From Racks to Pointed Hopf Algebras

LisMath Seminar

António Lages

Instituto Superior Técnico Universidade de Lisboa

June 24, 2020

A *knot* is an embedding of the topological circle, S^1 , in the three dimensional Euclidean space, \mathbb{R}^3 .

э

A *knot* is an embedding of the topological circle, S^1 , in the three dimensional Euclidean space, \mathbb{R}^3 .

Definition

Two knots are said to be *equivalent* if there exists an orientation-preserving homeomorphism of \mathbb{R}^3 taking one knot into the other.

A *knot* is an embedding of the topological circle, S^1 , in the three dimensional Euclidean space, \mathbb{R}^3 .

Definition

Two knots are said to be *equivalent* if there exists an orientation-preserving homeomorphism of \mathbb{R}^3 taking one knot into the other.

Fundamental problem in Knot Theory:

A *knot* is an embedding of the topological circle, S^1 , in the three dimensional Euclidean space, \mathbb{R}^3 .

Definition

Two knots are said to be *equivalent* if there exists an orientation-preserving homeomorphism of \mathbb{R}^3 taking one knot into the other.

Fundamental problem in Knot Theory:

Can we decide whether two knots are equivalent?

A *knot* is an embedding of the topological circle, S^1 , in the three dimensional Euclidean space, \mathbb{R}^3 .

Definition

Two knots are said to be *equivalent* if there exists an orientation-preserving homeomorphism of \mathbb{R}^3 taking one knot into the other.

Fundamental problem in Knot Theory:

Can we decide whether two knots are equivalent? Can we classify knots?

A *knot diagram* is a projection of a knot on a plane where the undercrossing strands are drawn broken.

3

A *knot diagram* is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Figure 1: Unknot;

э

A *knot diagram* is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Figure 1: Unknot;

Figure 2: Trefoil;

э

A *knot diagram* is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Figure 1: Unknot;

Figure 2: Trefoil;

Figure 3: Figure-eight.

A *knot diagram* is a projection of a knot on a plane where the undercrossing strands are drawn broken.

Figure 1: Unknot;

Figure 2: Trefoil;

Figure 3: Figure-eight.

Definition

An *arc* is a portion of a knot diagram which runs from one undercrossing to the next.

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Figure 4: Type I;

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Figure 4: Type I;

Figure 5: Type II;

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

Two knot diagrams represent equivalent knots if and only if they are related by a sequence of Reidemeister moves and by a planar orientation-preserving homeomorphism.

The three different types of Reidemeister moves are the following:

We are going after a knot invariant.

António Lages

Definition

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

Definition

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

Quandles can be represented by multiplication tables.

Definition

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

Quandles can be represented by multiplication tables.

*	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 1: A quandle.

Definition

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

- i * i = i (idempotency);
- $\exists ! x \in X : x * i = j;$

3
$$(i * j) * k = (i * k) * (j * k).$$

Quandles can be represented by multiplication tables.

*	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 1: A quandle.

Definition

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

- i * i = i (idempotency);
- 2 $\exists ! x \in X : x * i = j \text{ (right-invertibility)};$

$$(i * j) * k = (i * k) * (j * k).$$

Quandles can be represented by multiplication tables.

*	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 1: A quandle.

Definition

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

- i * i = i (idempotency);
- 2 $\exists ! x \in X : x * i = j \text{ (right-invertibility)};$
- (i * j) * k = (i * k) * (j * k)(self-distributivity).

Quandles can be represented by multiplication tables.

*	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 1: A quandle.

