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Knots

Definition
A knot is an embedding of the topological circle, S1, in the three dimensional
Euclidean space, R3.

Definition
Two knots are said to be equivalent if there exists an orientation-preserving
homeomorphism of R3 taking one knot into the other.

.

.
Fundamental problem in Knot Theory:
.
Can we decide whether two knots are equivalent? Can we classify knots?
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Knots

Definition
A knot diagram is a projection of a knot on a plane where the undercrossing
strands are drawn broken.

Figure 1: Unknot; Figure 2: Trefoil; Figure 3: Figure-eight.

Definition
An arc is a portion of a knot diagram which runs from one undercrossing to
the next.
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Knots

Theorem (Reidemeister, 1927)
Two knot diagrams represent equivalent knots if and only if they are related
by a sequence of Reidemeister moves and by a planar orientation-preserving
homeomorphism.

.
The three different types of Reidemeister moves are the following:
.

Figure 4: Type I; Figure 5: Type II; Figure 6: Type III.
.
We are going after a knot invariant.
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Quandles

Definition
Let X be a set and let ∗ be a binary operation on X . The pair (X , ∗) is said
to be a quandle if, for each i , j , k ∈ X ,

1 i ∗ i = i ;
2 ∃! x ∈ X : x ∗ i = j ;
3 (i ∗ j) ∗ k = (i ∗ k) ∗ (j ∗ k).

.
Quandles can be represented by multiplication tables.
.

∗ 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

Table 1: A quandle.
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Let X be a set and let ∗ be a binary operation on X . The pair (X , ∗) is said
to be a quandle if, for each i , j , k ∈ X ,
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Quandles

Examples of quandles:

.
1 For each n ∈ N, (Tn, ∗) denotes the quandle whose underlying set is
{1, . . . , n} and whose operation is i ∗ j = i , ∀i , j ∈ {1, . . . , n}. This is
called the trivial quandle of order n;
.

2 For each n ≥ 3, (Rn, ∗) denotes the quandle whose underlying set is Zn

and whose operation is i ∗ j = 2j − i mod n, ∀i , j ∈ Zn. This is called
the dihedral quandle of order n;
.

3 Let G be a group and let ∗ be the binary operation on G given by
a ∗ b = bab−1, ∀a, b ∈ G , where the juxtaposition on the right-hand
side denotes group multiplication. Then, the pair (G , ∗) is a quandle;
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Quandles

4 Let G be a group, let s : G → G be a group automorphism and let ∗
be the binary operation on G given by a ∗ b = bs(ab−1), ∀a, b ∈ G .
Then, the pair (G , ∗) is a quandle. Quandles obtained in this way are
called twisted homogeneous crossed sets;

.
5 Let A be an abelian group, let s : A → A be a group automorphism

and let ∗ be the binary operation on A given by a ∗ b = b + s(a − b),
∀a, b ∈ A. Then, the pair (A, ∗) is a quandle, which is usually denoted
by (A, s). Quandles obtained in this way are called affine crossed sets;
.

6 Let P ⊂ R3 be a regular polyhedron centered at the origin with vertices
X = {1, ..., n}. For 1 ≤ i ≤ n, let Ti : R3 → R3 be a rotation by 2π/r
fixing i and the origin (r is the number of edges ending in each vertex;
look from i to the origin and rotate counterclockwise). Let ∗ be the
binary operation on X given by i ∗ j = Tj(i). Then (X , ∗) is a quandle.
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Quandles

.

.

∗ 1 2 3 4
1 1 4 2 3
2 3 2 4 1
3 4 1 3 2
4 2 3 1 4.

.
Table 2: Tetrahedron quandle; Figure 7: Tetrahedron.

António Lages From Racks to Pointed Hopf Algebras June 24, 2020



Quandles

.

.

∗ 1 2 3 4 5 6
1 1 1 6 5 3 4
2 2 2 5 6 4 3
3 5 6 3 3 2 1
4 6 5 4 4 1 2
5 4 3 1 2 5 5
6 3 4 2 1 6 6.

