From Racks to Pointed Hopf Algebras

LisMath Seminar

António Lages

Instituto Superior Técnico

Universidade de Lisboa

June 24, 2020

Knots

Definition

A knot is an embedding of the topological circle, S^{1}, in the three dimensional Euclidean space, \mathbb{R}^{3}.

Knots

Definition

A knot is an embedding of the topological circle, S^{1}, in the three dimensional Euclidean space, \mathbb{R}^{3}.

Definition

Two knots are said to be equivalent if there exists an orientation-preserving homeomorphism of \mathbb{R}^{3} taking one knot into the other.

Knots

Definition

A knot is an embedding of the topological circle, S^{1}, in the three dimensional Euclidean space, \mathbb{R}^{3}.

Definition

Two knots are said to be equivalent if there exists an orientation-preserving homeomorphism of \mathbb{R}^{3} taking one knot into the other.

Fundamental problem in Knot Theory:

Knots

Definition

A knot is an embedding of the topological circle, S^{1}, in the three dimensional Euclidean space, \mathbb{R}^{3}.

Definition

Two knots are said to be equivalent if there exists an orientation-preserving homeomorphism of \mathbb{R}^{3} taking one knot into the other.

Fundamental problem in Knot Theory:

Can we decide whether two knots are equivalent?

Knots

Definition

A knot is an embedding of the topological circle, S^{1}, in the three dimensional Euclidean space, \mathbb{R}^{3}.

Definition

Two knots are said to be equivalent if there exists an orientation-preserving homeomorphism of \mathbb{R}^{3} taking one knot into the other.

Fundamental problem in Knot Theory:

Can we decide whether two knots are equivalent? Can we classify knots?

Knots

Definition

A knot diagram is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Knots

Definition

A knot diagram is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Figure 1: Unknot;

Knots

Definition

A knot diagram is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Figure 1: Unknot;

Figure 2: Trefoil;

Knots

Definition

A knot diagram is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Figure 1: Unknot;

Figure 2: Trefoil;

Figure 3: Figure-eight.

Knots

Definition

A knot diagram is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Figure 1: Unknot;

Figure 2: Trefoil;

Figure 3: Figure-eight.

Definition

An arc is a portion of a knot diagram which runs from one undercrossing to the next.

Knots

Theorem (Reidemeister, 1927)

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

Knots

Theorem (Reidemeister, 1927)

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Knots

Theorem (Reidemeister, 1927)

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Figure 4: Type I;

Knots

Theorem (Reidemeister, 1927)

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Figure 4: Type I;

Figure 5: Type II;

Knots

Theorem (Reidemeister, 1927)

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Figure 4: Type I;

Figure 5: Type II;

Figure 6: Type III.

Knots

Theorem (Reidemeister, 1927)

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Figure 4: Type I;

Figure 5: Type II;

Figure 6: Type III.

We are going after a knot invariant.

Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i$;
(2) $\exists!x \in X: x * i=j$;
(3) $(i * j) * k=(i * k) *(j * k)$.

Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i$;
(2) $\exists!x \in X: x * i=j$;
(3) $(i * j) * k=(i * k) *(j * k)$.

Quandles can be represented by multiplication tables.

Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i$;
(2) $\exists!x \in X: x * i=j$;
(3) $(i * j) * k=(i * k) *(j * k)$.

Quandles can be represented by multiplication tables.

$*$	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 1: A quandle.

Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i$ (idempotency);
(2) \exists ! $x \in X: x * i=j$;
(3) $(i * j) * k=(i * k) *(j * k)$.

Quandles can be represented by multiplication tables.

$*$	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 1: A quandle.

Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i$ (idempotency);
(2) $\exists!x \in X: x * i=j$ (right-invertibility);
(3) $(i * j) * k=(i * k) *(j * k)$.

Quandles can be represented by multiplication tables.

$*$	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 1: A quandle.

Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i$ (idempotency);
(2) $\exists!x \in X: x * i=j$ (right-invertibility);
(3) $(i * j) * k=(i * k) *(j * k)$ (self-distributivity).

Quandles can be represented by multiplication tables.

$*$	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 1: A quandle.

Quandles

Examples of quandles:

Quandles

Examples of quandles:

(1) For each $n \in \mathbb{N},\left(T_{n}, *\right)$ denotes the quandle whose underlying set is $\{1, \ldots, n\}$ and whose operation is $i * j=i, \forall i, j \in\{1, \ldots, n\}$. This is called the trivial quandle of order n;

Quandles

Examples of quandles:

(1) For each $n \in \mathbb{N},\left(T_{n}, *\right)$ denotes the quandle whose underlying set is $\{1, \ldots, n\}$ and whose operation is $i * j=i, \forall i, j \in\{1, \ldots, n\}$. This is called the trivial quandle of order n;
(2) For each $n \geq 3,\left(R_{n}, *\right)$ denotes the quandle whose underlying set is \mathbb{Z}_{n} and whose operation is $i * j=2 j-i \bmod n, \forall i, j \in \mathbb{Z}_{n}$. This is called the dihedral quandle of order n;