Examples of quandles:

António Lages

2

Examples of quandles:

• For each $n \in \mathbb{N}$, $(T_n, *)$ denotes the quandle whose underlying set is $\{1, \ldots, n\}$ and whose operation is i * j = i, $\forall i, j \in \{1, \ldots, n\}$. This is called the *trivial quandle of order n*;

3

Examples of quandles:

- For each $n \in \mathbb{N}$, $(T_n, *)$ denotes the quandle whose underlying set is $\{1, \ldots, n\}$ and whose operation is i * j = i, $\forall i, j \in \{1, \ldots, n\}$. This is called the *trivial quandle of order n*;
- Prove a characterization is i * j = 2j − i mod n, ∀i, j ∈ Z_n. This is called the dihedral quandle of order n;

Examples of quandles:

- For each $n \in \mathbb{N}$, $(T_n, *)$ denotes the quandle whose underlying set is $\{1, \ldots, n\}$ and whose operation is i * j = i, $\forall i, j \in \{1, \ldots, n\}$. This is called the *trivial quandle of order n*;
- Prove a characterization is i * j = 2j − i mod n, ∀i, j ∈ Z_n. This is called the dihedral quandle of order n;
- Set G be a group and let * be the binary operation on G given by a * b = bab⁻¹, ∀a, b ∈ G, where the juxtaposition on the right-hand side denotes group multiplication. Then, the pair (G, *) is a quandle;

- 4 回 ト 4 回 ト

Let G be a group, let s : G → G be a group automorphism and let * be the binary operation on G given by a * b = bs(ab⁻¹), ∀a, b ∈ G. Then, the pair (G,*) is a quandle. Quandles obtained in this way are called *twisted homogeneous crossed sets*;

- Let G be a group, let s : G → G be a group automorphism and let * be the binary operation on G given by a * b = bs(ab⁻¹), ∀a, b ∈ G. Then, the pair (G, *) is a quandle. Quandles obtained in this way are called *twisted homogeneous crossed sets*;
- Let A be an abelian group, let s : A → A be a group automorphism and let * be the binary operation on A given by a * b = b + s(a b), ∀a, b ∈ A. Then, the pair (A, *) is a quandle, which is usually denoted by (A, s). Quandles obtained in this way are called *affine crossed sets*;

- Let G be a group, let s : G → G be a group automorphism and let * be the binary operation on G given by a * b = bs(ab⁻¹), ∀a, b ∈ G. Then, the pair (G,*) is a quandle. Quandles obtained in this way are called *twisted homogeneous crossed sets*;
- Let A be an abelian group, let s : A → A be a group automorphism and let * be the binary operation on A given by a * b = b + s(a b), ∀a, b ∈ A. Then, the pair (A, *) is a quandle, which is usually denoted by (A, s). Quandles obtained in this way are called *affine crossed sets*;
- Let $P \subset \mathbb{R}^3$ be a regular polyhedron centered at the origin with vertices $X = \{1, ..., n\}$. For $1 \le i \le n$, let $T_i : \mathbb{R}^3 \to \mathbb{R}^3$ be a rotation by $2\pi/r$ fixing *i* and the origin (*r* is the number of edges ending in each vertex; look from *i* to the origin and rotate counterclockwise). Let * be the binary operation on X given by $i * j = T_j(i)$. Then (X, *) is a quandle.

*	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Table 2: Tetrahedron quandle;

Figure 7: Tetrahedron.

э

Table 3: Octahedron quandle;

Figure 8: Octahedron.

3

*	1	2	3	4	5	6	7	8
1	1	4	2	3	1	3	4	2
2	3	2	4	1	4	2	1	3
3	4	1	3	2	2	4	3	1
4	2	3	1	4	3	1	2	4
5	5	8	6	7	5	7	8	6
6	7	6	8	5	8	6	5	7
7	8	5	7	6	6	8	7	5
8	6	7	5	8	7	5	6	8

Table 4: Cube quandle;

Figure 9: Cube.

Let Q = (X, *) be a finite quandle and let K be an oriented knot diagram. A *quandle coloring of* K *by* Q is an assignment of an element of X to each arc in K satisfying the rules below.

Let Q = (X, *) be a finite quandle and let K be an oriented knot diagram. A *quandle coloring of* K *by* Q is an assignment of an element of X to each arc in K satisfying the rules below.

Figure 10: Rules for quandle colorings.

Let Q = (X, *) be a finite quandle and let K be an oriented knot diagram. A *quandle coloring of* K *by* Q is an assignment of an element of X to each arc in K satisfying the rules below.

Figure 10: Rules for quandle colorings.

Definition

Let Q = (X, *) be a finite quandle and let K be an oriented knot diagram. The *quandle counting invariant* |Hom(K, Q)| is the total number of quandle colorings of K by Q.