.
Table 3: Octahedron quandle; Figure 8: Octahedron.
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Quandles

.

.

∗ 1 2 3 4 5 6 7 8
1 1 4 2 3 1 3 4 2
2 3 2 4 1 4 2 1 3
3 4 1 3 2 2 4 3 1
4 2 3 1 4 3 1 2 4
5 5 8 6 7 5 7 8 6
6 7 6 8 5 8 6 5 7
7 8 5 7 6 6 8 7 5
8 6 7 5 8 7 5 6 8.

.
Table 4: Cube quandle; Figure 9: Cube.
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A Knot Invariant

Definition
Let Q = (X , ∗) be a finite quandle and let K be an oriented knot diagram.
A quandle coloring of K by Q is an assignment of an element of X to each
arc in K satisfying the rules below.

Figure 10: Rules for quandle colorings.

Definition
Let Q = (X , ∗) be a finite quandle and let K be an oriented knot diagram.
The quandle counting invariant |Hom(K ,Q)| is the total number of quandle
colorings of K by Q.
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A Knot Invariant

Theorem
Let Q be a finite quandle and let K be an oriented knot diagram. Then, the
quandle counting invariant |Hom(K ,Q)| is invariant under the Reidemeister
moves and under planar orientation-preserving homeomorphisms.

.
We analyse each Reidemeister move separately:
.

Figure 11: Type I; Figure 12: Type II; Figure 13: Type III.
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A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K0; Figure 15: K1; Figure 16: K2;.
Let us, also, consider the following quandle:
.

∗ 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

Table 5: Q = (R3, ∗).

António Lages From Racks to Pointed Hopf Algebras June 24, 2020



A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K0;

Figure 15: K1; Figure 16: K2;.
Let us, also, consider the following quandle:
.

∗ 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

Table 5: Q = (R3, ∗).

António Lages From Racks to Pointed Hopf Algebras June 24, 2020



A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K0; Figure 15: K1;

Figure 16: K2;.
Let us, also, consider the following quandle:
.

∗ 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

Table 5: Q = (R3, ∗).

António Lages From Racks to Pointed Hopf Algebras June 24, 2020



A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K0; Figure 15: K1; Figure 16: K2;

.
Let us, also, consider the following quandle:
.

∗ 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

Table 5: Q = (R3, ∗).

António Lages From Racks to Pointed Hopf Algebras June 24, 2020



A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K0; Figure 15: K1; Figure 16: K2;.
Let us, also, consider the following quandle:

.

∗ 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

Table 5: Q = (R3, ∗).

António Lages From Racks to Pointed Hopf Algebras June 24, 2020



A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K0; Figure 15: K1; Figure 16: K2;.
Let us, also, consider the following quandle:
.

∗ 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

Table 5: Q = (R3, ∗).

António Lages From Racks to Pointed Hopf Algebras June 24, 2020



A Knot Invariant

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K0; Figure 15: K1; Figure 16: K2;.
Let us, also, consider the following quandle:
.

∗ • • •
• • • •
• • • •
• • • •

Table 5: Q = (R3, ∗).
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A Knot Invariant

Figure 17: |Hom(K0,Q)| = 3;

Figure 18: |Hom(K1,Q)| = 9.
.
Since 3 6= 9, we conclude that the unknot and the trefoil are not equivalent.
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A Knot Invariant

Figure 19: |Hom(K2,Q)| = 3;

Figure 20: No more colorings.
.
Since 3 6= 9, the figure-eight and the trefoil are not equivalent.
.
We cannot decide whether the unknot and the figure-eight are equivalent.
.
.
Is there a class of finite quandles particularly efficient in distinguishing knots?
.
Can we determine all finite quandles?
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.
.
Is there a class of finite quandles particularly efficient in distinguishing knots?
.
Can we determine all finite quandles?
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Racks

Definition
Let X be a set and let ∗ be a binary operation on X . The pair (X , ∗) is said
to be a rack if, for each i , j , k ∈ X ,

1 ∃! x ∈ X : x ∗ i = j ;
2 (i ∗ j) ∗ k = (i ∗ k) ∗ (j ∗ k).

