Igor Kravchenko

(Joint work with Cláudia Nunes and Carlos Oliveira)

IST-ID, CEMAT

Probability and Statistics Seminar, IST, June 18th, 2020

Overview	The setup	Switching problem	Investment problem	Final
•0	000	00000000000000	000000000000	00

Planned structure

The setup

- Motivation
- Mathematical framework
- Switching problem
 - Solutions
 - Experiments
- Investment problem
 - Same investment costs for both projects
 - Different investment costs for the projects
- Final comments and remarks

Overview	The setup	Switching problem	Investment problem	Final
0•	000	000000000000000	0000000000000	00

Main references

- Décamps, J.P., Mariotti, T. and Villeneuve, S., 2006. Irreversible investment in alternative projects., Economic Theory, 28(2), pp.425-448.
- Zervos, M., Oliveira, C. and Duckworth, K., 2018. An investment model with switching costs and the option to abandon. Mathematical Methods of Operations Research, 88(3), pp.417-443.

00 0000000000000000000000000000000000	Overview OO	The setup •00	Switching problem	Investment problem	Final 00
--	----------------	------------------	-------------------	--------------------	-------------

Economic motivation

- The firm has two possible investments I_1 and I_2
- There is only one source of uncertainty the price (of the product) p

- \cdot K_{12} > 0 Switching cost $I_1 \rightarrow I_2$
- $\cdot~$ K_{21} > 0 Switching cost $\textit{I}_{2} \rightarrow \textit{I}_{1}$
- · K_x exit cost (considered negative)

► The firm stays at one of the state at each moment of time z ∈ {l₁, l₂, ex}

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	0000000000000	00

Model 1/2

- ▶ Price process geometric Brownian motion: $dP_t = \mu P_t dt + \sigma P_t dB_t$
- Infinitesimal generator: $\mathcal{L} := \mu p \partial_p + \frac{1}{2} \sigma^2 p^2 \partial_{pp}$
- ▶ Payoff of the investment during time [t₁, t₂]

$$\int_{t_1}^{t_2} e^{-rs} \pi_i(P_s) ds,$$

$$\pi_i(p) = \alpha_i p - \beta_i, \quad \alpha_1 > \alpha_2, \quad \beta_1 > \beta_2$$

$$\mu \text{ - instantaneous drift}$$

$$\sigma \text{ - instantaneous variance}$$

$$r \text{ - discount rate}$$

$$\beta_i \text{ can be interpreted as}$$

instantaneous fixed costs of production

Overview OO	The setup ○○●	Switching problem	Investment problem	Final 00

Model 2/2

For strategy $\mathfrak s$ in the set of admissible strategies $\mathcal S$ the expected payoff is:

$$J_{\mathfrak{s}}(z,p) = \mathbb{E}_{p} \left[\underbrace{\int_{0}^{\infty} e^{-rt} \left(\pi_{1}(P_{t})\mathcal{I}_{\{Z_{t}=h_{1}\}} + \pi_{2}(P_{t})\mathcal{I}_{\{Z_{t}=h_{2}\}} \right) dt}_{-K_{12}\sum_{j=1}^{\infty} e^{-rT_{j}^{12}}\mathcal{I}_{\{T_{j}^{12}<\infty\}} - K_{21}\sum_{j=1}^{\infty} e^{-rT_{j}^{21}}\mathcal{I}_{\{T_{j}^{21}<\infty\}}}_{\text{costs associated with switching}} - K_{x}e^{-r\tau}\mathcal{I}_{\{\tau<\infty\}} \right]$$

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^*)

$$V(z,p) = \sup_{\mathfrak{s}\in\mathcal{S}} J_{\mathfrak{s}}(z,p) = J_{\mathfrak{s}^*}(z,p)$$

We introduce: $v_1(p) := V(l_1, p)$ and $v_2(p) := V(l_2, p)$

 $^{{}^1}V'(z,\cdot)$ is in particular absolutely continuous, [Zervos, 2003]

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^*)

$$V(z,p) = \sup_{\mathfrak{s}\in\mathcal{S}} J_{\mathfrak{s}}(z,p) = J_{\mathfrak{s}^*}(z,p)$$

We introduce: $v_1(p) := V(l_1, p)$ and $v_2(p) := V(l_2, p)$

Theorem (Verification theorem)

If $V \in Car(\{l_1, l_2, ex\} \times [0, \infty))^1$ and satisfies Hamilton-Jacobi-Bellman (HJB) equation(s) than V is solution to the optimization problem.