Quandles

Examples of quandles:

(1) For each $n \in \mathbb{N},\left(T_{n}, *\right)$ denotes the quandle whose underlying set is $\{1, \ldots, n\}$ and whose operation is $i * j=i, \forall i, j \in\{1, \ldots, n\}$. This is called the trivial quandle of order n;
(2) For each $n \geq 3,\left(R_{n}, *\right)$ denotes the quandle whose underlying set is \mathbb{Z}_{n} and whose operation is $i * j=2 j-i \bmod n, \forall i, j \in \mathbb{Z}_{n}$. This is called the dihedral quandle of order n;
(3) Let G be a group and let $*$ be the binary operation on G given by $a * b=b a b^{-1}, \forall a, b \in G$, where the juxtaposition on the right-hand side denotes group multiplication. Then, the pair $(G, *)$ is a quandle;

Quandles

(4) Let G be a group, let $s: G \rightarrow G$ be a group automorphism and let $*$ be the binary operation on G given by $a * b=b s\left(a b^{-1}\right), \forall a, b \in G$. Then, the pair $(G, *)$ is a quandle. Quandles obtained in this way are called twisted homogeneous crossed sets;

Quandles

(9) Let G be a group, let $s: G \rightarrow G$ be a group automorphism and let $*$ be the binary operation on G given by $a * b=b s\left(a b^{-1}\right), \forall a, b \in G$. Then, the pair $(G, *)$ is a quandle. Quandles obtained in this way are called twisted homogeneous crossed sets;
(3) Let A be an abelian group, let $s: A \rightarrow A$ be a group automorphism and let $*$ be the binary operation on A given by $a * b=b+s(a-b)$, $\forall a, b \in A$. Then, the pair $(A, *)$ is a quandle, which is usually denoted by (A, s). Quandles obtained in this way are called affine crossed sets;

Quandles

(9) Let G be a group, let $s: G \rightarrow G$ be a group automorphism and let $*$ be the binary operation on G given by $a * b=b s\left(a b^{-1}\right), \forall a, b \in G$. Then, the pair $(G, *)$ is a quandle. Quandles obtained in this way are called twisted homogeneous crossed sets;
(3) Let A be an abelian group, let $s: A \rightarrow A$ be a group automorphism and let $*$ be the binary operation on A given by $a * b=b+s(a-b)$, $\forall a, b \in A$. Then, the pair $(A, *)$ is a quandle, which is usually denoted by (A, s). Quandles obtained in this way are called affine crossed sets;
(0) Let $P \subset \mathbb{R}^{3}$ be a regular polyhedron centered at the origin with vertices $X=\{1, \ldots, n\}$. For $1 \leq i \leq n$, let $T_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rotation by $2 \pi / r$ fixing i and the origin (r is the number of edges ending in each vertex; look from i to the origin and rotate counterclockwise). Let $*$ be the binary operation on X given by $i * j=T_{j}(i)$. Then $(X, *)$ is a quandle.

Quandles

$*$	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Table 2: Tetrahedron quandle;

Figure 7: Tetrahedron.

Quandles

$*$	1	2	3	4	5	6
1	1	1	6	5	3	4
2	2	2	5	6	4	3
3	5	6	3	3	2	1
4	6	5	4	4	1	2
5	4	3	1	2	5	5
6	3	4	2	1	6	6

Table 3: Octahedron quandle;

Figure 8: Octahedron.

Quandles

$*$	1	2	3	4	5	6	7	8
1	1	4	2	3	1	3	4	2
2	3	2	4	1	4	2	1	3
3	4	1	3	2	2	4	3	1
4	2	3	1	4	3	1	2	4
5	5	8	6	7	5	7	8	6
6	7	6	8	5	8	6	5	7
7	8	5	7	6	6	8	7	5
8	6	7	5	8	7	5	6	8

Table 4: Cube quandle;

Figure 9: Cube.

A Knot Invariant

Definition

Let $Q=(X, *)$ be a finite quandle and let K be an oriented knot diagram. A quandle coloring of K by Q is an assignment of an element of X to each arc in K satisfying the rules below.

A Knot Invariant

Definition

Let $Q=(X, *)$ be a finite quandle and let K be an oriented knot diagram. A quandle coloring of K by Q is an assignment of an element of X to each arc in K satisfying the rules below.

Figure 10: Rules for quandle colorings.

A Knot Invariant

Definition

Let $Q=(X, *)$ be a finite quandle and let K be an oriented knot diagram. A quandle coloring of K by Q is an assignment of an element of X to each arc in K satisfying the rules below.

Figure 10: Rules for quandle colorings.

Definition

Let $Q=(X, *)$ be a finite quandle and let K be an oriented knot diagram. The quandle counting invariant $|\operatorname{Hom}(K, Q)|$ is the total number of quandle colorings of K by Q.

