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Section 1: Introduction

1. Introduction (2 pages)
▶ Main characters
▶ Outline
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Main characters

Multiply winding curves:
▶ Immersed closed curves γ in R2 of rotation number ≥ 2.

Isoperimetric Inequality (Iso Ineq):
▶ Classical geometric inequality. For a closed plane curve γ,

Length(γ)2 ≥ 4πArea(γ).

Surface Diffusion Flow (SDF):
▶ 4th order geometric evolution equation. For closed plane curves,

V = −∂ssκ,

where V normal velocity, s arclength, κ curvature.
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Outline
Stationary solutions:

▶ SDF’s stationary solution satisfies 0 = ∂ssκ.
▶ Since the curve is closed, curvature is constant.
▶ Must be a circle CN , of an arbitrary rotation number N ≥ 1.

Stability (N = 1):

▶ A singly winding circle C1 is “dynamically stable”.
▶ Iso Ineq L2 ≥ 4πA comes into play in a variational proof.

Stability (N ≥ 2):

▶ Multiply-winding circles CN are “not stable”.
▶ Lacking is Iso Ineq of the form L2 ≥ 4πNA (equality for CN ).

Main results:

▶ Iso Ineq: L2 ≥ 4πNA under rotational symmetry.
▶ SDF: Stability of CN (N ≥ 2) for rotationally symmetric perturbations.
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Section 2: Isoperimetric Inequality

1. Isoperimetric Inequality (6 pages)
▶ Basic definitions
▶ Isoperimetric ratio
▶ Rotational symmetry
▶ Main theorem I: Isoperimetric Inequality
▶ Idea of the proof
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Basic definitions

Let γ : S1 → R2, where S1 := R/Z, be smooth and regular |∂xγ(x)| > 0.

▶ Length:

L(γ) :=

∫
γ

ds,

where s denotes the arclength parameter.
▶ Signed area: counterclockwise = positive.

A(γ) := −1

2

∫
γ

γ · νds,

where ν := Rπ
2
∂sγ and Rθ: θ-rotation matrix.

▶ Rotation number:
N(γ) :=

1

2π

∫
γ

κds ∈ Z,

where κ = ∂2
sγ · ν.
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Isoperimetric ratio

Isoperimetric ratio:

I(γ) :=


L(γ)2

4πA(γ)
(A(γ) > 0),

∞ (A(γ) ≤ 0).

Remark:
▶ In general, I ≥ 1 holds.
▶ For N -times covered circle CN , we have I(CN ) ≥ N .
▶ If γR consists of two circles of radii 1 and R ≥ 1, then

I(γR) =
(2π + 2πR)2

4π(π + πR2)
= 1 +

2R

1 +R2
.

The value I(γR) decreases from 2 to 1 as R : 1 → ∞.

Goal: Find a class X for which infX I = N holds. (N : rotation number.)
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Rotational symmetry
Class A(n,m):
▶ A(n,m) := {γ ∈ Sym(m) | N(γ) = n}.

A(1, 3) A(2, 3) A(4, 3) A(5, 3)

m-th rotational symmetry:
▶ γ ∈ Sym(m) ⇐⇒ ∃i ∈ {1, . . . ,m} such that γ ∈ Sym(m, i).
▶ γ ∈ Sym(m, i) ⇐⇒ γ(x+ 1

m ) = R 2πi
m
γ(x) holds for every x ∈ S1.

Remark: The index i is characterized by n,m.
▶ γ ∈ A(n,m) =⇒ γ ∈ Sym(m, in,m), where in,m := n+m−m

⌈
n
m

⌉
.

▶ The index in,m is a unique element of {1, . . . ,m} ∩ (n+mZ).
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Main theorem I: Isoperimetric Inequality

Theorem 1 (M.-Okabe)

Let n ∈ Z and m ∈ Z>0. Recall A(n,m) := {γ ∈ Sym(m) | N(γ) = n}. Then

inf
γ∈A(n,m)

I(γ) = in,m.