 $^{{}^{1}}V'(z,\cdot)$ is in particular absolutely continuous, [Zervos, 2003]

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^*)

$$V(z,p) = \sup_{\mathfrak{s}\in\mathcal{S}} J_{\mathfrak{s}}(z,p) = J_{\mathfrak{s}^*}(z,p)$$

We introduce: $v_1(p) := V(l_1, p)$ and $v_2(p) := V(l_2, p)$

Theorem (Verification theorem) If $V \in Car(\{I_1, I_2, ex\} \times [0, \infty))^1$ and satisfies Hamilton-Jacobi-Bellman (HJB) equation(s) than V is solution to the optimization problem.

Method of solution

 $^{{}^{1}}V'(z,\cdot)$ is in particular absolutely continuous, [Zervos, 2003]

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^*)

$$V(z,p) = \sup_{\mathfrak{s}\in\mathcal{S}} J_{\mathfrak{s}}(z,p) = J_{\mathfrak{s}^*}(z,p)$$

We introduce: $v_1(p) := V(l_1, p)$ and $v_2(p) := V(l_2, p)$

Theorem (Verification theorem) If $V \in Car(\{I_1, I_2, ex\} \times [0, \infty))^1$ and satisfies Hamilton-Jacobi-Bellman (HJB) equation(s) than V is solution to the optimization problem.

Method of solution Guess solution

 $^{{}^{1}}V'(z,\cdot)$ is in particular absolutely continuous, [Zervos, 2003]

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^*)

$$V(z,p) = \sup_{\mathfrak{s}\in\mathcal{S}} J_{\mathfrak{s}}(z,p) = J_{\mathfrak{s}^*}(z,p)$$

We introduce: $v_1(p) := V(l_1, p)$ and $v_2(p) := V(l_2, p)$

Theorem (Verification theorem) If $V \in Car(\{I_1, I_2, ex\} \times [0, \infty))^1$ and satisfies Hamilton-Jacobi-Bellman (HJB) equation(s) than V is solution to the optimization problem.

Method of solution Guess solution \longrightarrow Check HJB

 $^{{}^{1}}V'(z,\cdot)$ is in particular absolutely continuous, [Zervos, 2003]

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^*)

$$V(z,p) = \sup_{\mathfrak{s}\in\mathcal{S}} J_{\mathfrak{s}}(z,p) = J_{\mathfrak{s}^*}(z,p)$$

We introduce: $v_1(p) := V(l_1, p)$ and $v_2(p) := V(l_2, p)$

Theorem (Verification theorem) If $V \in Car(\{I_1, I_2, ex\} \times [0, \infty))^1$ and satisfies Hamilton-Jacobi-Bellman (HJB) equation(s) than V is solution to the optimization problem.

Method of solution

Guess solution \longrightarrow Check HJB \longrightarrow Feel smart and happy

 $^{{}^{1}}V'(z,\cdot)$ is in particular absolutely continuous, [Zervos, 2003]

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Hamilton-Jacobi-Bellman equation 1/2

(a) (b) (c)

$$\max \{ \mathcal{L}v_1 - rv_1 + \pi_1, v_2 - v_1 - K_{12}, -v_1 - K_x \} = 0$$

$$\max \{ \mathcal{L}v_2 - rv_2 + \pi_2, v_1 - v_2 - K_{21}, -v_2 - K_x \} = 0$$

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000000000000000000000000000	000000000000	00

Hamilton-Jacobi-Bellman equation 1/2

(a) (b) (c)

$$\max \{ \mathcal{L}v_1 - rv_1 + \pi_1, v_2 - v_1 - K_{12}, -v_1 - K_x \} = 0$$

$$\max \{ \mathcal{L}v_2 - rv_2 + \pi_2, v_1 - v_2 - K_{21}, -v_2 - K_x \} = 0$$

Space division

- Production region: (a) = 0
- Switching region: (b) = 0
- Exit region: (c) = 0
- Hysteresis region: (a) = 0 only for (1)

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Hamilton-Jacobi-Bellman equation 2/2

In the production region: (a)
$$\mathcal{L}v_i - rv_i + \pi_i = 0$$

Cauchy-Euler equation
Assuming: $r > -\frac{1}{2\sigma^2} \left(\frac{\sigma^2}{2} - \mu\right)^2$

Solution:

$$v = v_{hom} + v_{part}$$
$$v_{hom} = C_1 p^{d_1} + C_2 p^{d_2}, \quad C_1, C_2 \in \mathbb{R}$$
$$v_{part} = \frac{\alpha_i}{r - \mu} p - \frac{\beta_i}{r}$$

where $d_1 < 0$ and $d_2 > 1$ solve equation $rac{\sigma^2}{2}d^2 + (\mu - rac{\sigma^2}{2})d - r = 0$