António Lages

From Racks to Pointed Hopf Algebras

June 24, 2020

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant |Hom(K, Q)| is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant |Hom(K, Q)| is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant |Hom(K, Q)| is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant |Hom(K, Q)| is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

Let Q be a finite quandle and let K be an oriented knot diagram. Then, the quandle counting invariant |Hom(K, Q)| is invariant under the Reidemeister moves and under planar orientation-preserving homeomorphisms.

Example: Let us consider the following three oriented knot diagrams:

António Lages

From Racks to Pointed Hopf Algebras

June 24, 2020

Example: Let us consider the following three oriented knot diagrams:

Figure 14: *K*₀;

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_0 ;

Figure 15: *K*₁;

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_0 ;

Figure 15: *K*₁;

Figure 16: *K*₂;

From Racks to Pointed Hopf Algebras

June 24, 2020

Example: Let us consider the following three oriented knot diagrams:

Figure 15: *K*₁;

Figure 16: *K*₂;

Let us, also, consider the following quandle:

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_0 ;

Figure 15: *K*₁;

Figure 16: *K*₂;

Let us, also, consider the following quandle:

*	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Table 5: $Q = (R_3, *)$.

Example: Let us consider the following three oriented knot diagrams:

Figure 14: K_0 ;

Figure 15: *K*₁;

Figure 16: *K*₂;

Let us, also, consider the following quandle:

*	•	•	•
•	•	•	٠
•	•	•	•
•	•	•	•

Table 5: $Q = (R_3, *)$.

Figure 17: $|Hom(K_0, Q)| = 3;$

3

Figure 17: $|Hom(K_0, Q)| = 3;$

Figure 18: $|Hom(K_1, Q)| = 9.$

Figure 17: $|Hom(K_0, Q)| = 3;$

Figure 18: $|Hom(K_1, Q)| = 9.$

Since $3 \neq 9$, we conclude that the unknot and the trefoil are not equivalent.

Figure 19: $|Hom(K_2, Q)| = 3;$

3

Figure 19: $|Hom(K_2, Q)| = 3;$

Figure 20: No more colorings.

From Racks to Pointed Hopf Algebras

June 24, 2020

Figure 19: $|Hom(K_2, Q)| = 3;$

Figure 20: No more colorings.

Since $3 \neq 9$, the figure-eight and the trefoil are not equivalent.

Figure 19: $|Hom(K_2, Q)| = 3;$

Figure 20: No more colorings.

Since $3 \neq 9$, the figure-eight and the trefoil are not equivalent.

We cannot decide whether the unknot and the figure-eight are equivalent.

Figure 19: $|Hom(K_2, Q)| = 3;$

Figure 20: No more colorings.

Since $3 \neq 9$, the figure-eight and the trefoil are not equivalent.

We cannot decide whether the unknot and the figure-eight are equivalent.

Is there a class of finite quandles particularly efficient in distinguishing knots?

Figure 19: $|Hom(K_2, Q)| = 3;$

Figure 20: No more colorings.

Since $3 \neq 9$, the figure-eight and the trefoil are not equivalent.

We cannot decide whether the unknot and the figure-eight are equivalent.

Is there a class of finite quandles particularly efficient in distinguishing knots?

Can we determine all finite quandles?

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *rack* if, for each $i, j, k \in X$,

 $\exists ! x \in X : x * i = j;$

2
$$(i * j) * k = (i * k) * (j * k).$$

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *rack* if, for each $i, j, k \in X$,

 $\exists ! x \in X : x * i = j;$

2
$$(i * j) * k = (i * k) * (j * k).$$

Examples of racks:

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *rack* if, for each $i, j, k \in X$,

 $\exists ! x \in X : x * i = j;$

2
$$(i * j) * k = (i * k) * (j * k).$$

Examples of racks:

1 Every quandle
$$Q = (X, *)$$
 is a rack;

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *rack* if, for each $i, j, k \in X$,

 $\exists ! x \in X : x * i = j;$

2
$$(i * j) * k = (i * k) * (j * k).$$

Examples of racks:

1 Every quandle
$$Q = (X, *)$$
 is a rack;

② For each $n \in \mathbb{N}$, $(C_n, *)$ denotes the rack whose underlying set is \mathbb{Z}_n and whose operation is $i * j = i + 1 \mod n$, $\forall i, j \in \mathbb{Z}_n$. This is called the *cyclic rack of order n*;

Let (X, *) and (Y, *') be two racks. A map $f : X \to Y$ is said to be a *rack* homomorphism if $f(i * j) = f(i) *' f(j), \forall i, j \in X$.