The infimum is attained iff 1 ≤ n ≤ m (⇔ in,m = n) and γ is an n-circle.

Corollary 2 (Isoperimetric Inequality)

If 1 ≤ n ≤ m, then I(γ) ≥ n for γ ∈ A(n,m). Equality only by an n-circle.

Remark:
▶ Corollary 2 has been known if γ is in addition locally convex.

[Epstein-Gage’87] (1 ≤ n ≤ m/2), [Chou’03], [Süssmann’11], [Wang-Li-Chao’17].

Tatsuya MIURA (Tokyo Tech) Isoperimetric Inequality and Surface Diffusion Flow 23 June 2020 (Lisbon, Zoom) 10 / 20



Main theorem I: Isoperimetric Inequality

Theorem 1 (M.-Okabe)

Let n ∈ Z and m ∈ Z>0. Recall A(n,m) := {γ ∈ Sym(m) | N(γ) = n}. Then

inf
γ∈A(n,m)

I(γ) = in,m.

The infimum is attained iff 1 ≤ n ≤ m (⇔ in,m = n) and γ is an n-circle.

Corollary 2 (Isoperimetric Inequality)

If 1 ≤ n ≤ m, then I(γ) ≥ n for γ ∈ A(n,m). Equality only by an n-circle.

Remark:
▶ Corollary 2 has been known if γ is in addition locally convex.

[Epstein-Gage’87] (1 ≤ n ≤ m/2), [Chou’03], [Süssmann’11], [Wang-Li-Chao’17].

Tatsuya MIURA (Tokyo Tech) Isoperimetric Inequality and Surface Diffusion Flow 23 June 2020 (Lisbon, Zoom) 10 / 20



Idea of the proof

Direct method for closed curves?:
▶ Take a min seq {γj} ⊂ A(n,m) such that I(γj) → infA(n,m) I.
▶ By compactness, up to subseq, γj′ → ∃γ̄ in certain first order sense.
▶ If γ̄ ∈ A(n,m), then γ̄ attains inf by lower semicontinuity of I.
▶ BUT N [γ̄] = n may not hold in general! N is of second order.

Change the strategy:
▶ Just look at one period of γ ∈ A(n,m).
▶ Direct method for open curves.
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Idea of the proof

Free boundary problem for open curves:
▶ Xθ := {γ ∈ Lip([0, 1];R2) | (Boundary Condition)}.
▶ (BC) γ(0)

|γ(0)| = (1, 0), γ(1)
|γ(1)| = (sin θ, cos θ), and |γ(0)| = |γ(1)| > 0.

▶ All zeroth order. Direct method applicable.

Theorem 3

For θ ∈ (0, 2π], minXθ
I(γ) = θ/2π. Equality only by a circular arc of angle θ.

Original inequality:

▶ One period γ|m of γ ∈ A(n,m) lives in Xθ for θ :=
2πin,m

m
.

▶ Since I(γ) = mI(γ|m), we get I(γ) ≥ m · θ/2π = in,m.
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Section 3: Surface Diffusion Flow

3. Surface Diffusion Flow (6 pages)
▶ Quick review
▶ Global existence: Singly winding case (N = 1)
▶ Global existence: Multiply winding case (N ≥ 2)
▶ Main theorem II: Global existence for SDF
▶ Sketch of the proof
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Quick review

Surface Diffusion Flow: Given a smooth initial data γ0 : S1 → R2, consider{
∂tγ = (−∂2

sκ)ν on S1 × [0, T ),

γ(·, 0) = γ0,

where γ : S1 × [0, T ) → R2 is a family of immersed curves.
▶ T ∈ (0,∞]: maximal existence time. (T > 0 by parabolicity.)

Problem: Which initial curve γ0 admits a global solution (T = ∞)?

Basic facts1:
▶ Along the flow, d

dtL ≤ 0 and d
dtA = 0. Hence, I is non-increasing.

