)$ $\int_{\alpha_{\text{gap}}+i\infty}^{i\infty}$ 1 1 $\left(\frac{2\pi i}{\left(\alpha_{\text{gap}}-Re\{\omega_n\}\right)}\right)$ different sides of the gap $\int_{\omega_{\text{gap}}-i\infty}^{i\infty} d\omega \frac{1}{(\omega-\omega_m)^2} \frac{1}{\omega-\omega_n} = \begin{cases} \frac{1}{(\omega_m-\omega_n)^2} \text{sgn}(\omega_{\text{gap}}-\text{Re}\{\omega_n\}) & \text{different states of the gap} \\ 0, & \text{same side of the gap} \end{cases}$

Link with the Berry potential (conclusion)

$$
\mathcal{C} = \frac{1}{2\pi} \iint_{B.Z.} d^2 \mathbf{k} \, i \operatorname{Tr} \left\{ S_{\mathbf{k}}^{-1} \cdot \partial_1 S_{\mathbf{k}} \cdot \mathbf{1}_F \cdot S_{\mathbf{k}}^{-1} \cdot \partial_2 S_{\mathbf{k}} - 1 \leftrightarrow 2 \right\}
$$

$$
\mathbf{1}_{\scriptscriptstyle{F}} = \sum_{\mathrm{Re} \{\omega_{\mathrm{nk}}\} < \omega_{\mathrm{gap}}} \hat{\mathbf{u}}_{\scriptscriptstyle{n}} \otimes \hat{\mathbf{u}}_{\scriptscriptstyle{n}}
$$

$$
\mathcal{C} = \frac{1}{2\pi} \iint_{B.Z.} d^2 \mathbf{k} \left(\partial_1 \mathcal{A}_2 - \partial_2 \mathcal{A}_1 \right)
$$

$$
\mathcal{A}_k = i \operatorname{Tr} \{ S_k^{-1} \cdot \partial_k S_k \cdot \mathbf{1}_F \}
$$

instituto de telecomunicações

TÉCNICO
LISBOA

First Principles Calculations of the Topological Phases of Non-Hermitian Photonic crystals

F. R. Prudêncio, M. G. Silveirinha, First Principles Calculation of Topological Invariants of non-Hermitian Photonic Crystals, arXiv:2003.01539

Ferrite Photonic Crystal

Hexagonal array of ferrite cylinders

Ferrite constitutive relations

 $\begin{cases} \mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E} \\ \mathbf{B} = \varepsilon_0 \overline{\mu} \cdot \mathbf{H} \end{cases}$

 $\overline{\mu} = \begin{pmatrix} \mu & i\kappa & 0 \\ -i\kappa & \mu & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Semina

Band structure

\n
$$
\hat{L}(-i\nabla) \cdot E_z = \mathcal{E} \mathbf{M}_g \cdot E_z \qquad \mathcal{E} = (\omega/c)^2
$$
\nOperations:

\n
$$
\mathbf{M}_g \cdot E_z \equiv \varepsilon E_z
$$

$$
\hat{L} \cdot E_z \equiv -\partial_x \left(\mu_{ef}^{-1} \partial_x E_z - i \chi \partial_y E_z \right) - \partial_y \left(\mu_{ef}^{-1} \partial_y E_z + i \chi \partial_x E_z \right)
$$

$$
\mu_{ef} = \left(\mu^2 - \kappa^2\right)/\mu
$$

$$
\chi = \kappa / \left(\mu^2 - \kappa^2\right)
$$

Pla e a e et od ne wave method

Bloch modes: $E_z = e_z(x, y)e^{i\mathbf{k} \cdot \mathbf{r}}$

 $E_z = e_z(x, y) e^{i\mathbf{k} \cdot \mathbf{r}}$ **Plane wave expansion:** $e_z = \sum C_{\mathbf{J}}^E e^{i\mathbf{G}_{\mathbf{J}} \cdot \mathbf{r}}$ **J** $E_{\mu} = e_{\mu}(x, y)e^{i\mathbf{k}\cdot\mathbf{r}}$ **Plane wave expansion:**