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Solution of Type I (No downgrading)

$$v_{1}(p) = \begin{cases} -K_{x}, & p < P_{1x} \\ Ap^{d_{1}} + \frac{\alpha_{1}}{r-\mu}p - \frac{\beta_{1}}{r}, & p \ge P_{1x} \end{cases}$$
(1)
$$v_{2}(p) = \begin{cases} -K_{x}, & p < P_{2x} \\ Cp^{d_{1}} + Dp^{d_{2}} + \frac{\alpha_{2}}{r-\mu}p - \frac{\beta_{2}}{r}, & P_{2x} \le p < P_{21} \\ Ap^{d_{1}} + \frac{\alpha_{1}}{r-\mu}p - \frac{\beta_{1}}{r} - K_{21}, & p \ge P_{21} \end{cases}$$

Find constants $A, C, D \in \mathbb{R}^+$, $P_{21} > P_{2x} > 0$, $P_{21} > P_{1x} > 0$, such that:

 \triangleright v_1 and v_2 are continuous

 \triangleright v_1 and v_2 have continuous derivatives (smooth pasting)

$$\begin{aligned} v_1(p) &= \begin{cases} -K_x, & p < P_{1x} \\ Ap^{d_1} + \frac{\alpha_1}{r-\mu}p - \frac{\beta_1}{r}, & p \ge P_{1x} \end{cases} \\ v_2(p) &= \begin{cases} -K_x, & p < P_{2x} \\ Cp^{d_1} + Dp^{d_2} + \frac{\alpha_2}{r-\mu}p - \frac{\beta_2}{r}, & p \in [P_{2x}, P_{21}] \\ Ap^{d_1} + \frac{\alpha_1}{r-\mu}p - \frac{\beta_1}{r} - K_{21}, & p \ge P_{21} \end{cases} \end{aligned}$$

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	0000000000000	00

Find constants $A, C, D \in \mathbb{R}^+$, $P_{21} > P_{2x} > 0$, $P_{21} > P_{1x} > 0$, such that:

 \triangleright v_1 and v_2 are continuous

v₁ and v₂ have continuous derivatives (smooth pasting)

$$\begin{aligned} -\kappa_{1x} &= AP_{1x}^{d_1} + \frac{\alpha_1}{r - \mu} P_{1x} - \frac{\beta_1}{r} & v_1(p) = \begin{cases} -\kappa_x, & p < P_{1x} \\ Ap^{d_1} + \frac{\alpha_1}{r - \mu} p - \frac{\beta_1}{r}, & p \ge P_{1x} \end{cases} \\ 0 &= d_1 AP_{1x}^{d_1} + \frac{\alpha_1}{r - \mu} P_{1x} & v_2(p) = \begin{cases} -\kappa_x, & p < P_{1x} \\ Ap^{d_1} + \frac{\alpha_1}{r - \mu} p - \frac{\beta_1}{r}, & p \ge P_{1x} \end{cases} \\ 0 &= CP_{2x}^{d_1} + DP_{2x}^{d_2} + \frac{\alpha_2}{r - \mu} P_{2x} - \frac{\beta_2}{r} + \kappa_{2x} & v_2(p) = \begin{cases} -\kappa_x, & p < P_{2x} \\ Cp^{d_1} + Dp^{d_2} + \frac{\alpha_2}{r - \mu} p - \frac{\beta_2}{r}, & p \in [P_{2x}, P_{21}] \end{cases} \\ 0 &= Cd_1 P_{2x}^{d_1} + Dd_2 P_{2x}^{d_2} + \frac{\alpha_2}{r - \mu} P_{2x} \\ 0 &= (C - A)P_{21}^{d_1} + DP_{21}^{d_2} + \frac{\alpha_2 - \alpha_1}{r - \mu} P_{21} - \frac{\beta_2 - \beta_1}{r} + \kappa_{21} \\ 0 &= (C - A)d_1 P_{21}^{d_1} + Dd_2 P_{21}^{d_2} + \frac{\alpha_2 - \alpha_1}{r - \mu} P_{21} \end{aligned}$$

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Find constants $A, C, D \in \mathbb{R}^+$, $P_{21} > P_{2x} > 0$, $P_{21} > P_{1x} > 0$, such that:

 \triangleright v_1 and v_2 are continuous

v₁ and v₂ have continuous derivatives (smooth pasting)

Find constants $A, C, D \in \mathbb{R}^+$, $P_{21} > P_{2x} > 0$, $P_{21} > P_{1x} > 0$, such that:

 \triangleright v_1 and v_2 are continuous

v₁ and v₂ have continuous derivatives (smooth pasting)

Overview	The setup	Switching problem	Investment problem	Final
00	000		0000000000000	00