▶ If T = ∞, then γ converges to an N(γ0)-circle as t → ∞.
▶ ∃ initial curve γ0 with finite time blowup (T < ∞).
▶ If T < ∞, then L2-blowup of curvature

∫
κ2ds ≳ (T − t)−1/4.

▶ Convexity and embeddedness are not necessarily preserved.

1Cf. Giga-Ito’98,’99, Dziuk-Kuwert-Schätzle’02, Chou’03, Wheeler (arXiv:2004.08494).
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Global existence: Singly winding case (N = 1)

Finite time blowup:
▶ Example: N(γ0) = 1 and A(γ0) ≤ 0.

▶ If T = ∞, then the solution would converge to a counterclockwise circle.
However this is impossible by the area-preserving property.

Global existence:
▶ If γ0 is close to a circle, then T = ∞.

▶ [Elliott-Garcke’97], [Escher-Mayer-Simonett’98], [Wheeler’13]

Major open problems: (not addressed in this talk)
▶ Finite time blowup for γ0 embedded? (or A(γ0) > 0?)
▶ Giga’s conjecture: If γ(·, t) embedded for all t ∈ [0, T ), then T = ∞?
▶ Chou’s conjecture: Concerning classification of “Type I” singularity.
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Global existence: Multiply winding case (N ≥ 2)
Finite time blowup:
▶ Example: I(γ0) < N(γ0) [Chou ’03].
▶ The above occurs even if γ0 is close to an N -circle.

[Escher-Mayer-Simonett ’98]
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Global existence: Multiply winding case (N ≥ 2)

Global existence:
▶ Symmetric global solutions are known numerically.

[Escher-Mayer-Simonett ’98]
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Main theorem II: Global existence for SDF

Theorem 4 (M.-Okabe)

Let 1 ≤ n ≤ m. If γ0 ∈ A(n,m), and if γ0 is “H2-close” to an n-circle, then γ0
admits a global solution to SDF, i.e., T = ∞.

Remark:
▶ The proof crucially relies on our isoperimetric inequality I(γ(t)) ≥ n.
▶ Key point: No a priori convexity along SDF, but our isoperimetric

inequality does not assume convexity!
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Sketch of the proof
Sketch of the proof:
▶ Goal: Prove L2-boundedness of curvature =⇒ T = ∞.
▶ Wheeler’s estimate: Let K∗

n := 2π
3 (

√
1 + 3πn2 −

√
3πn2). Then, as long as

Kosc(γ(t)) :=
1

L(γ(t))

∫
γ(t)

(κ− κ̄)2ds ≤ 2K∗
n,

the curvature oscillation is more precisely controlled:

Kosc(γ(t)) ≤ Kosc(γ0) + 4π2n2 log
L(γ0)

2

L(γ(t))2
.

▶ By our isoperimetric inequality “L(γ(t))2 ≥ 4πnA(γ(t))”,

L(γ0)
2

L(γ(t))2
“≤”

L(γ0)
2

4πnA(γ(t))
=

L(γ0)
2

4πnA(γ0)
=

I(γ0)

n
.

▶ If Kosc(γ0) ≤ K∗
n and I(γ0)

n ≤ exp(
K∗

n

8π2n2 ), then

sup
t∈[0,T )

Kosc(γ(t)) ≤
3

2
K∗

n.
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Summary and future directions

Summary:
▶ Isoperimetric Inequality for rotationally symmetric curves:

1 ≤ n ≤ m, γ ∈ A(n,m) =⇒ L2 ≥ 4πnA.

▶ Surface Diffusion Flow admits rotationally symmetric global solutions:

1 ≤ n ≤ m, γ0 ∈ A(n,m), γ0 nearly circular =⇒ T = ∞.

Future directions:
▶ Iso Ineq: How about curved ambient spaces?
▶ SDF: More precise understanding of singularities.

– Thank you very much!
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