A Knot Invariant

Theorem

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant $|\operatorname{Hom}(K, Q)|$ is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

A Knot Invariant

Abstract

Theorem Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant $|\operatorname{Hom}(K, Q)|$ is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

We analyse each Reidemeister move separately:

A Knot Invariant

Theorem

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant $|\operatorname{Hom}(K, Q)|$ is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

We analyse each Reidemeister move separately:

Figure 11: Type I;

A Knot Invariant

Theorem

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant $|\operatorname{Hom}(K, Q)|$ is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

We analyse each Reidemeister move separately:

Figure 11: Type I;

Figure 12: Type II;

A Knot Invariant

Theorem

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant $|\operatorname{Hom}(K, Q)|$ is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

We analyse each Reidemeister move separately:

Figure 11: Type I;

Figure 12: Type II;

Figure 13: Type III.

A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_{0};

A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_{0};

Figure 15: K_{1};

A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_{0};

Figure 15: K_{1};

Figure 16: K_{2};

A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_{0};

Figure 15: K_{1};

Figure 16: K_{2};

Let us, also, consider the following quandle:

A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_{0};

Figure 15: K_{1};

Figure 16: K_{2};

Let us, also, consider the following quandle:

$*$	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 5: $Q=\left(R_{3}, *\right)$.

A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_{0};

Figure 15: K_{1};

Figure 16: K_{2};

Let us, also, consider the following quandle:

$*$	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet

Table 5: $Q=\left(R_{3}, *\right)$.

A Knot Invariant

Figure 17: $\left|\operatorname{Hom}\left(K_{0}, Q\right)\right|=3$;

$$
\begin{aligned}
& 0 Q 2 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

A Knot Invariant

Figure 19: $\left|\operatorname{Hom}\left(K_{2}, Q\right)\right|=3$;

A Knot Invariant

Figure 19: $\left|\operatorname{Hom}\left(K_{2}, Q\right)\right|=3$;

Figure 20: No more colorings.

A Knot Invariant

Figure 19: $\left|\operatorname{Hom}\left(K_{2}, Q\right)\right|=3$;

Figure 20: No more colorings.

Since $3 \neq 9$, the figure-eight and the trefoil are not equivalent.

A Knot Invariant

Figure 19: $\left|\operatorname{Hom}\left(K_{2}, Q\right)\right|=3$;

Figure 20: No more colorings.

Since $3 \neq 9$, the figure-eight and the trefoil are not equivalent.

We cannot decide whether the unknot and the figure-eight are equivalent.

A Knot Invariant

Figure 19: $\left|\operatorname{Hom}\left(K_{2}, Q\right)\right|=3$;

Figure 20: No more colorings.

Since $3 \neq 9$, the figure-eight and the trefoil are not equivalent.
We cannot decide whether the unknot and the figure-eight are equivalent.

Is there a class of finite quandles particularly efficient in distinguishing knots?

A Knot Invariant

Figure 19: $\left|\operatorname{Hom}\left(K_{2}, Q\right)\right|=3$;

Figure 20: No more colorings.

Since $3 \neq 9$, the figure-eight and the trefoil are not equivalent.
We cannot decide whether the unknot and the figure-eight are equivalent.

Is there a class of finite quandles particularly efficient in distinguishing knots?
Can we determine all finite quandles?

Racks

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a rack if, for each $i, j, k \in X$,
(1) $\exists!x \in X: x * i=j$;
(2) $(i * j) * k=(i * k) *(j * k)$.

Racks

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a rack if, for each $i, j, k \in X$,
(1) $\exists!x \in X: x * i=j$;
(2) $(i * j) * k=(i * k) *(j * k)$.

Examples of racks:

Racks

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a rack if, for each $i, j, k \in X$,
(1) $\exists!x \in X: x * i=j$;
(2) $(i * j) * k=(i * k) *(j * k)$.

Examples of racks:

(1) Every quandle $Q=(X, *)$ is a rack;

Racks

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a rack if, for each $i, j, k \in X$,
(1) $\exists!x \in X: x * i=j$;
(2) $(i * j) * k=(i * k) *(j * k)$.

Examples of racks:

(1) Every quandle $Q=(X, *)$ is a rack;
(2) For each $n \in \mathbb{N},\left(C_{n}, *\right)$ denotes the rack whose underlying set is \mathbb{Z}_{n} and whose operation is $i * j=i+1 \bmod n, \forall i, j \in \mathbb{Z}_{n}$. This is called the cyclic rack of order n;

Racks

Definition

Let $(X, *)$ and $\left(Y, *^{\prime}\right)$ be two racks. A map $f: X \rightarrow Y$ is said to be a rack homomorphism if $f(i * j)=f(i) *^{\prime} f(j), \forall i, j \in X$.

Racks

Definition

Let $(X, *)$ and $\left(Y, *^{\prime}\right)$ be two racks. A map $f: X \rightarrow Y$ is said to be a rack homomorphism if $f(i * j)=f(i) *^{\prime} f(j), \forall i, j \in X$.