.

Examples of racks:
.

1 Every quandle Q = (X , ∗) is a rack;
.

2 For each n ∈ N, (Cn, ∗) denotes the rack whose underlying set is Zn

and whose operation is i ∗ j = i + 1 mod n, ∀i , j ∈ Zn. This is called
the cyclic rack of order n;
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Racks

Definition
Let (X , ∗) and (Y , ∗′) be two racks. A map f : X → Y is said to be a rack
homomorphism if f (i ∗ j) = f (i) ∗′ f (j), ∀i , j ∈ X .

Definition
A rack X is said to be simple if it is not the trivial rack and for every surjective
rack homomorphism f : X → Y either |Y | = 1 or |Y | = |X |.

.
Simple racks are the building blocks for finite racks.
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Classifying Racks and Quandles

Definition
A decomposition of a rack (X , ∗) is a nontrivial partition X = Y ∪ Z such
that (Y , ∗) and (Z , ∗) are both subracks of (X , ∗). A rack (X , ∗) is said to be
decomposable if it admits a decomposition and indecomposable otherwise.

.

∗ Y Z

Y Y

Y

Z

Z

Z

Table 6: A decomposable rack.

Proposition
Every rack is the disjoint union of indecomposable subracks.
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Classifying Racks and Quandles

Proposition
Let (X , ∗) be a rack, let S be a non-empty set, let α : X×X → Fun(S×S ,S)
be a function, so that for each i , j ∈ X and s, t ∈ S we have αi ,j(s, t) ∈ S ,
and let αi ,j(t) : S → S denote the function given by αi ,j(t)(s) = αi ,j(s, t).
Then, (X × S , ∗′) is a rack with respect to (i , s) ∗′ (j , t) = (i ∗ j , αi ,j(s, t))
if and only if, for each i , j , k ∈ X and s, t, u ∈ S , the following conditions
hold:

1 αi ,j(t) is a bijection;
2 αi∗j ,k(αi ,j(s, t), u) = αi∗k,j∗k(αi ,k(s, u), αj ,k(t, u)).

Definition
If the conditions in the previous proposition hold, α is said to be a dynamical
cocycle and X ×S is said to be an extension of X by S . This extension shall
be denoted by X ×α S .
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Classifying Racks and Quandles

Definition
Let X and Y be racks and let f : X → Y be a rack homomorphism. Given
an element i ∈ Y , the set Fi := f −1(i) is said to be a fiber of f .

Lemma
Let X and Y be racks and let f : X → Y be a surjective rack homomorphism.
If X is indecomposable, then Y is indecomposable and |Fi | = |Fj |,∀i , j ∈ Y .

Proposition
Let (X , ∗) and (Y , ∗′) be racks and let f : X → Y be a surjective rack homo-
morphism such that all the fibers of f have the same cardinality. Then, X
is an extension X = Y ×α S .
Take a set S such that |S | = |Fi |. Set a bijection gi : Fi → S , ∀i ∈ Y . Let
α : Y ×Y → Fun(S×S → S) be given by αij(s, t) = gi∗′j(g

−1
i (s)∗g−1

j (t)).
Then, T : X → Y ×αS given by T (x) = (f (x), gf (x)(x)) is an isomorphism.
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Classifying Racks and Quandles

Definition
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Proposition
Let (X , ∗) and (Y , ∗′) be racks and let f : X → Y be a surjective rack homo-
morphism such that all the fibers of f have the same cardinality. Then, X
is an extension X = Y ×α S .

Corollary
Every indecomposable rack is the extension of a simple rack.
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Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)
Let X be a simple rack. Then, one and only one of the following holds:
|X | = p, where p is a prime, and X is the cyclic rack of order p, (Cp, ∗);
|X | = pt , where p is a prime, and X is an affine crossed set (Ft

p,T );
|X | is not a prime power and X is a twisted homogeneous crossed set.

.

Let (X , ∗) be a rack and let AutX be the set of automorphisms of (X , ∗).
For each i ∈ X , let µi : X → X be the bijective map given by µi (x) = x ∗ i .