3

→ Ξ →

Let (X, *) and (Y, *') be two racks. A map $f : X \to Y$ is said to be a rack homomorphism if $f(i * j) = f(i) *' f(j), \forall i, j \in X$.

Definition

A rack X is said to be *simple* if it is not the trivial rack and for every surjective rack homomorphism $f : X \to Y$ either |Y| = 1 or |Y| = |X|.

Let (X, *) and (Y, *') be two racks. A map $f : X \to Y$ is said to be a rack homomorphism if $f(i * j) = f(i) *' f(j), \forall i, j \in X$.

Definition

A rack X is said to be *simple* if it is not the trivial rack and for every surjective rack homomorphism $f : X \to Y$ either |Y| = 1 or |Y| = |X|.

Simple racks are the building blocks for finite racks.

A decomposition of a rack (X, *) is a nontrivial partition $X = Y \cup Z$ such that (Y, *) and (Z, *) are both subracks of (X, *). A rack (X, *) is said to be decomposable if it admits a decomposition and *indecomposable* otherwise.

A decomposition of a rack (X, *) is a nontrivial partition $X = Y \cup Z$ such that (Y, *) and (Z, *) are both subracks of (X, *). A rack (X, *) is said to be decomposable if it admits a decomposition and *indecomposable* otherwise.

*	Y	Ζ
Y	Y	
Ζ		Ζ

A decomposition of a rack (X, *) is a nontrivial partition $X = Y \cup Z$ such that (Y, *) and (Z, *) are both subracks of (X, *). A rack (X, *) is said to be decomposable if it admits a decomposition and *indecomposable* otherwise.

*	Y	Ζ
Y	Y	
Ζ	Ζ	Ζ

A decomposition of a rack (X, *) is a nontrivial partition $X = Y \cup Z$ such that (Y, *) and (Z, *) are both subracks of (X, *). A rack (X, *) is said to be decomposable if it admits a decomposition and *indecomposable* otherwise.

*	Y	Ζ
Y	Y	Y
Ζ	Ζ	Ζ

A decomposition of a rack (X, *) is a nontrivial partition $X = Y \cup Z$ such that (Y, *) and (Z, *) are both subracks of (X, *). A rack (X, *) is said to be decomposable if it admits a decomposition and *indecomposable* otherwise.

*	Y	Ζ
Y	Y	Y
Ζ	Ζ	Ζ

Proposition

Let (X, *) be a rack, let S be a non-empty set, let $\alpha : X \times X \to \operatorname{Fun}(S \times S, S)$ be a function, so that for each $i, j \in X$ and $s, t \in S$ we have $\alpha_{i,j}(s, t) \in S$, and let $\alpha_{i,j}(t) : S \to S$ denote the function given by $\alpha_{i,j}(t)(s) = \alpha_{i,j}(s, t)$. Then, $(X \times S, *')$ is a rack with respect to $(i, s) *'(j, t) = (i * j, \alpha_{i,j}(s, t))$ if and only if, for each $i, j, k \in X$ and $s, t, u \in S$, the following conditions hold:

1
$$\alpha_{i,j}(t)$$
 is a bijection;

$$a_{i*j,k}(\alpha_{i,j}(s,t),u) = \alpha_{i*k,j*k}(\alpha_{i,k}(s,u),\alpha_{j,k}(t,u)).$$