Solution of Type II (Hysteresis)

$$v_{1}(p) = \begin{cases} -K_{x} & p < P_{1x} \\ C_{1}p^{d_{1}} + D_{1}p^{d_{2}} + \frac{\alpha_{1}}{r-\mu}p - \frac{\beta_{1}}{r} & P_{1x} \le p < P_{h} \\ C_{2}p^{d_{1}} + D_{2}p^{d_{2}} + \frac{\alpha_{2}}{r-\mu}p - \frac{\beta_{2}}{r} - K_{12} & P_{h} \le p < P_{12} \\ Ap^{d_{1}} + \frac{\alpha_{1}}{r-\mu}p - \frac{\beta_{1}}{r} & P_{12} \le p \end{cases}$$
(3)
$$v_{2}(p) = \begin{cases} -K_{x} & p < P_{2x} \\ C_{2}p^{d_{1}} + D_{2}p^{d_{2}} + \frac{\alpha_{2}}{r-\mu}p - \frac{\beta_{2}}{r} & P_{2x} \le p < P_{21} \\ Ap^{d_{1}} + \frac{\alpha_{1}}{r-\mu}p - \frac{\beta_{1}}{r} - K_{21} & P_{21} \le p \end{cases}$$
(4)

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Some other types of solution

There are other several possible types of solutions that depends on the parameters of the problem

Division of the state space, [Zervos et al., 2018]

Conditi	Case	
	$rK_1 \le h(0)$	I.1, Lemma 1
	$\max\{-rK_0, -rK\} \le h(0) < rK_1$	I.2, Lemma 2
0 < K	$K_0 \leq K$ and $h(0) < -rK_0$	II.1, Lemma 4
$0 \leq R$	$K < K_0$ and $-rK_0 \le h(0) < -rK$	II.2, Lemma 5
	$K < K_0^\star \leq K_0$ and $h(0) < -rK_0$	II.2, Lemma 5
	$K < K_0 < K_0^\star$ and $h(0) < -rK_0$	II.3, Lemma <mark>6</mark>
	$rK_1 - rK \le h(0)$	I.1, Lemma 1
	$-rK \le h(0) < rK_1 - rK$	I.3, Lemma 3
	$-rK_0 \le h(0) < -rK$	III.1, Lemma 7
K < 0	$h(0) < -rK_0$ and	
	$h(\delta_{\dagger}) \ge 0 \text{ or } \left(h(\delta_{\dagger}) < 0 \text{ and } K_1 \ge K_1^{\dagger}\right)$	III.1, Lemma 7
	or $(h(\delta_{\dagger}) < 0, K_1 < K_1^{\dagger} \text{ and } K_0 \ge K_0^{\dagger})$	
	$h(0) < -rK_0,$	III.2, Lemma 8
	$h(\delta_{\dagger}) < 0, \ K_1 < K_1^{\dagger} \ \text{and} \ K_0 < K_0^{\dagger}$	

- Zervos, M., Oliveira, C. and Duckworth, K., 2018. An investment model with switching costs and the option to abandon. Mathematical Methods of Operations Research, 88(3), pp.417-443.
- Table, page 25
- Project *I*₂ has π₂(*p*) = -β₂, no production

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	0000000000000	00

Division of the parameter space

Proposition

Consider that, $rK_x + \alpha_2 P_{2x} - \beta_2 < 0$, and let $\delta = \frac{(\beta_1 - rK_x)(d_2 - 1)}{\alpha_1 d_2}$, then if

1.1
$$-\beta_1 + \beta_2 + rK_{12} > 0$$
 or
1.2 $-\beta_1 + \beta_2 + rK_{12} < 0$ and one of
 $\mathbf{1} \pi_1(\delta) - \pi_2(\delta) > 0$
 $\mathbf{1} \pi_1(\delta) - \pi_2(\delta) < 0$ and $K_{21} \ge K_{21}^{\dagger}$
 $\mathbf{1} \pi_1(\delta) - \pi_2(\delta) < 0$ and $K_{21} < K_{21}^{\dagger}$ and $K_{12} > K_{12}^{\dagger}$

the function V is of the type I, if the opposite holds, i.e.

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	0000000000000	00

Division of the parameter space

Proposition

Consider that, $rK_x + \alpha_2 P_{2x} - \beta_2 < 0$, and let $\delta = \frac{(\beta_1 - rK_x)(d_2 - 1)}{\alpha_1 d_2}$, then if

1.1
$$-\beta_1 + \beta_2 + rK_{12} > 0$$
 or
1.2 $-\beta_1 + \beta_2 + rK_{12} < 0$ and one of
 $\mathbf{1.2} \quad \pi_1(\delta) - \pi_2(\delta) > 0$
 $\mathbf{1.3} \quad \pi_1(\delta) - \pi_2(\delta) < 0$ and $K_{21} \ge K_{21}^{\dagger}$
 $\mathbf{1.3} \quad \pi_1(\delta) - \pi_2(\delta) < 0$ and $K_{21} < K_{21}^{\dagger}$ and $K_{12} > K_{12}^{\dagger}$

the function V is of the type I, if the opposite holds, i.e.