µi (x ∗ y) = (x ∗ y) ∗ i = (x ∗ i) ∗ (y ∗ i) = µi (x) ∗µi (y) ⇒ µi ∈ AutX .

Let InnX be the subgroup of AutX generated by {µi}i∈X . So, ∀g ∈ AutX :

gµig
−1(y) = g(g−1(y) ∗ i) = y ∗ g(i) = µg(i)(y) ⇒ gµig

−1 = µg(i).

We conclude that InnX is a normal subgroup of AutX.
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Classifying Racks and Quandles

Definition
Let X be a set and let ∗ be a binary operation on X . The pair (X , ∗) is said
to be a quandle if, for each i , j , k ∈ X ,

1 i ∗ i = i ;
2 ∃! x ∈ X : x ∗ i = k ;
3 (k ∗ j) ∗ i = (k ∗ i) ∗ (j ∗ i).µµi (i)(i)

Theorem (Equivalent Definition of Quandle)
Let X be a set and let µi : X → X be a permutation assigned to each i ∈ X .
Then, the expression j ∗ i := µi (j),∀j ∈ X , yields a quandle structure if and
only if µµi (j) = µiµjµ

−1
i and µi (i) = i ,∀i , j ∈ X . This quandle structure is

uniquely determined by the set of n permutations.
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Examples
.
.

∗ 1 2 3 4 5 6 7 8
1 1 4 2 3 1 3 4 2
2 3 2 4 1 4 2 1 3
3 4 1 3 2 2 4 3 1
4 2 3 1 4 3 1 2 4
5 5 8 6 7 5 7 8 6
6 7 6 8 5 8 6 5 7
7 8 5 7 6 6 8 7 5
8 6 7 5 8 7 5 6 8

.

.
Table 7: A decomposable quandle; Figure 21: Cube.

The cube quandle is the disjoint union of two tetrahedron quandles.
.
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Examples

.

.

∗ 1 2 3 4 5 6
1 1 1 6 5 3 4
2 2 2 5 6 4 3
3 5 6 3 3 2 1
4 6 5 4 4 1 2
5 4 3 1 2 5 5
6 3 4 2 1 6 6

.

.
Table 8: An indecomposible but not simple quandle; Figure 22: Octahedron.

The octahedron quandle is an extension of (R3, ∗) by a set S with 2 elements.
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Examples
.
.

∗ 1 2 3 4
1 1 4 2 3
2 3 2 4 1
3 4 1 3 2
4 2 3 1 4

.

.
Table 9: A simple quandle (X , ∗); Figure 23: Tetrahedron.

Let f : X → Y be a quandle homomorphism onto a certain quandle (Y , ∗′).
Assume that f (2) = f (1). Then, we conclude that (X , ∗) is simple, because:

f (3) = f (2 ∗ 1) = f (2) ∗′ f (1) = f (1) = f (1) ∗′ f (2) = f (1 ∗ 2) = f (4).

The tetrahedron quandle is the affine crossed set (F2
2,T ), where T =

[
1 1
1 0

]
.
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Applications

Definition
Let X be a non-empty set and let S : X × X → X × X be a bijective map.
The pair (X ,S) is said to be a braided set if, for each x , y , z ∈ X :

(id × S)(S × id)(id × S)(x , y , z) = (S × id)(id × S)(S × id)(x , y , z).

This equation is called the braid equation or the Yang-Baxter equation.

Proposition
Let (X , ∗) be a rack and let S : X × X → X × X be the map given by
S(x , y) = (y ∗ x , x),∀x , y ∈ X . Then, the pair (X ,S) is a braided set.
.
The map S is clearly bijective. For each x , y , z ∈ X , it is easy to see that:
.

(id × S)(S × id)(id × S)(x , y , z) = ((z ∗ y) ∗ x , y ∗ x , x);
.

(S × id)(id × S)(S × id)(x , y , z) = ((z ∗ x) ∗ (y ∗ x), y ∗ x , x).
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Thank you for your attention!
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