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Topological photonics
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Topological materials (Chern insulators)

No propagation in the bulk region
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Topological materials (contd.)

There is no way to “close” a topological system (with a opaque-
t ) b d ith t ti d t ttype) boundary without creating edge states

M. G. Silveirinha, “Proof of the bulk-edge correspondence through a link between 
topological photonics and fluctuation-electrodynamics”, Phys. Rev. X, 9, 011037, 2019.
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Do we really need a photonic crystal?
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Topological photonics in a continuum

M. G. Silveirinha,  “Chern Invariants for Continuous Media”, Phys. Rev. B, 92, 125153, 2015.
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Electromagnetic continua
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Topological band theory
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If the wave vector space is a closed surface with no 
boundary the Chern number is an integer

Photonic crystals (BZ is a torus): Electromagnetic continuumPhotonic crystals (BZ is a torus): Electromagnetic continuum
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The Riemann sphere
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Magneto-optical material
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Band structure and Chern numbers
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Should not the Chern number be an integer?

Stokes theorem:
1 ˆ

2 x ydk dk
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Hamiltonian is 
discontinuous at the Contribution of a singular 

N-pole
g

point is an integer when 
Hamiltonian varies smoothly 
with the wave vector!
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Why is the Chern number an integer for the high-
frequency band?frequency band?

(eigenfunctions can be chosen real-valued)

vacuum
k
 



Well-behaved vacuum 
material: north-pole

(or any dielectric material)

vacuum 
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High Frequency Spatial Cut-off

 1   0 02 2
max

1
1 /k k

        
1 1

max spatial cut-offk 

For large wave vectors the material response 
b i ll h h !becomes asymptotically the same as the vacuum!
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Effect of the spatial cut-off
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Another example: magnetized plasma
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Band structure for a magnetized semiconductor (direction of 
propagation perpendicular to the bias field)

M. G. Silveirinha,  “Chern Invariants for Continuous Media”, Phys. Rev. B, 92, 125153, 2015.
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M. G. Silveirinha, “Bulk edge correspondence for topological photonic continua”, Phys. Rev. B, 94, 205105, 2016. 



Bulk edge correspondence (Hatsugai)

Edge ModeEdge Mode

0 0

non-trivial
 mirror

trivial mirror

gap 0 gap 0

Number of unidirectional edge modes = gap Chern number

M. G. Silveirinha, “Bulk-edge correspondence for topological photonic continua”, Phys. 
Rev. B, 94, 205105, 2016.
M. G. Silveirinha, “Proof of the bulk-edge correspondence through a link between 
topological photonics and fluctuation-electrodynamics” Phys Rev X 9 011037 2019
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topological photonics and fluctuation-electrodynamics , Phys. Rev. X, 9, 011037, 2019.



Gapless edge states
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Unidirectional propagation

Gyrotropic Material
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A first taste of the topological 
classification with the Green’s functionclassification with the Green s function

M. G. Silveirinha,  “Topological classification of Chern-type insulators by means of 
the photonic Green function”, Phys. Rev. B, 97, 115146, 2018.
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Chern number calculated by means of the system 
G ’ f tiGreen’s function

ˆ
n n g nL   k k k kQ M QEigenvalue problem:
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Chern number calculated by means of the system 
G ’ f ti ( t )Green’s function (cont.)
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Numerical example (magnetized plasma)u e ca e a p e ( ag et ed p as a)
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Non-Hermitian Systems

M. G. Silveirinha, “Topological theory of non-Hermitian photonic systems”, Phys. Rev. B, 99, 125155, 2019. 
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Generalized eigenvalue problemGe e a ed e ge a ue p ob e

  ˆ
n n g nL   k k k kQ M Q

ˆ ,   do not need to be Hermitian
ˆ ˆ ˆis parameterized by a real-valued wave vector

gL

L k k 

k M

k x y is parameterized by a real valued wave vector x yL k k k k x y
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Green’s function operatorG ee s u ct o ope ato

    1ˆ 
    1ˆ

gi L  k k M

Band gaps 

Vertical strips in the complex frequency plane where 
      the Green's function is analytic (no modes)

 R  ReL U   
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Illustration: Spectrum of a non-Hermitian material 
( ti d l ith l )(magnetized plasma with loss)
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Plane waves with a real-valued wave vector
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Definitione t o
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The key resulty
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B. A. Bernervig, T. Hughes, Topological Insulators and Topological Superconductors, Princeton University Press, 
2013
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“Chern theorem in non-Hermitian systems”: Poor’s man 
fproof