Proposition

Let (X, *) be a rack, let S be a non-empty set, let $\alpha : X \times X \to \operatorname{Fun}(S \times S, S)$ be a function, so that for each $i, j \in X$ and $s, t \in S$ we have $\alpha_{i,j}(s, t) \in S$, and let $\alpha_{i,j}(t) : S \to S$ denote the function given by $\alpha_{i,j}(t)(s) = \alpha_{i,j}(s, t)$. Then, $(X \times S, *')$ is a rack with respect to $(i, s) *'(j, t) = (i * j, \alpha_{i,j}(s, t))$ if and only if, for each $i, j, k \in X$ and $s, t, u \in S$, the following conditions hold:

1
$$\alpha_{i,j}(t)$$
 is a bijection

$$a_{i*j,k}(\alpha_{i,j}(s,t),u) = \alpha_{i*k,j*k}(\alpha_{i,k}(s,u),\alpha_{j,k}(t,u)).$$

Definition

If the conditions in the previous proposition hold, α is said to be a *dynamical* cocycle and $X \times S$ is said to be an *extension of* X by S. This extension shall be denoted by $X \times_{\alpha} S$.

Let X and Y be racks and let $f : X \to Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_i := f^{-1}(i)$ is said to be a *fiber of f*.

Let X and Y be racks and let $f : X \to Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_i := f^{-1}(i)$ is said to be a *fiber of f*.

Lemma

Let X and Y be racks and let $f : X \to Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $|F_i| = |F_i|, \forall i, j \in Y$.

Let X and Y be racks and let $f : X \to Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_i := f^{-1}(i)$ is said to be a *fiber of f*.

Lemma

Let X and Y be racks and let $f : X \to Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $|F_i| = |F_j|, \forall i, j \in Y$.

Proposition

Let (X, *) and (Y, *') be racks and let $f : X \to Y$ be a surjective rack homomorphism such that all the fibers of f have the same cardinality. Then, X is an extension $X = Y \times_{\alpha} S$.

Let X and Y be racks and let $f : X \to Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_i := f^{-1}(i)$ is said to be a *fiber of f*.

Lemma

Let X and Y be racks and let $f : X \to Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $|F_i| = |F_j|, \forall i, j \in Y$.

Proposition

Let (X, *) and (Y, *') be racks and let $f : X \to Y$ be a surjective rack homomorphism such that all the fibers of f have the same cardinality. Then, X is an extension $X = Y \times_{\alpha} S$. Take a set S such that $|S| = |F_i|$. Set a bijection $g_i : F_i \to S$, $\forall i \in Y$. Let $\alpha : Y \times Y \to \operatorname{Fun}(S \times S \to S)$ be given by $\alpha_{ij}(s, t) = g_{i*'j}(g_i^{-1}(s)*g_j^{-1}(t))$. Then, $T : X \to Y \times_{\alpha} S$ given by $T(x) = (f(x), g_{f(x)}(x))$ is an isomorphism.

Let X and Y be racks and let $f : X \to Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_i := f^{-1}(i)$ is said to be a *fiber of f*.

Lemma

Let X and Y be racks and let $f : X \to Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $|F_i| = |F_i|, \forall i, j \in Y$.

Proposition

Let (X, *) and (Y, *') be racks and let $f : X \to Y$ be a surjective rack homomorphism such that all the fibers of f have the same cardinality. Then, X is an extension $X = Y \times_{\alpha} S$.

Let X and Y be racks and let $f : X \to Y$ be a rack homomorphism. Given an element $i \in Y$, the set $F_i := f^{-1}(i)$ is said to be a *fiber of f*.

Lemma

Let X and Y be racks and let $f : X \to Y$ be a surjective rack homomorphism. If X is indecomposable, then Y is indecomposable and $|F_i| = |F_i|, \forall i, j \in Y$.

Proposition

Let (X, *) and (Y, *') be racks and let $f : X \to Y$ be a surjective rack homomorphism such that all the fibers of f have the same cardinality. Then, X is an extension $X = Y \times_{\alpha} S$.

Corollary

Every indecomposable rack is the extension of a simple rack.

António Lages

From Racks to Pointed Hopf Algebras

Classifying Racks and Quandles

Theorem (Andruskiewitsch and Graña, 2003)

Let X be a simple rack. Then, one and only one of the following holds:

- |X| = p, where p is a prime, and X is the cyclic rack of order p, $(C_p, *)$;
- $|X| = p^t$, where p is a prime, and X is an affine crossed set (\mathbb{F}_p^t, T) ;
- |X| is not a prime power and X is a twisted homogeneous crossed set.