Secular equation: $\hat{\boldsymbol{L}}_{\!\!\bm{k}}\cdot\boldsymbol{e}_{\!\!z}=\boldsymbol{\mathcal{E}}\mathbf{M}_{\!\mid z}\cdot\boldsymbol{e}_{\!\!z}$ $\hat{L}_k = \hat{L}(-i\nabla + \mathbf{k})$

$$
\textbf{r equation:} \quad L_{\mathbf{k}} \cdot e_z = \mathcal{E} \mathbf{M}_g \cdot e_z \qquad \qquad \mathbf{G}_{\mathbf{J}} \equiv j_1 \mathbf{b}_1 + j_2 \mathbf{b}_2 \quad \text{is a generic reciprocal lattice} \qquad \qquad \text{primitive vector}
$$

Operators:

$$
\hat{L}_{\mathbf{k}} = [L_{\mathbf{I},\mathbf{J}}] = [(\mathbf{k} + \mathbf{G}_{\mathbf{I}}) \cdot (\mathbf{k} + \mathbf{G}_{\mathbf{J}}) p_{\mu_{ef}^{-1},\mathbf{I}-\mathbf{J}} + i [(\mathbf{k} + \mathbf{G}_{\mathbf{J}}) \times (\mathbf{k} + \mathbf{G}_{\mathbf{I}})] \cdot \hat{\mathbf{z}} p_{\chi,\mathbf{I}-\mathbf{J}} \n\mathbf{M} = [M_{\mathbf{I},\mathbf{J}}] = p_{\varepsilon,\mathbf{I}-\mathbf{J}}
$$

We use 49 plane waves.

Band structure of a ferrite photonic crystal

Reciprocal ferrite photonic crystal

TÉCNICO
LISBOA

 -45%

C e ^u be hern number

$$
\mathcal{C} = \frac{1}{(2\pi)^2} \iint\limits_{B.Z.} d^2\mathbf{k} \int\limits_{\omega_{\text{gap}}-i\infty}^{\omega_{\text{gap}}+i\infty} d\omega \operatorname{Tr} \left\{ \partial_1 \mathcal{G}_\mathbf{k}^{-1} \cdot \mathcal{G}_\mathbf{k} \cdot \partial_2 \mathcal{G}_\mathbf{k}^{-1} \cdot \partial_\omega \mathcal{G}_\mathbf{k} \right\}
$$

$$
\mathcal{G}_{\mathbf{k}}\left(\omega\right) = i\left(\hat{L}_{\mathbf{k}} - \mathbf{M}_{g}\omega\right)^{-1}
$$

The operators L and M are the ones obtained with the plane wave expansion method (matrices)

 $\sim 10^{40-1}$).

Nu ^e ca ^e ^a p ^e merical example

The topological charge is concentrated near the two Dirac points

Phase d ag ^a i ^r ^m

Hexagonal array of ferrite cylinders

 \mathbb{R} and \mathbb{R}

$$
\kappa_1 = 12 + 8
$$
 $\mu_1 = \mu_2 = 1$
\n $\kappa_2 = 12 - 8$ $\kappa_1 = \kappa_2 = \kappa$
\n $r = 0.2\sqrt{3}a$

 -1600 m μ

Impact of losses on the band structure

Permeability tensor:

$$
\overline{\mu} = \begin{pmatrix} \mu + i\mu'' & i\kappa & 0 \\ -i\kappa & \mu + i\mu'' & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Bloch modes with a real-valued wave vector

 $\sim 10^{40}$ S μ

PT-symmetric system

للقنعة

Summary

•**The topological classification of an electromagnetic continuum requires a spatial cut-off.**

• **We proposed a Green's function method to find the topological pp p g phases of non-Hermitian photonic systems**

• **Our formalism does not require the calculation of the photonic band-structure, and can be easily implemented using the operators obtained with a standard plane-wave expansion.**

Thank you very much!

Semina