The thresholds K_{21}^{\dagger} and K_{12}^{\dagger} are constants that can be calculated from the parameters of the problem. Moreover, K_{21}^{\dagger} is independent of K_{21} and K_{12}^{\dagger} , and K_{12}^{\dagger} is independent of K_{12}

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	0000000000000	00

Division of the parameter space

Proposition

Consider that, $rK_x + \alpha_2 P_{2x} - \beta_2 < 0$, and let $\delta = \frac{(\beta_1 - rK_x)(d_2 - 1)}{\alpha_1 d_2}$, then if

$$\begin{aligned} 1.1 & -\beta_1 + \beta_2 + rK_{12} > 0 \text{ or} \\ 1.2 & -\beta_1 + \beta_2 + rK_{12} < 0 \text{ and one of} \\ & & \pi_1(\delta) - \pi_2(\delta) > 0 \\ & & \pi_1(\delta) - \pi_2(\delta) < 0 \text{ and } K_{21} \ge K_{21}^{\dagger} \\ & & \pi_1(\delta) - \pi_2(\delta) < 0 \text{ and } K_{21} < K_{21}^{\dagger} \text{ and } K_{12} > K_{12}^{\dagger} \end{aligned}$$

the function V is of the type I, if the opposite holds, i.e.

II
$$\pi_1(\delta) - \pi_2(\delta) < 0$$
 and $K_{21} < K_{21}^{\dagger}$ and $K_{12} < K_{12}^{\dagger}$
the function V is of the type II.

The thresholds K_{21}^{\dagger} and K_{12}^{\dagger} are constants that can be calculated from the parameters of the problem. Moreover, K_{21}^{\dagger} is independent of K_{21} and K_{12}^{\dagger} , and K_{12}^{\dagger} is independent of K_{12}

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Type II (hysteresis) solution

Overview	The setup	Switching problem	Investment problem	Fina
00	000	000000000000000	0000000000000	00

Illustration of HJB verification for Type II (hysteresis)

Example. The parameters: $\mu = 0, \sigma = 0.2, r = 0.05, \alpha_1 = 1, \beta_1 = 1, \alpha_2 = 0.5, \beta_2 = 0.5, K_{21} = 0.3, K_{12} = 0.1.$ Auxiliary $d_1 = -1.16, d_2 = 2.16, \delta = 0.56, K_{12}^{\dagger} = 0.32, K_{21}^{\dagger} = 21.55,$ Points: $P_{2x} = 0.50, P_{1x} = 0.54, P_h = 0.60, P_{12} = 0.78, P_{21} = 1.37,$ Coefficients: $A = 5.0, C_1 = 4.82, C_2 = 2.42, D_1 = 1.38, D_2 = 2.69.$

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000000000000000000000000000	000000000000	00

Illustration of HJB verification

Type II

The existence of solution of the certain type is a necessary condition but not sufficient, the HJB have to be verified

Overview OO	The setup 000	Switching problem ○○○○○○○○○○○●○○○	Investment problem	Final 00

Experiments μ

μ	P_{1x}	P_h	P_{12}	P_{2x}	P_{21}	κ_{21}^{\dagger}	K_{12}^{\dagger}
-0.1500	0.9305			0.9654	1.5650	0.0144	0.0052
-0.1000	0.8857			0.9024	1.4864	0.0908	0.0020
-0.0500	0.7944			0.7777	1.4124	0.8665	0.0054
-0.0300	0.7285			0.6938	1.3970	2.6249	0.0366
-0.0100	0.6192	0.7059	0.7710	0.5750	1.3888	9.7253	0.1613
0.0000	0.5359	0.5978	0.7608	0.4983	1.3715	21.5473	0.3183
0.0100	0.4395	0.4829	0.7504	0.4094	1.3546	59.3298	0.6130
0.0250	0.2742	0.2964	0.7345	0.2564	1.3300	942.6027	1.5882

- As µ increases (market becomes more favourable) every point moves towards zero, the firm is interested in moving faster to more risky/profitable investment l₁.
- As μ decreases and gradually moves to (downward market) the firm exits faster and delays the movement from I_2 to I_1 .
- Decrease. The hysteresis region disappears, paying the cost of downgrading becomes unprofitable. K₁₂ = 0.10 threshold is triggered.