ˆ   L̂ k 0 1 

 
 
 

ˆ 0  is Hermitian
ˆ ˆ1 = possibly non Hermitian
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L L
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 1 =  possibly non-HermitianL Lk k

 0 is an integer

0







 0   is an integer 
 1   is an integer   

Limitation: the proof only holds true if the band gap is not closed by 
th d f ti
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General proofp

ˆAssumptions:   are diagonalizable Lk

[or weak perturbations  (that do not close gaps) of diagonalizable operators]

Key step:
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Link with the Berry potentialy p

Reduction to a standard eigenvalue problem:

/ /ˆ ˆ

Reduction to a standard eigenvalue problem:

  1/2 1/2ˆ ˆ
g gL k kM M

ˆ    1/2M Q 
n n n k k k k    

n g n k kM Q

1,2,... ,    "filled" bandsFn N
1,...     "empty" bandsFn N 

See also: H. Shen, B. Zhen, and L. Fu, Topological Band Theory for Non-Hermitian Hamiltonians, Phys. Rev. 
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Lett. 120, 146402 (2018).



Link with the Berry potential (contd.)y p ( )

spans the entire space (operator is diagonalizable)n k p p ( p g )nk

ˆ represented by the diagonal matrix in the basis        , , 1,2,...
 represented by the diagonal matrix in the basis n m n nm n

 


     k k k k

some fixed basis of the vector spacee e1 2, ,...  some fixed basis of the vector spacee e

1̂

 Change of basis matrix ( ):      (gauge dependent)n n Sk ke

1 represented by  in the basis nS S   k k k k e
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Link with the Berry potential (contd.)y p ( )
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Link with the Berry potential (contd.)y p ( )
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Link with the Berry potential (conclusion)y p ( )
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Example: lossy magnetized plasmaa p e ossy ag et ed p as a
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First Principles Calculations of the Topological 
Phases of Non-Hermitian Photonic crystals

F. R. Prudêncio, M. G. Silveirinha, First Principles Calculation of Topological Invariants of non-
Hermitian Photonic Crystals, arXiv:2003.01539
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Ferrite Photonic Crystale te oto c C ysta

Hexagonal array of Ferrite constitutive relations
ferrite cylinders
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Band structurea d st uctu e

 2 ˆ  2/ c  z g zL i E E    M

Operators:
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Plane wave methoda e a e et od

iE G r
 , i

z zE e x y e  k r iE
ze c e   JG r

J
J

j jG b b

Bloch modes: Plane wave expansion:

Secular equation: L̂ e e  M is a generic reciprocal lattice

 ˆ ˆL L i   k k

1 1 2 2j j JG b bSecular equation: z g zL e e  k M is a generic reciprocal lattice 
primitive vector

       ˆ     

Operators:

       1, ,,
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ef
L L p i p 

                 k I J I J J I I JI J
k G k G k G k G z

M p   M , ,M p    I J I JM

We use 49 plane waves.
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Band structure of a ferrite photonic crystala d st uctu e o a e te p oto c c ysta

Nonreciprocal ferrite photonic crystalReciprocal ferrite photonic crystal
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Chern numberC e u be

 
 

gap

2 1 1
1 22

1 Tr
2

i

B Z i

d d








 
 



      k k k kk    
  gap. .2 B Z i  

    1ˆ
gi L 


 k k M  

The operators L and M are the ones obtained with the 
plane wave expansion method (matrices)

The Brillouin zone is sampled with:
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Numerical exampleu e ca e a p e

2 1 / 3 
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The numerically calculated Chern 
number approaches  1yk

K
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The computation time is on the order 
of a few minutes.

xkMK

K 
K K 

The topological charge is concentrated 
near the two Dirac points
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Phase diagramase d ag a
Hexagonal array of ferrite cylinders
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Impact of losses on the band structurepact o osses o t e ba d st uctu e
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Permeability tensor:
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Bloch modes with a real-valuedBloch modes with a real-valued
wave vector 
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Chern numberC e u be
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PT-symmetric systemsy et c syste
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Summary

•The topological classification of an electromagnetic continuum 

• We proposed a Green’s function method to find the topological 

requires a spatial cut-off.

p p p g
phases of non-Hermitian photonic systems

• Our formalism does not require the calculation of the photonic 
band-structure, and can be easily implemented using the 
operators obtained with a standard plane-wave expansion. 
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Thank you very much!Thank you very much!
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