Investment problem with switching modes

Igor Kravchenko
(Joint work with Cláudia Nunes and Carlos Oliveira)

IST-ID, CEMAT
Probability and Statistics Seminar, IST, June 18th, 2020

Planned structure

- The setup
- Motivation
- Mathematical framework
- Switching problem
- Solutions
- Experiments
- Investment problem
- Same investment costs for both projects
- Different investment costs for the projects
- Final comments and remarks

Main references

- Décamps, J.P., Mariotti, T. and Villeneuve, S., 2006. Irreversible investment in alternative projects., Economic Theory, 28(2), pp.425-448.
- Zervos, M., Oliveira, C. and Duckworth, K., 2018. An investment model with switching costs and the option to abandon. Mathematical Methods of Operations Research, 88(3), pp.417-443.

Economic motivation

- The firm has two possible investments I_{1} and I_{2}
- There is only one source of uncertainty the price (of the product) p
- Terminology
- I_{1} Investment (1)

- I Investment (2)
- $K_{12}>0$ Switching cost $I_{1} \rightarrow I_{2}$
- $K_{21}>0$ Switching cost $I_{2} \rightarrow I_{1}$
- K_{x} exit cost (considered negative)
- The firm stays at one of the state at each moment of time $z \in\left\{I_{1}, I_{2}, e x\right\}$

Model 1/2

- Price process geometric Brownian motion: $d P_{t}=\mu P_{t} d t+\sigma P_{t} d B_{t}$
- Infinitesimal generator: $\mathcal{L}:=\mu p \partial_{p}+\frac{1}{2} \sigma^{2} p^{2} \partial_{p p}$
- Payoff of the investment during time $\left[t_{1}, t_{2}\right]$
$\int_{t_{1}}^{t_{2}} e^{-r s} \pi_{i}\left(P_{s}\right) d s$,
$\pi_{i}(p)=\alpha_{i} p-\beta_{i}, \quad \alpha_{1}>\alpha_{2}, \quad \beta_{1}>\beta_{2}$

Model 2/2

For strategy \mathfrak{s} in the set of admissible strategies \mathcal{S} the expected payoff is:

$$
\begin{aligned}
J_{\mathfrak{s}}(z, p)= & \underbrace{\underbrace{}_{\text {costs associated with switching }}}_{\mathbb{E}_{p}[\overbrace{\int_{0}^{\infty} e^{-r t}\left(\pi_{1}\left(P_{t}\right) \mathcal{I}_{\left\{Z_{t}=l_{1}\right\}}+\pi_{2}\left(P_{t}\right) \mathcal{I}_{\left\{Z_{t}=l_{2}\right\}}\right)} \text { production }} \begin{array}{r}
\underbrace{\left.-K_{12} \sum_{j=1}^{\infty} e^{-r T_{j}^{12}} \mathcal{I}_{\left\{T_{j}^{12}<\infty\right\}}-K_{21} \sum_{j=1}^{\infty} e^{-r T_{j}^{21} \mathcal{I}_{\left\{T_{j}^{21}<\infty\right\}}}\right]}_{\text {cost of exit }}
\end{array}
\end{aligned}
$$

Switching problem

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^{*})

$$
V(z, p)=\sup _{\mathfrak{s} \in \mathcal{S}} J_{s}(z, p)=J_{\mathfrak{s}^{*}}(z, p)
$$

We introduce: $v_{1}(p):=V\left(\iota_{1}, p\right)$ and $\quad v_{2}(p):=V\left(l_{2}, p\right)$

Switching problem

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^{*})

$$
V(z, p)=\sup _{\mathfrak{s} \in \mathcal{S}} J_{s}(z, p)=J_{\mathfrak{s}^{*}}(z, p)
$$

We introduce: $v_{1}(p):=V\left(l_{1}, p\right)$ and $\quad v_{2}(p):=V\left(l_{2}, p\right)$
Theorem (Verification theorem)
If $V \in \operatorname{Car}\left(\left\{I_{1}, I_{2}, e x\right\} \times[0, \infty)\right)^{1}$ and satisfies Hamilton-Jacobi-Bellman
(HJB) equation(s) than V is solution to the optimization problem.