Let X be a simple rack. Then, one and only one of the following holds:

- |X| = p, where p is a prime, and X is the cyclic rack of order p, $(C_p, *)$;
- $|X| = p^t$, where p is a prime, and X is an affine crossed set (\mathbb{F}_p^t, T) ;
- |X| is not a prime power and X is a twisted homogeneous crossed set.

Let (X, *) be a rack and let Aut_X be the set of automorphisms of (X, *).

Let X be a simple rack. Then, one and only one of the following holds:

- |X| = p, where p is a prime, and X is the cyclic rack of order p, $(C_p, *)$;
- $|X| = p^t$, where p is a prime, and X is an affine crossed set (\mathbb{F}_p^t, T) ;
- |X| is not a prime power and X is a twisted homogeneous crossed set.

Let (X, *) be a rack and let Aut_X be the set of automorphisms of (X, *). For each $i \in X$, let $\mu_i : X \to X$ be the bijective map given by $\mu_i(x) = x * i$.

Let X be a simple rack. Then, one and only one of the following holds:

- |X| = p, where p is a prime, and X is the cyclic rack of order p, $(C_p, *)$;
- $|X| = p^t$, where p is a prime, and X is an affine crossed set (\mathbb{F}_p^t, T) ;
- |X| is not a prime power and X is a twisted homogeneous crossed set.

Let (X, *) be a rack and let Aut_X be the set of automorphisms of (X, *). For each $i \in X$, let $\mu_i : X \to X$ be the bijective map given by $\mu_i(x) = x * i$.

$$\mu_i(x * y) = (x * y) * i = (x * i) * (y * i) = \mu_i(x) * \mu_i(y) \quad \Rightarrow \quad \mu_i \in \operatorname{Aut}_X.$$

Let X be a simple rack. Then, one and only one of the following holds:

- |X| = p, where p is a prime, and X is the cyclic rack of order p, $(C_p, *)$;
- $|X| = p^t$, where p is a prime, and X is an affine crossed set (\mathbb{F}_p^t, T) ;
- |X| is not a prime power and X is a twisted homogeneous crossed set.

Let (X, *) be a rack and let Aut_X be the set of automorphisms of (X, *). For each $i \in X$, let $\mu_i : X \to X$ be the bijective map given by $\mu_i(x) = x * i$.

$$\mu_i(x * y) = (x * y) * i = (x * i) * (y * i) = \mu_i(x) * \mu_i(y) \quad \Rightarrow \quad \mu_i \in \operatorname{Aut}_X.$$

Let Inn_X be the subgroup of Aut_X generated by $\{\mu_i\}_{i\in X}$. So, $\forall g \in Aut_X$:

Let X be a simple rack. Then, one and only one of the following holds:

- |X| = p, where p is a prime, and X is the cyclic rack of order p, $(C_p, *)$;
- $|X| = p^t$, where p is a prime, and X is an affine crossed set (\mathbb{F}_p^t, T) ;
- |X| is not a prime power and X is a twisted homogeneous crossed set.

Let (X, *) be a rack and let Aut_X be the set of automorphisms of (X, *). For each $i \in X$, let $\mu_i : X \to X$ be the bijective map given by $\mu_i(x) = x * i$.

$$\mu_i(x * y) = (x * y) * i = (x * i) * (y * i) = \mu_i(x) * \mu_i(y) \quad \Rightarrow \quad \mu_i \in \operatorname{Aut}_X.$$

Let Inn_X be the subgroup of Aut_X generated by $\{\mu_i\}_{i\in X}$. So, $\forall g \in Aut_X$:

$$g\mu_i g^{-1}(y) = g(g^{-1}(y) * i) = y * g(i) = \mu_{g(i)}(y) \quad \Rightarrow \quad g\mu_i g^{-1} = \mu_{g(i)}.$$

Let X be a simple rack. Then, one and only one of the following holds:

- |X| = p, where p is a prime, and X is the cyclic rack of order p, $(C_p, *)$;
- $|X| = p^t$, where p is a prime, and X is an affine crossed set (\mathbb{F}_p^t, T) ;
- |X| is not a prime power and X is a twisted homogeneous crossed set.