Definition

A rack X is said to be simple if it is not the trivial rack and for every surjective rack homomorphism $f: X \rightarrow Y$ either $|Y|=1$ or $|Y|=|X|$.

Racks

Definition

Let $(X, *)$ and $\left(Y, *^{\prime}\right)$ be two racks. A map $f: X \rightarrow Y$ is said to be a rack homomorphism if $f(i * j)=f(i) *^{\prime} f(j), \forall i, j \in X$.

Definition

A rack X is said to be simple if it is not the trivial rack and for every surjective rack homomorphism $f: X \rightarrow Y$ either $|Y|=1$ or $|Y|=|X|$.

Simple racks are the building blocks for finite racks.

Classifying Racks and Quandles

Definition

A decomposition of a rack $(X, *)$ is a nontrivial partition $X=Y \cup Z$ such that $(Y, *)$ and $(Z, *)$ are both subracks of $(X, *)$. A rack $(X, *)$ is said to be decomposable if it admits a decomposition and indecomposable otherwise.

Classifying Racks and Quandles

Definition

A decomposition of a rack $(X, *)$ is a nontrivial partition $X=Y \cup Z$ such that $(Y, *)$ and $(Z, *)$ are both subracks of $(X, *)$. A rack $(X, *)$ is said to be decomposable if it admits a decomposition and indecomposable otherwise.

$*$	Y	Z
Y	Y	
Z		Z

Table 6: A decomposable rack.

Classifying Racks and Quandles

Definition

A decomposition of a rack $(X, *)$ is a nontrivial partition $X=Y \cup Z$ such that $(Y, *)$ and $(Z, *)$ are both subracks of $(X, *)$. A rack $(X, *)$ is said to be decomposable if it admits a decomposition and indecomposable otherwise.

$*$	Y	Z
Y	Y	
Z	Z	Z

Table 6: A decomposable rack.

Classifying Racks and Quandles

Definition

A decomposition of a rack $(X, *)$ is a nontrivial partition $X=Y \cup Z$ such that $(Y, *)$ and $(Z, *)$ are both subracks of $(X, *)$. A rack $(X, *)$ is said to be decomposable if it admits a decomposition and indecomposable otherwise.

$*$	Y	Z
Y	Y	Y
Z	Z	Z

Table 6: A decomposable rack.

Classifying Racks and Quandles

Definition

A decomposition of a rack $(X, *)$ is a nontrivial partition $X=Y \cup Z$ such that $(Y, *)$ and $(Z, *)$ are both subracks of $(X, *)$. A rack $(X, *)$ is said to be decomposable if it admits a decomposition and indecomposable otherwise.

$*$	Y	Z
Y	Y	Y
Z	Z	Z

Table 6: A decomposable rack.

Proposition

Every rack is the disjoint union of indecomposable subracks.

Classifying Racks and Quandles

Proposition

Let $(X, *)$ be a rack, let S be a non-empty set, let $\alpha: X \times X \rightarrow \operatorname{Fun}(S \times S, S)$ be a function, so that for each $i, j \in X$ and $s, t \in S$ we have $\alpha_{i, j}(s, t) \in S$, and let $\alpha_{i, j}(t): S \rightarrow S$ denote the function given by $\alpha_{i, j}(t)(s)=\alpha_{i, j}(s, t)$. Then, $\left(X \times S, *^{\prime}\right)$ is a rack with respect to $(i, s) *^{\prime}(j, t)=\left(i * j, \alpha_{i, j}(s, t)\right)$ if and only if, for each $i, j, k \in X$ and $s, t, u \in S$, the following conditions hold:
(1) $\alpha_{i, j}(t)$ is a bijection;
(2) $\alpha_{i * j, k}\left(\alpha_{i, j}(s, t), u\right)=\alpha_{i * k, j * k}\left(\alpha_{i, k}(s, u), \alpha_{j, k}(t, u)\right)$.

Classifying Racks and Quandles

Proposition

Let $(X, *)$ be a rack, let S be a non-empty set, let $\alpha: X \times X \rightarrow \operatorname{Fun}(S \times S, S)$ be a function, so that for each $i, j \in X$ and $s, t \in S$ we have $\alpha_{i, j}(s, t) \in S$, and let $\alpha_{i, j}(t): S \rightarrow S$ denote the function given by $\alpha_{i, j}(t)(s)=\alpha_{i, j}(s, t)$. Then, $\left(X \times S, *^{\prime}\right)$ is a rack with respect to $(i, s) *^{\prime}(j, t)=\left(i * j, \alpha_{i, j}(s, t)\right)$ if and only if, for each $i, j, k \in X$ and $s, t, u \in S$, the following conditions hold:
(1) $\alpha_{i, j}(t)$ is a bijection;
(2) $\alpha_{i * j, k}\left(\alpha_{i, j}(s, t), u\right)=\alpha_{i * k, j * k}\left(\alpha_{i, k}(s, u), \alpha_{j, k}(t, u)\right)$.