Switching problem

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^{*})

$$
V(z, p)=\sup _{\mathfrak{s} \in \mathcal{S}} J_{s}(z, p)=J_{\mathfrak{s}^{*}}(z, p)
$$

We introduce: $v_{1}(p):=V\left(l_{1}, p\right)$ and $\quad v_{2}(p):=V\left(l_{2}, p\right)$
Theorem (Verification theorem)
If $V \in \operatorname{Car}\left(\left\{I_{1}, I_{2}, e x\right\} \times[0, \infty)\right)^{1}$ and satisfies Hamilton-Jacobi-Bellman
(HJB) equation(s) than V is solution to the optimization problem.
Method of solution

Switching problem

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^{*})

$$
V(z, p)=\sup _{\mathfrak{s} \in \mathcal{S}} J_{s}(z, p)=J_{\mathfrak{s}^{*}}(z, p)
$$

We introduce: $v_{1}(p):=V\left(l_{1}, p\right)$ and $\quad v_{2}(p):=V\left(l_{2}, p\right)$
Theorem (Verification theorem)
If $V \in \operatorname{Car}\left(\left\{I_{1}, I_{2}, e x\right\} \times[0, \infty)\right)^{1}$ and satisfies Hamilton-Jacobi-Bellman
(HJB) equation(s) than V is solution to the optimization problem.
Method of solution
Guess solution

Switching problem

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^{*})

$$
V(z, p)=\sup _{\mathfrak{s} \in \mathcal{S}} J_{s}(z, p)=J_{\mathfrak{s}^{*}}(z, p)
$$

We introduce: $v_{1}(p):=V\left(l_{1}, p\right)$ and $\quad v_{2}(p):=V\left(l_{2}, p\right)$
Theorem (Verification theorem)
If $V \in \operatorname{Car}\left(\left\{I_{1}, I_{2}, e x\right\} \times[0, \infty)\right)^{1}$ and satisfies Hamilton-Jacobi-Bellman
(HJB) equation(s) than V is solution to the optimization problem.
Method of solution
Guess solution \longrightarrow Check HJB

Switching problem

Problem (Switching)

Find function V (or equivalently optimal strategy \mathfrak{s}^{*})

$$
V(z, p)=\sup _{\mathfrak{s} \in \mathcal{S}} J_{s}(z, p)=J_{\mathfrak{s}^{*}}(z, p)
$$

We introduce: $v_{1}(p):=V\left(l_{1}, p\right)$ and $\quad v_{2}(p):=V\left(l_{2}, p\right)$
Theorem (Verification theorem)
If $V \in \operatorname{Car}\left(\left\{I_{1}, I_{2}, e x\right\} \times[0, \infty)\right)^{1}$ and satisfies Hamilton-Jacobi-Bellman
(HJB) equation(s) than V is solution to the optimization problem.
Method of solution
Guess solution \longrightarrow Check HJB \longrightarrow Feel smart and happy

Hamilton-Jacobi-Bellman equation 1/2

(a)
(b)
(c)

$$
\begin{aligned}
& \max \left\{\mathcal{L} v_{1}-r v_{1}+\pi_{1}, v_{2}-v_{1}-K_{12},-v_{1}-K_{x}\right\}=0 \\
& \max \left\{\mathcal{L} v_{2}-r v_{2}+\pi_{2}, v_{1}-v_{2}-K_{21},-v_{2}-K_{x}\right\}=0
\end{aligned}
$$