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000000000000000000000000000	0000000000000	00

Experiments σ

σ	P_{1x}	P_h	P_{12}	P_{2x}	P_{21}	K_{21}^{\dagger}	K_{12}^{\dagger}
0.0200	0.9857			1.0011	1.0861	0.0052	
0.0250	0.9702			0.9820	1.0935	0.0330	
0.0500	0.8966			0.8906	1.1345	0.5448	0.0052
0.0800	0.8159			0.7919	1.1884	1.9002	0.0609
0.0900	0.7907	0.7907	-0.1047	0.7615	1.2071	2.5411	0.0837
0.1000	0.7654	0.8338	0.8392	0.7324	1.2251	3.2903	0.1063
0.1500	0.6398	0.7043	0.7964	0.6029	1.2999	9.2186	0.2175
0.2000	0.5359	0.5978	0.7608	0.4983	1.3715	21.5473	0.3183
0.2500	0.4509	0.5105	0.7301	0.4139	1.4416	48.7973	0.4051
0.5000	0.2088	0.2566	0.6186	0.1805	1.7905	9,964.2000	0.6456

- Increase. More uncertainty. Reluctant to make changes. The decision points spread further apart.
- ▶ Decrease. Less uncertainty. Concentration of all points at $-K_x$.
- Decrease. The hysteresis region disappears. K₁₂ threshold is triggered.

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000000000000000000000000000	0000000000000	00

Experiments K_{12}

P_{1x}	P_h	P_{12}	P_{2x}	P_{21}	Α	K_{12}
0.5015	0.5063	0.7852	0.4975	1.3377	5.0069	0.0010
0.5248	0.5647	0.7726	0.4979	1.3552	5.0069	0.0500
0.5359	0.5978	0.7608	0.4983	1.3715	5.0069	0.1000
0.5510	0.6534	0.7396	0.4990	1.4007	5.0069	0.2000
0.5618	0.7073	0.7208	0.4996	1.4263	5.0069	0.3000
0.5632	0.7156	0.7182	0.4997	1.4299	5.0069	0.3150
0.5635	0.7173	0.7177	0.4997	1.4306	5.0069	0.3180
0.5635			0.4997	1.4307	5.0069	0.3184
0.5635			0.4997	1.4307	5.0069	0.6000
0.5635			0.4997	1.4307	5.0069	10.0000

- The exit option A is not affected
- Increase. Move from *l*₁ to *l*₂ for lesser prices, until it becomes non-profitable.
- ▶ Increase, threshold $K_{12}^{\dagger} = 0.32$ is triggered, after that does not affect solution
- Decreases. Until P_{1x} P_h collapse, if negative, it is not profitable to exit from l₁, it is more profitable to move to l₂, then exit. Strategy change.

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Switching problem: Feel smart and happy

Overview OO	The setup 000	Switching problem	Investment problem OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Final 00

Investment problem: Set up

- The firm is not on the market, can enter investing in one of the projects (and then has a possibility to switch)
- K_1 Cost of entering in the project I_1
- K_2 Cost of entering in the project I_2

Investment problem: Set up

- The firm is not on the market, can enter investing in one of the projects (and then has a possibility to switch)
- K_1 Cost of entering in the project I_1
- K_2 Cost of entering in the project I_2

Problem (Investment problem - different costs) Find the value function $W_d \in Car[0, +\infty)$

$$W_d(p) = \max\left\{\sup_{\tau\in\mathcal{T}} E_p\left[e^{-r\tau}\max\{v_1(P_{\tau})-K_1,v_2(P_{\tau})-K_2\}\right],0\right\},\$$

or introducing $v^*(p) = \max\{v_1(p) - K_1, v_2(p) - K_2\}$

$$W_d(p) = \sup_{ au \in \mathcal{T}} E_p \left[\max \left\{ e^{-r au} v^*(P_{ au}), 0
ight\}
ight]$$

Investment problem: Set up

- The firm is not on the market, can enter investing in one of the projects (and then has a possibility to switch)
- K_1 Cost of entering in the project I_1
- K_2 Cost of entering in the project I_2

Problem (Investment problem - different costs) Find the value function $W_d \in Car[0, +\infty)$

$$W_d(p) = \max\left\{\sup_{\tau\in\mathcal{T}} E_p\left[e^{-r\tau}\max\{v_1(P_{\tau})-K_1,v_2(P_{\tau})-K_2\}\right],0\right\},\$$

or introducing $v^*(p) = \max\{v_1(p) - K_1, v_2(p) - K_2\}$

$$W_d(p) = \sup_{\tau \in \mathcal{T}} E_p \left[\max \left\{ e^{-r\tau} v^*(P_\tau), 0 \right\} \right]$$