Definition

If the conditions in the previous proposition hold, α is said to be a dynamical cocycle and $X \times S$ is said to be an extension of X by S. This extension shall be denoted by $X \times{ }_{\alpha} S$.

Classifying Racks and Quandles

Definition

Let X and Y be racks and let $f: X \rightarrow Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_{i}:=f^{-1}(i)$ is said to be a fiber of f.

Classifying Racks and Quandles

Definition

Let X and Y be racks and let $f: X \rightarrow Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_{i}:=f^{-1}(i)$ is said to be a fiber of f.

Lemma

Let X and Y be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $\left|F_{i}\right|=\left|F_{j}\right|, \forall i, j \in Y$.

Classifying Racks and Quandles

Definition

Let X and Y be racks and let $f: X \rightarrow Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_{i}:=f^{-1}(i)$ is said to be a fiber of f.

Lemma

Let X and Y be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $\left|F_{i}\right|=\left|F_{j}\right|, \forall i, j \in Y$.

Proposition

Let $(X, *)$ and $\left(Y, *^{\prime}\right)$ be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism such that all the fibers of f have the same cardinality. Then, X is an extension $X=Y \times{ }_{\alpha} S$.

Classifying Racks and Quandles

Definition

Let X and Y be racks and let $f: X \rightarrow Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_{i}:=f^{-1}(i)$ is said to be a fiber of f.

Lemma

Let X and Y be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $\left|F_{i}\right|=\left|F_{j}\right|, \forall i, j \in Y$.

Proposition

Let $(X, *)$ and $\left(Y, *^{\prime}\right)$ be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism such that all the fibers of f have the same cardinality. Then, X is an extension $X=Y \times{ }_{\alpha} S$.
Take a set S such that $|S|=\left|F_{i}\right|$. Set a bijection $g_{i}: F_{i} \rightarrow S, \forall i \in Y$. Let $\alpha: Y \times Y \rightarrow \operatorname{Fun}(S \times S \rightarrow S)$ be given by $\alpha_{i j}(s, t)=g_{i *^{\prime} j}\left(g_{i}^{-1}(s) * g_{j}^{-1}(t)\right)$. Then, $T: X \rightarrow Y \times{ }_{\alpha} S$ given by $T(x)=\left(f(x), g_{f(x)}(x)\right)$ is an isomorphism.

Classifying Racks and Quandles

Definition

Let X and Y be racks and let $f: X \rightarrow Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_{i}:=f^{-1}(i)$ is said to be a fiber of f.

Lemma

Let X and Y be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $\left|F_{i}\right|=\left|F_{j}\right|, \forall i, j \in Y$.

Proposition

Let $(X, *)$ and $\left(Y, *^{\prime}\right)$ be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism such that all the fibers of f have the same cardinality. Then, X is an extension $X=Y \times{ }_{\alpha} S$.

Classifying Racks and Quandles

Definition

Let X and Y be racks and let $f: X \rightarrow Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_{i}:=f^{-1}(i)$ is said to be a fiber of f.

Lemma

Let X and Y be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $\left|F_{i}\right|=\left|F_{j}\right|, \forall i, j \in Y$.

Proposition

Let $(X, *)$ and $\left(Y, *^{\prime}\right)$ be racks and let $f: X \rightarrow Y$ be a surjective rack homomorphism such that all the fibers of f have the same cardinality. Then, X is an extension $X=Y \times{ }_{\alpha} S$.

Corollary

Every indecomposable rack is the extension of a simple rack.

Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)

Let X be a simple rack. Then, one and only one of the following holds:

- $|X|=p$, where p is a prime, and X is the cyclic rack of order $p,\left(C_{p}, *\right)$;
- $|X|=p^{t}$, where p is a prime, and X is an affine crossed set $\left(\mathbb{F}_{p}^{t}, T\right)$;
- $|X|$ is not a prime power and X is a twisted homogeneous crossed set.

Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)

Let X be a simple rack. Then, one and only one of the following holds:

- $|X|=p$, where p is a prime, and X is the cyclic rack of order $p,\left(C_{p}, *\right)$;
- $|X|=p^{t}$, where p is a prime, and X is an affine crossed set $\left(\mathbb{F}_{p}^{t}, T\right)$;
- $|X|$ is not a prime power and X is a twisted homogeneous crossed set.

Let $(X, *)$ be a rack and let Aut ${ }_{X}$ be the set of automorphisms of $(X, *)$.

Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)

Let X be a simple rack. Then, one and only one of the following holds:

- $|X|=p$, where p is a prime, and X is the cyclic rack of order $p,\left(C_{p}, *\right)$;
- $|X|=p^{t}$, where p is a prime, and X is an affine crossed set $\left(\mathbb{F}_{p}^{t}, T\right)$;
- $|X|$ is not a prime power and X is a twisted homogeneous crossed set.

Let $(X, *)$ be a rack and let Aut X be the set of automorphisms of $(X, *)$. For each $i \in X$, let $\mu_{i}: X \rightarrow X$ be the bijective map given by $\mu_{i}(x)=x * i$.

Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)

Let X be a simple rack. Then, one and only one of the following holds:

- $|X|=p$, where p is a prime, and X is the cyclic rack of order $p,\left(C_{p}, *\right)$;
- $|X|=p^{t}$, where p is a prime, and X is an affine crossed set $\left(\mathbb{F}_{p}^{t}, T\right)$;
- $|X|$ is not a prime power and X is a twisted homogeneous crossed set.

Let $(X, *)$ be a rack and let Aut X be the set of automorphisms of $(X, *)$. For each $i \in X$, let $\mu_{i}: X \rightarrow X$ be the bijective map given by $\mu_{i}(x)=x * i$.
$\mu_{i}(x * y)=(x * y) * i=(x * i) *(y * i)=\mu_{i}(x) * \mu_{i}(y) \quad \Rightarrow \quad \mu_{i} \in$ Aut $_{x}$.

Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)

Let X be a simple rack. Then, one and only one of the following holds:

- $|X|=p$, where p is a prime, and X is the cyclic rack of order $p,\left(C_{p}, *\right)$;
- $|X|=p^{t}$, where p is a prime, and X is an affine crossed set $\left(\mathbb{F}_{p}^{t}, T\right)$;
- $|X|$ is not a prime power and X is a twisted homogeneous crossed set.

Let $(X, *)$ be a rack and let Aut X_{X} be the set of automorphisms of $(X, *)$. For each $i \in X$, let $\mu_{i}: X \rightarrow X$ be the bijective map given by $\mu_{i}(x)=x * i$.
$\mu_{i}(x * y)=(x * y) * i=(x * i) *(y * i)=\mu_{i}(x) * \mu_{i}(y) \quad \Rightarrow \quad \mu_{i} \in$ Aut $_{x}$.
Let Inn_{X} be the subgroup of Aut X generated by $\left\{\mu_{i}\right\}_{i \in X}$. So, $\forall g \in$ Aut $_{X}$:

Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)

Let X be a simple rack. Then, one and only one of the following holds:

- $|X|=p$, where p is a prime, and X is the cyclic rack of order $p,\left(C_{p}, *\right)$;
- $|X|=p^{t}$, where p is a prime, and X is an affine crossed set $\left(\mathbb{F}_{p}^{t}, T\right)$;
- $|X|$ is not a prime power and X is a twisted homogeneous crossed set.

Let $(X, *)$ be a rack and let Aut ${ }_{X}$ be the set of automorphisms of $(X, *)$. For each $i \in X$, let $\mu_{i}: X \rightarrow X$ be the bijective map given by $\mu_{i}(x)=x * i$.
$\mu_{i}(x * y)=(x * y) * i=(x * i) *(y * i)=\mu_{i}(x) * \mu_{i}(y) \quad \Rightarrow \quad \mu_{i} \in$ Aut $_{x}$.
Let Inn_{X} be the subgroup of Aut X generated by $\left\{\mu_{i}\right\}_{i \in X}$. So, $\forall g \in$ Aut :
$g \mu_{i} g^{-1}(y)=g\left(g^{-1}(y) * i\right)=y * g(i)=\mu_{g(i)}(y) \quad \Rightarrow \quad g \mu_{i} g^{-1}=\mu_{g(i)}$.

Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)

Let X be a simple rack. Then, one and only one of the following holds:

- $|X|=p$, where p is a prime, and X is the cyclic rack of order $p,\left(C_{p}, *\right)$;
- $|X|=p^{t}$, where p is a prime, and X is an affine crossed set $\left(\mathbb{F}_{p}^{t}, T\right)$;
- $|X|$ is not a prime power and X is a twisted homogeneous crossed set.

Let $(X, *)$ be a rack and let Aut ${ }_{X}$ be the set of automorphisms of $(X, *)$. For each $i \in X$, let $\mu_{i}: X \rightarrow X$ be the bijective map given by $\mu_{i}(x)=x * i$.
$\mu_{i}(x * y)=(x * y) * i=(x * i) *(y * i)=\mu_{i}(x) * \mu_{i}(y) \quad \Rightarrow \quad \mu_{i} \in$ Aut $_{x}$.
Let Inn_{X} be the subgroup of Aut x generated by $\left\{\mu_{i}\right\}_{i \in X}$. So, $\forall g \in$ Aut :
$g \mu_{i} g^{-1}(y)=g\left(g^{-1}(y) * i\right)=y * g(i)=\mu_{g(i)}(y) \quad \Rightarrow \quad g \mu_{i} g^{-1}=\mu_{g(i)}$.
We conclude that $I n n_{x}$ is a normal subgroup of Aut x.

Classifying Racks and Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i$;
(2) $\exists!x \in X: x * i=k$;
(3) $(k * j) * i=(k * i) *(j * i)$.

Classifying Racks and Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i$;
(2) \exists ! $x \in X: x * i=k$;
(3) $(k * j) * i=(k * i) *(j * i)$.