Let (X, *) be a rack and let Aut_X be the set of automorphisms of (X, *). For each $i \in X$, let $\mu_i : X \to X$ be the bijective map given by $\mu_i(x) = x * i$.

$$\mu_i(x * y) = (x * y) * i = (x * i) * (y * i) = \mu_i(x) * \mu_i(y) \quad \Rightarrow \quad \mu_i \in \operatorname{Aut}_X.$$

Let Inn_X be the subgroup of Aut_X generated by $\{\mu_i\}_{i\in X}$. So, $\forall g \in Aut_X$:

$$g\mu_i g^{-1}(y) = g(g^{-1}(y) * i) = y * g(i) = \mu_{g(i)}(y) \quad \Rightarrow \quad g\mu_i g^{-1} = \mu_{g(i)}.$$

We conclude that Inn_X is a normal subgroup of Aut_X .

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

1
$$i * i = i;$$

$$\exists ! x \in X : x * i = k;$$

3
$$(k * j) * i = (k * i) * (j * i).$$

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

1
$$i * i = i;$$

$$\exists ! x \in X : x * i = k;$$

$$③ (k ∗ j) ∗ i = (k ∗ i) ∗ (j ∗ i).$$

Theorem (Equivalent Definition of Quandle)

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

• $i * i = i \Leftrightarrow \mu_i(i) = i;$

$$\exists ! x \in X : x * i = k;$$

$$③ (k ∗ j) ∗ i = (k ∗ i) ∗ (j ∗ i).$$

Theorem (Equivalent Definition of Quandle)

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

• $i * i = i \Leftrightarrow \mu_i(i) = i;$

$$\exists ! x \in X : x * i = k;$$

$$(k*j)*i = (k*i)*(j*i) \Leftrightarrow \mu_i\mu_j = \mu_{\mu_i(j)}\mu_i.$$

Theorem (Equivalent Definition of Quandle)

Let X be a set and let * be a binary operation on X. The pair (X,*) is said to be a *quandle* if, for each $i, j, k \in X$,

• $i * i = i \Leftrightarrow \mu_i(i) = i;$

$$\exists ! x \in X : x * i = k;$$

$$(k*j)*i = (k*i)*(j*i) \Leftrightarrow \mu_i\mu_j = \mu_{\mu_i(j)}\mu_i \Leftrightarrow \mu_i\mu_j\mu_i^{-1} = \mu_{\mu_i(j)}$$

Theorem (Equivalent Definition of Quandle)

Examples

Table 7: A decomposable quandle;

Figure 21: Cube.

Examples

Table 7: A decomposable quandle;

Figure 21: Cube.

The cube quandle is the disjoint union of two tetrahedron quandles.

António Lages

From Racks to Pointed Hopf Algebras

June 24, 2020

*	1	2	3	4	5	6
1	1	1	6	5	3	4
2	2	2	5	6	4	3
3	5	6	3	3	2	1
4	6	5	4	4	1	2
5	4	3	1	2	5	5
6	3	4	2	1	6	6

Table 8: An indecomposible but not simple quandle;

Figure 22: Octahedron.

*	1	2	3	4	5	6
1	1	1	6	5	3	4
2	2	2	5	6	4	3
3	5	6	3	3	2	1
4	6	5	4	4	1	2
5	4	3	1	2	5	5
6	3	4	2	1	6	6

 Table 8: An indecomposible but not simple quandle;
 Figure 22:

Figure 22: Octahedron.

The octahedron quandle is an extension of $(R_3, *)$ by a set S with 2 elements.

António Lages

Examples

*	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Table 9: A simple quandle (X, *);

Figure 23: Tetrahedron.

Table 9: A simple quandle (X, *);

Figure 23: Tetrahedron.

Let $f : X \to Y$ be a quandle homomorphism onto a certain quandle (Y, *').

Table 9: A simple quandle (X, *);

Figure 23: Tetrahedron.

Let $f : X \to Y$ be a quandle homomorphism onto a certain quandle (Y, *'). Assume that f(2) = f(1).