• Hamilton-Jacobi-Bellman: $\max \{ \mathcal{L}W_d - rW_d, v^* - W_d \} = 0$

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Problem (Investment problem - same costs) Find the value function $W_s \in Car[0, +\infty)$

$$W_s(p) = \max\left\{\sup_{\tau\in\mathcal{T}} E_p\left[e^{-r\tau}(v^*(P_{\tau}))\right], 0
ight\},$$

where $K_e = K_1 = K_2$ and $v^* = max(v_1, v_2) - K_e$

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Problem (Investment problem - same costs) Find the value function $W_s \in Car[0, +\infty)$

$$W_s(p) = \max\left\{\sup_{\tau\in\mathcal{T}} E_p\left[e^{-r\tau}(v^*(P_\tau))\right], 0\right\},\,$$

where $K_e = K_1 = K_2$ and $v^* = max(v_1, v_2) - K_e$

Method of solution

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Problem (Investment problem - same costs) Find the value function $W_s \in Car[0, +\infty)$

$$W_s(p) = \max\left\{\sup_{\tau\in\mathcal{T}} E_p\left[e^{-r\tau}(v^*(P_\tau))\right], 0\right\},\,$$

where
$$K_e = K_1 = K_2$$
 and $v^* = max(v_1, v_2) - K_e$

Method of solution Guess solution

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Problem (Investment problem - same costs) Find the value function $W_s \in Car[0, +\infty)$

$$W_s(p) = \max\left\{\sup_{\tau\in\mathcal{T}} E_p\left[e^{-r\tau}(v^*(P_\tau))\right], 0\right\},\,$$

where
$$K_e = K_1 = K_2$$
 and $v^* = max(v_1, v_2) - K_e$

Method of solution Guess solution \longrightarrow Check HJB

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Problem (Investment problem - same costs) Find the value function $W_s \in Car[0, +\infty)$

$$W_s(p) = \max\left\{\sup_{\tau\in\mathcal{T}} E_p\left[e^{-r\tau}(v^*(P_{\tau}))\right], 0
ight\},$$

where
$$K_e = K_1 = K_2$$
 and $v^* = max(v_1, v_2) - K_e$

Method of solution Guess solution \longrightarrow Check HJB \longrightarrow Feel smart and happy

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Same investment costs: smart guess 1/2

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Same investment costs: smart guess 2/2

$$v^*(p) egin{cases} -\kappa_x & p < P_{1x} \ f_1(p) & p \ge P_{1x} \end{cases}$$

$$f_1(p) = Ap^{d_1} + \frac{\alpha_1}{r-\mu}p - \frac{\beta_1}{r},$$

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Same investment costs: smart guess 2/2

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Same investment costs: solution

Proposition

For the case $P_{2x} < P_{1x}$ and for:

$$\blacktriangleright \ K_e^+ > K_e > -K_x$$

there are constants $A_1, B_1, B_2 > 0$ and $\gamma_3 > \hat{p} > \gamma_2 > \gamma_1 > 0$ such that

$$W_{s}(p) = \begin{cases} B_{1}p^{d_{2}} & p \in [0, \gamma_{1}) \\ f_{2}(p) - K_{e} & p \in [\gamma_{1}, \gamma_{2}] \\ A_{1}p^{d_{1}} + B_{2}p^{d_{2}} & p \in (\gamma_{2}, \gamma_{3}) \\ f_{1}(p) - K_{e} & p \in [\gamma_{3}, +\infty). \end{cases}$$

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Cases 1 and 2, Illustration 1/3

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Cases 1 and 2, Illustration 2/3

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

Cases 1 and 2, Illustration 3/3

Same investment costs: Feel smart and happy

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	0000000000000	00

Different investment costs, No switching [Décamps et al., 2006]

Décamps, J.P., Mariotti, T. and Villeneuve, S., 2006. *Irreversible investment in alternative projects.*, Economic Theory, 28(2), pp.425-448.

- Basic model (same as in [Dixit et al., 1994])
 - Once invested you stay in the same project forever
 - No exit option, no cost of production
- Project switching model
 - The only profitable/existing possibility is to move from *l*₂ to *l*₁, since there is no production costs.

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000000000000000000000000000000	00

Different investment costs: Type I 1/3

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000000	00

Different investment costs: Type I 1/3

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000000000000000000000000000000	00

Different investment costs: Type I 1/3

Can we define the conditions?

Overview	The setup	Switching problem	Investment problem	Final
	000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00

Different investment costs: Type I 2/3

Proposition

For the functions of the Type I, i.e. Cases 0 and 1, there are bounds K_2^+ and K_1^-

• $K_2^+ > K_2 > -K_x$, where K_2^+ is independent of K_1 or K_2 , and • $K_2 + K_{21} > K_1 > K_1^-$, where K_1^- is independent of K_1 ,

then solution is of the form $W_d^*(p)$

Overview	The setup	Switching problem	Investment problem	Final
	000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00

Different investment costs: Type I 2/3

Proposition

For the functions of the Type I, i.e. Cases 0 and 1, there are bounds K_2^+ and K_1^-

▶ $K_2^+ > K_2 > -K_x$, where K_2^+ is independent of K_1 or K_2 , and ▶ $K_2 + K_{21} > K_1 > K_1^-$, where K_1^- is independent of K_1 ,

then solution is of the form $W_d^*(p)$

Recall:

•
$$-K_1 - K_x < 0$$
 and $-K_2 - K_x < 0$
no 'free lunch'.