Theorem (Equivalent Definition of Quandle)

Let X be a set and let $\mu_{i}: X \rightarrow X$ be a permutation assigned to each $i \in X$. Then, the expression $j * i:=\mu_{i}(j), \forall j \in X$, yields a quandle structure if and only if $\mu_{\mu_{i}(j)}=\mu_{i} \mu_{j} \mu_{i}^{-1}$ and $\mu_{i}(i)=i, \forall i, j \in X$. This quandle structure is uniquely determined by the set of n permutations.

Classifying Racks and Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i \Leftrightarrow \mu_{i}(i)=i$;
(2) \exists ! $x \in X: x * i=k$;
(3) $(k * j) * i=(k * i) *(j * i)$.

Theorem (Equivalent Definition of Quandle)

Let X be a set and let $\mu_{i}: X \rightarrow X$ be a permutation assigned to each $i \in X$. Then, the expression $j * i:=\mu_{i}(j), \forall j \in X$, yields a quandle structure if and only if $\mu_{\mu_{i}(j)}=\mu_{i} \mu_{j} \mu_{i}^{-1}$ and $\mu_{i}(i)=i, \forall i, j \in X$. This quandle structure is uniquely determined by the set of n permutations.

Classifying Racks and Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i \Leftrightarrow \mu_{i}(i)=i$;
(2) $\exists!x \in X: x * i=k$;
(3) $(k * j) * i=(k * i) *(j * i) \Leftrightarrow \mu_{i} \mu_{j}=\mu_{\mu_{i}(j)} \mu_{i}$.

Theorem (Equivalent Definition of Quandle)

Let X be a set and let $\mu_{i}: X \rightarrow X$ be a permutation assigned to each $i \in X$. Then, the expression $j * i:=\mu_{i}(j), \forall j \in X$, yields a quandle structure if and only if $\mu_{\mu_{i}(j)}=\mu_{i} \mu_{j} \mu_{i}^{-1}$ and $\mu_{i}(i)=i, \forall i, j \in X$. This quandle structure is uniquely determined by the set of n permutations.

Classifying Racks and Quandles

Definition

Let X be a set and let $*$ be a binary operation on X. The pair $(X, *)$ is said to be a quandle if, for each $i, j, k \in X$,
(1) $i * i=i \Leftrightarrow \mu_{i}(i)=i$;
(2) \exists ! $x \in X: x * i=k$;
(3) $(k * j) * i=(k * i) *(j * i) \Leftrightarrow \mu_{i} \mu_{j}=\mu_{\mu_{i}(j)} \mu_{i} \Leftrightarrow \mu_{i} \mu_{j} \mu_{i}^{-1}=\mu_{\mu_{i}(j)}$.

Theorem (Equivalent Definition of Quandle)

Let X be a set and let $\mu_{i}: X \rightarrow X$ be a permutation assigned to each $i \in X$. Then, the expression $j * i:=\mu_{i}(j), \forall j \in X$, yields a quandle structure if and only if $\mu_{\mu_{i}(j)}=\mu_{i} \mu_{j} \mu_{i}^{-1}$ and $\mu_{i}(i)=i, \forall i, j \in X$. This quandle structure is uniquely determined by the set of n permutations.

Examples

$*$	1	2	3	4	5	6	7	8
1	1	4	2	3	1	3	4	2
2	3	2	4	1	4	2	1	3
3	4	1	3	2	2	4	3	1
4	2	3	1	4	3	1	2	4
5	5	8	6	7	5	7	8	6
6	7	6	8	5	8	6	5	7
7	8	5	7	6	6	8	7	5
8	6	7	5	8	7	5	6	8

Table 7: A decomposable quandle;

Figure 21: Cube.

Examples

$*$	1	2	3	4	5	6	7	8
1	1	4	2	3	1	3	4	2
2	3	2	4	1	4	2	1	3
3	4	1	3	2	2	4	3	1
4	2	3	1	4	3	1	2	4
5	5	8	6	7	5	7	8	6
6	7	6	8	5	8	6	5	7
7	8	5	7	6	6	8	7	5
8	6	7	5	8	7	5	6	8

Table 7: A decomposable quandle;

Figure 21: Cube.

The cube quandle is the disjoint union of two tetrahedron quandles.

Examples

$*$	1	2	3	4	5	6
1	1	1	6	5	3	4
2	2	2	5	6	4	3
3	5	6	3	3	2	1
4	6	5	4	4	1	2
5	4	3	1	2	5	5
6	3	4	2	1	6	6

Figure 22: Octahedron.

Examples

$*$	1	2	3	4	5	6
1	1	1	6	5	3	4
2	2	2	5	6	4	3
3	5	6	3	3	2	1
4	6	5	4	4	1	2
5	4	3	1	2	5	5
6	3	4	2	1	6	6

Figure 22: Octahedron.

The octahedron quandle is an extension of $\left(R_{3}, *\right)$ by a set S with 2 elements.

Examples

$*$	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Table 9: A simple quandle $(X, *)$;

Figure 23: Tetrahedron.