Table 9: A simple quandle (X, *);

Figure 23: Tetrahedron.

Let $f : X \to Y$ be a quandle homomorphism onto a certain quandle (Y, *'). Assume that f(2) = f(1). Then, we conclude that (X, *) is simple, because:

$$f(3) = f(2 * 1) = f(2) *' f(1) = f(1) = f(1) *' f(2) = f(1 * 2) = f(4).$$

Table 9: A simple quandle (X, *);

Figure 23: Tetrahedron.

Let $f : X \to Y$ be a quandle homomorphism onto a certain quandle (Y, *'). Assume that f(2) = f(1). Then, we conclude that (X, *) is simple, because:

$$f(3) = f(2 * 1) = f(2) *' f(1) = f(1) = f(1) *' f(2) = f(1 * 2) = f(4)$$

The tetrahedron quandle is the affine crossed set (\mathbb{F}_2^2, T) , where $T = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

Let X be a non-empty set and let $S : X \times X \to X \times X$ be a bijective map. The pair (X, S) is said to be a *braided set* if, for each $x, y, z \in X$:

 $(id \times S)(S \times id)(id \times S)(x, y, z) = (S \times id)(id \times S)(S \times id)(x, y, z).$

This equation is called the braid equation or the Yang-Baxter equation.

Let X be a non-empty set and let $S : X \times X \to X \times X$ be a bijective map. The pair (X, S) is said to be a *braided set* if, for each $x, y, z \in X$:

 $(id \times S)(S \times id)(id \times S)(x, y, z) = (S \times id)(id \times S)(S \times id)(x, y, z).$

This equation is called the braid equation or the Yang-Baxter equation.

Proposition

Let (X, *) be a rack and let $S : X \times X \to X \times X$ be the map given by $S(x, y) = (y * x, x), \forall x, y \in X$. Then, the pair (X, S) is a braided set.

Let X be a non-empty set and let $S : X \times X \to X \times X$ be a bijective map. The pair (X, S) is said to be a *braided set* if, for each $x, y, z \in X$:

 $(id \times S)(S \times id)(id \times S)(x, y, z) = (S \times id)(id \times S)(S \times id)(x, y, z).$

This equation is called the braid equation or the Yang-Baxter equation.

Proposition

Let (X, *) be a rack and let $S : X \times X \to X \times X$ be the map given by $S(x, y) = (y * x, x), \forall x, y \in X$. Then, the pair (X, S) is a braided set.

The map S is clearly bijective.

Let X be a non-empty set and let $S : X \times X \to X \times X$ be a bijective map. The pair (X, S) is said to be a *braided set* if, for each $x, y, z \in X$:

 $(id \times S)(S \times id)(id \times S)(x, y, z) = (S \times id)(id \times S)(S \times id)(x, y, z).$

This equation is called the braid equation or the Yang-Baxter equation.

Proposition

Let (X, *) be a rack and let $S : X \times X \to X \times X$ be the map given by $S(x, y) = (y * x, x), \forall x, y \in X$. Then, the pair (X, S) is a braided set.

The map S is clearly bijective. For each $x, y, z \in X$, it is easy to see that: $(id \times S)(S \times id)(id \times S)(x, y, z) = ((z * y) * x, y * x, x);$ $(S \times id)(id \times S)(S \times id)(x, y, z) = ((z * x) * (y * x), y * x, x).$

Thank you for your attention!

- N. Andruskiewitsch, M. Graña, *From racks to pointed Hopf algebras*, Adv. Math., 178 (2003), 177-243;
- D. Joyce, *A classifying invariant of knots, the knot quandle*, J. Pure Appl. Alg., 23 (1982), 37–65;
- A. Lages, P. Lopes, *Quandles of cyclic type with several fixed points*, Electronic Journal of Combinatorics, 26 (2019), P3.42;
- N. Lim, S. Jackson, *Molecular knots in biology and chemistry*, J. Phys.: Condens. Matter, 27 (2015), 354101;
- P. Lopes and D. Roseman, *On finite racks and quandles*, Comm. Algebra, 34 (2006), 371-406.