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000000000000000000000000000000	00

Different investment costs: Type I 3/3 Bounds

Overview	The setup	Switching problem	Investment problem	Final
00	000	00000000000000	000000000000	00

Investment problem with switching (2+1) modes

What did we looked at:

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	000000000000	00

- What did we looked at:
 - Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between {*stay*, *switch*, *exit*}. Classification of the parameter space for the interesting types of solutions (I and II)

Overview	The setup	Switching problem	Investment problem	Fina
00	000	000000000000000	000000000000	00

- What did we looked at:
 - Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between {*stay*, *switch*, *exit*}. Classification of the parameter space for the interesting types of solutions (I and II)
 - Optimal stopping problem (Investment problem): firm decides when to enter the market

Overview	The setup	Switching problem	Investment problem	Fin
00	000	000000000000000	000000000000	OC

- What did we looked at:
 - Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between {stay, switch, exit}. Classification of the parameter space for the interesting types of solutions (I and II)
 - Optimal stopping problem (Investment problem): firm decides when to enter the market
 - Same costs of investment. Complete classification of the parameter space.

Overview	The setup	Switching problem	Investment problem	Fin
00	000	000000000000000	000000000000	00

- What did we looked at:
 - Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between {stay, switch, exit}. Classification of the parameter space for the interesting types of solutions (I and II)
 - Optimal stopping problem (Investment problem): firm decides when to enter the market
 - Same costs of investment. Complete classification of the parameter space.
 - Different costs of investment. Partial classification of the parameter space.

Overview	The setup	Switching problem	Investment problem	Fin
00	000	000000000000000	000000000000	00

- What did we looked at:
 - Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between {stay, switch, exit}. Classification of the parameter space for the interesting types of solutions (I and II)
 - Optimal stopping problem (Investment problem): firm decides when to enter the market
 - Same costs of investment. Complete classification of the parameter space.
 - Different costs of investment. Partial classification of the parameter space.
- Questions to answer:

Overview	The setup	Switching problem	Investment problem	Fir
00	000	00000000000000	000000000000	00

- What did we looked at:
 - Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between {stay, switch, exit}. Classification of the parameter space for the interesting types of solutions (I and II)
 - Optimal stopping problem (Investment problem): firm decides when to enter the market
 - Same costs of investment. Complete classification of the parameter space.
 - Different costs of investment. Partial classification of the parameter space.
- Questions to answer:
 - How to evaluate the 'switching option' and what is its value?

Overview	The setup	Switching problem	Investment problem	Fir
00	000	00000000000000	000000000000	00

- What did we looked at:
 - Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between {stay, switch, exit}. Classification of the parameter space for the interesting types of solutions (I and II)
 - Optimal stopping problem (Investment problem): firm decides when to enter the market
 - Same costs of investment. Complete classification of the parameter space.
 - Different costs of investment. Partial classification of the parameter space.
- Questions to answer:
 - How to evaluate the 'switching option' and what is its value?
 - Is it possible to have investment during the hysteresis region? And if yes in what conditions?

Overview	The setup	Switching problem	Investment problem	Fir
00	000	000000000000000	000000000000	00

- What did we looked at:
 - Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between {stay, switch, exit}. Classification of the parameter space for the interesting types of solutions (I and II)
 - Optimal stopping problem (Investment problem): firm decides when to enter the market
 - Same costs of investment. Complete classification of the parameter space.
 - Different costs of investment. Partial classification of the parameter space.
- Questions to answer:
 - How to evaluate the 'switching option' and what is its value?
 - Is it possible to have investment during the hysteresis region? And if yes in what conditions?
- Applications to test! Real markets, real data lets predict!

Overview	The setup	Switching problem	Investment problem	Final
00	000	000000000000000	0000000000000	•0

Gib thank you!

Bibliography

Décamps, J.-P., Mariotti, T., and Villeneuve, S. (2006). Irreversible investment in alternative projects. Economic Theory, 28(2):425–448.

Dixit, A. K., Dixit, R. K., and Pindyck, R. S. (1994).

Investment under uncertainty. Princeton university press.

Zervos, M. (2003).

A problem of sequential entry and exit decisions combined with discretionary stopping.

SIAM Journal on Control and Optimization, 42(2):397-421.

Zervos, M., Oliveira, C., and Duckworth, K. (2018).

An investment model with switching costs and the option to abandon. Mathematical Methods of Operations Research, 88(3):417–443.