Examples

$*$	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Table 9: A simple quandle $(X, *)$;

Figure 23: Tetrahedron.

Let $f: X \rightarrow Y$ be a quandle homomorphism onto a certain quandle $\left(Y, *^{\prime}\right)$.

Examples

$*$	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Table 9: A simple quandle $(X, *)$;

Figure 23: Tetrahedron.

Let $f: X \rightarrow Y$ be a quandle homomorphism onto a certain quandle $\left(Y, *^{\prime}\right)$. Assume that $f(2)=f(1)$.

Examples

$*$	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Table 9: A simple quandle $(X, *)$;

Figure 23: Tetrahedron.

Let $f: X \rightarrow Y$ be a quandle homomorphism onto a certain quandle $\left(Y, *^{\prime}\right)$. Assume that $f(2)=f(1)$. Then, we conclude that $(X, *)$ is simple, because:

$$
f(3)=f(2 * 1)=f(2) *^{\prime} f(1)=f(1)=f(1) *^{\prime} f(2)=f(1 * 2)=f(4) .
$$

Examples

$*$	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Table 9: A simple quandle $(X, *)$;

Figure 23: Tetrahedron.

Let $f: X \rightarrow Y$ be a quandle homomorphism onto a certain quandle $\left(Y, *^{\prime}\right)$. Assume that $f(2)=f(1)$. Then, we conclude that $(X, *)$ is simple, because:

$$
f(3)=f(2 * 1)=f(2) *^{\prime} f(1)=f(1)=f(1) *^{\prime} f(2)=f(1 * 2)=f(4) .
$$

The tetrahedron quandle is the affine crossed set $\left(\mathbb{F}_{2}^{2}, T\right)$, where $T=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.

Applications

Definition

Let X be a non-empty set and let $S: X \times X \rightarrow X \times X$ be a bijective map. The pair (X, S) is said to be a braided set if, for each $x, y, z \in X$:

$$
(i d \times S)(S \times i d)(i d \times S)(x, y, z)=(S \times i d)(i d \times S)(S \times i d)(x, y, z)
$$

This equation is called the braid equation or the Yang-Baxter equation.

Applications

Definition

Let X be a non-empty set and let $S: X \times X \rightarrow X \times X$ be a bijective map. The pair (X, S) is said to be a braided set if, for each $x, y, z \in X$:

$$
(i d \times S)(S \times i d)(i d \times S)(x, y, z)=(S \times i d)(i d \times S)(S \times i d)(x, y, z)
$$

This equation is called the braid equation or the Yang-Baxter equation.

Proposition

Let $(X, *)$ be a rack and let $S: X \times X \rightarrow X \times X$ be the map given by $S(x, y)=(y * x, x), \forall x, y \in X$. Then, the pair (X, S) is a braided set.

Applications

Definition

Let X be a non-empty set and let $S: X \times X \rightarrow X \times X$ be a bijective map. The pair (X, S) is said to be a braided set if, for each $x, y, z \in X$:

$$
(i d \times S)(S \times i d)(i d \times S)(x, y, z)=(S \times i d)(i d \times S)(S \times i d)(x, y, z)
$$

This equation is called the braid equation or the Yang-Baxter equation.

Proposition

Let $(X, *)$ be a rack and let $S: X \times X \rightarrow X \times X$ be the map given by $S(x, y)=(y * x, x), \forall x, y \in X$. Then, the pair (X, S) is a braided set.

The map S is clearly bijective.

Applications

Definition

Let X be a non-empty set and let $S: X \times X \rightarrow X \times X$ be a bijective map. The pair (X, S) is said to be a braided set if, for each $x, y, z \in X$:

$$
(i d \times S)(S \times i d)(i d \times S)(x, y, z)=(S \times i d)(i d \times S)(S \times i d)(x, y, z)
$$

This equation is called the braid equation or the Yang-Baxter equation.

Proposition

Let $(X, *)$ be a rack and let $S: X \times X \rightarrow X \times X$ be the map given by $S(x, y)=(y * x, x), \forall x, y \in X$. Then, the pair (X, S) is a braided set.

The map S is clearly bijective. For each $x, y, z \in X$, it is easy to see that:

$$
\begin{aligned}
& (i d \times S)(S \times i d)(i d \times S)(x, y, z)=((z * y) * x, y * x, x) \\
& (S \times i d)(i d \times S)(S \times i d)(x, y, z)=((z * x) *(y * x), y * x, x)
\end{aligned}
$$

Thank you for your attention!

References

- N. Andruskiewitsch, M. Graña, From racks to pointed Hopf algebras, Adv. Math., 178 (2003), 177-243;
- D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg., 23 (1982), 37-65;
- A. Lages, P. Lopes, Quandles of cyclic type with several fixed points, Electronic Journal of Combinatorics, 26 (2019), P3.42;
- N. Lim, S. Jackson, Molecular knots in biology and chemistry, J. Phys.: Condens. Matter, 27 (2015), 354101;
- P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra, 34 (2006), 371-406.