Hamilton-Jacobi-Bellman equation 1/2

$$
\begin{gathered}
\text { (a) } \\
\max \left\{\mathcal{L} v_{1}-r v_{1}+\pi_{1}, v_{2}-v_{1}-K_{12},-v_{1}-K_{x}\right\}=0 \\
\max \left\{\mathcal{L} v_{2}-r v_{2}+\pi_{2}, v_{1}-v_{2}-K_{21},-v_{2}-K_{x}\right\}=0 \\
\text { (2) } \xrightarrow[\text { (exit) }]{\text { (exit) }} P_{2 x}^{(\text {(hyst) }} P_{\text {(production) }}^{\text {(production) }}
\end{gathered}
$$

Space division

- Production region: $(a)=0$
- Switching region: $(b)=0$
- Exit region: $(c)=0$
- Hysteresis region: $(a)=0$ only for (1)

Hamilton-Jacobi-Bellman equation 2/2

- In the production region: (a) $\mathcal{L} v_{i}-r v_{i}+\pi_{i}=0$

Cauchy-Euler equation
Assuming: $r>-\frac{1}{2 \sigma^{2}}\left(\frac{\sigma^{2}}{2}-\mu\right)^{2}$

- Solution:

$$
\begin{aligned}
& v=v_{\text {hom }}+v_{\text {part }} \\
& v_{\text {hom }}=C_{1} p^{d_{1}}+C_{2} p^{d_{2}}, \quad C_{1}, C_{2} \in \mathbb{R} \\
& v_{\text {part }}=\frac{\alpha_{i}}{r-\mu} p-\frac{\beta_{i}}{r}
\end{aligned}
$$

where $d_{1}<0$ and $d_{2}>1$ solve equation $\frac{\sigma^{2}}{2} d^{2}+\left(\mu-\frac{\sigma^{2}}{2}\right) d-r=0$

Solution of Type I (No downgrading)

$$
\begin{align*}
& \text { (1) } \xrightarrow[\text { (exit) } \quad \text { (production) }]{\substack{P_{1 x}}} \\
& v_{1}(p)= \begin{cases}-K_{x}, & p<P_{1 x} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}, & p \geq P_{1 x}\end{cases} \tag{1}\\
& v_{2}(p)= \begin{cases}-K_{x}, & p<P_{2 x} \\
C p^{d_{1}}+D p^{d_{2}}+\frac{\alpha_{2}}{r-\mu} p-\frac{\beta_{2}}{r}, & P_{2 x} \leq p<P_{21} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}-K_{21}, & p \geq P_{21}\end{cases} \tag{2}
\end{align*}
$$

Construction of solution

Find constants $A, C, D \in \mathbb{R}^{+}, P_{21}>P_{2 x}>0, P_{21}>P_{1 x}>0$, such that:

- v_{1} and v_{2} are continuous
- v_{1} and v_{2} have continuous derivatives (smooth pasting)

$$
\begin{aligned}
& v_{1}(p)= \begin{cases}-K_{x}, & p<P_{1 x} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}, & p \geq P_{1 x}\end{cases} \\
& v_{2}(p)= \begin{cases}-K_{x}, & p<P_{2 x} \\
C p^{d_{1}}+D p^{d_{2}}+\frac{\alpha_{2}}{r-\frac{\beta_{2}}{r}}, & p \in\left[P_{2 x}, P_{21}\right] \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}-K_{21}, & p \geq P_{21}\end{cases}
\end{aligned}
$$

Construction of solution

Find constants $A, C, D \in \mathbb{R}^{+}, P_{21}>P_{2 x}>0, P_{21}>P_{1 x}>0$, such that:

- v_{1} and v_{2} are continuous
- v_{1} and v_{2} have continuous derivatives (smooth pasting)

$$
\begin{array}{rlrl}
-K_{1 x} & =A P_{1 \times}^{d_{1}}+\frac{\alpha_{1}}{r-\mu} P_{1 x}-\frac{\beta_{1}}{r} & v_{1}(p)= \begin{cases}-K_{x}, & p<P_{1 x} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}, & p \geq P_{1 x}\end{cases} \\
0 & =d_{1} A P_{1 \times}^{d_{1}}+\frac{\alpha_{1}}{r-\mu} P_{1 x} \\
0 & =C P_{2 x}^{d_{1}}+D P_{2 x}^{d_{2}}+\frac{\alpha_{2}}{r-\mu} P_{2 x}-\frac{\beta_{2}}{r}+K_{2 x} & v_{2}(p)= \begin{cases}-K_{x}, \\
C p^{d_{1}}+D p^{d_{2}}+\frac{\alpha_{2}}{r-\mu} p-\frac{\beta_{2}}{r}, & p \in P_{2 x} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}-K_{21}, & \left.p \geq P_{21}\right]\end{cases} \\
0 & =C d_{1} P_{2 x}^{d_{1}}+D d_{2} P_{2 x}^{d_{2}}+\frac{\alpha_{2}}{r-\mu} P_{2 x} \\
0 & =(C-A) P_{21}^{d_{1}}+D P_{21}^{d_{2}}+\frac{\alpha_{2}-\alpha_{1}}{r-\mu} P_{21}-\frac{\beta_{2}-\beta_{1}}{r}+K_{21} \\
0 & =(C-A) d_{1} P_{21}^{d_{1}}+D d_{2} P_{21}^{d_{2}}+\frac{\alpha_{2}-\alpha_{1}}{r-\mu} P_{21}
\end{array}
$$

Construction of solution

Find constants $A, C, D \in \mathbb{R}^{+}, P_{21}>P_{2 x}>0, P_{21}>P_{1 x}>0$, such that:

- v_{1} and v_{2} are continuous
- v_{1} and v_{2} have continuous derivatives (smooth pasting)

$$
\begin{array}{rlrl}
-K_{1 \times} & =A P_{1 \times}^{d_{1}}+\frac{\alpha_{1}}{r-\mu} P_{1 \times}-\frac{\beta_{1}}{r} & v_{1}(p)= & \begin{cases}-K_{x}, & p<P_{1 x} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}, & p \geq P_{1 x}\end{cases} \\
0 & =d_{1} A P_{1 \times}^{d_{1}}+\frac{\alpha_{1}}{r-\mu} P_{1 \times} \\
0 & =C P_{2 x}^{d_{1}}+D P_{2 x}^{d_{2}}+\frac{\alpha_{2}}{r-\mu} P_{2 x}-\frac{\beta_{2}}{r}+K_{2 x} & v_{2}(p)= \begin{cases}-K_{x}, & p<P_{2 x} \\
C p^{d_{1}}+D p^{d_{2}}+\frac{\alpha_{2}}{r-} p-\frac{\beta_{2}}{r}, & p \in\left[P_{2 x}, P_{21}\right] \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}^{\mu}}{r}-K_{21}, & p \geq P_{21}\end{cases} \\
0 & =C d_{1} P_{2 x}^{d_{1}}+D d_{2} P_{2 x}^{d_{2}}+\frac{\alpha_{2}}{r-\mu} P_{2 x} \\
0 & =(C-A) P_{21}^{d_{1}}+D P_{21}^{d_{2}}+\frac{\alpha_{2}-\alpha_{1}}{r-\mu} P_{21}-\frac{\beta_{2}-\beta_{1}}{r}+K_{21}
\end{array}
$$

$$
0=(C-A) d_{1} P_{21}^{d_{1}}+D d_{2} P_{21}^{d_{2}}+\frac{\alpha_{2}-\alpha_{1}}{r-\mu} P_{21}
$$

Solution
exists

Construction of solution

Find constants $A, C, D \in \mathbb{R}^{+}, P_{21}>P_{2 x}>0, P_{21}>P_{1 x}>0$, such that:

- v_{1} and v_{2} are continuous
- v_{1} and v_{2} have continuous derivatives (smooth pasting)

$$
\begin{aligned}
& -K_{1 \times}=A P_{1 \times}^{d_{1}}+\frac{\alpha_{1}}{r-\mu} P_{1 \times}-\frac{\beta_{1}}{r} \\
& 0=d_{1} A P_{1 \times}^{d_{1}}+\frac{\alpha_{1}}{r-\mu} P_{1 \times} \\
& 0=C P_{2 x}^{d_{1}}+D P_{2 x}^{d_{2}}+\frac{\alpha_{2}}{r-\mu} P_{2 x}-\frac{\beta_{2}}{r}+K_{2 x} \\
& 0=C d_{1} P_{2 x}^{d_{1}}+D d_{2} P_{2 x}^{d_{2}}+\frac{\alpha_{2}}{r-\mu} P_{2 x} \\
& 0=(C-A) P_{21}^{d_{1}}+D P_{21}^{d_{2}}+\frac{\alpha_{2}-\alpha_{1}}{r-\mu} P_{21}-\frac{\beta_{2}-\beta_{1}}{r}+K_{21} \\
& 0=(C-A) d_{1} P_{21}^{d_{1}}+D d_{2} P_{21}^{d_{2}}+\frac{\alpha_{2}-\alpha_{1}}{r-\mu} P_{21} \\
& \begin{array}{l}
v_{1}(p)= \begin{cases}-K_{x}, & p<P_{1 x} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}, & p \geq P_{1 x}\end{cases} \\
v_{2}(p)= \begin{cases}-K_{x}, & p<P_{2 x} \\
C p^{d_{1}}+D p^{d_{2}}+\frac{\alpha_{2}}{r-\frac{\beta_{2}}{\mu}} p-\frac{\beta_{2}}{r}, & p \in\left[P_{2 x}, P_{21}\right] \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}-K_{21}, & p \geq P_{21}\end{cases}
\end{array} \\
& \text { Solution } \\
& \text { exists } \longrightarrow \text { for the set of } \\
& \text { parameters } \mathcal{O}
\end{aligned}
$$

Solution of Type II (Hysteresis)

$$
\begin{align*}
& v_{1}(p)=\left\{\begin{array}{lc}
-K_{x} & p<P_{1 x} \\
C_{1} p^{d_{1}}+D_{1} p^{d_{2}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r} & P_{1 x} \leq p<P_{h} \\
C_{2} p^{d_{1}}+D_{2} p^{d_{2}}+\frac{\alpha_{2}}{r-\mu} p-\frac{\beta_{2}}{r}-K_{12} & P_{h} \leq p<P_{12} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r} & P_{12} \leq p
\end{array}\right. \tag{3}\\
& v_{2}(p)= \begin{cases}-K_{x} & p<P_{2 x} \\
C_{2} p^{d_{1}}+D_{2} p^{d_{2}}+\frac{\alpha_{2}}{r-\mu} p-\frac{\beta_{2}}{r} & P_{2 x} \leq p<P_{21} \\
A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}-K_{21} & P_{21} \leq p\end{cases} \tag{4}
\end{align*}
$$

Some other types of solution

There are other several possible types of solutions that depends on the parameters of the problem
(1)

Division of the state space, [Zervos et al., 2018]

Conditions on $K_{1}>0, K_{0}>0, K \in \mathbb{R}$ and $h(\cdot)$		Case
$0 \leq K$	$r K_{1} \leq h(0)$	I.1, Lemma 1
	$\max \left\{-r K_{0},-r K\right\} \leq h(0)<r K_{1}$	I.2, Lemma 2
	$K_{0} \leq K$ and $h(0)<-r K_{0}$	II.1, Lemma 4
	$K<K_{0}$ and $-r K_{0} \leq h(0)<-r K$	II.2, Lemma 5
	$K<K_{0}^{\star} \leq K_{0}$ and $h(0)<-r K_{0}$	II.2, Lemma 5
	$K<K_{0}<K_{0}^{\star}$ and $h(0)<-r K_{0}$	II.3, Lemma 6
$K<0$	$r K_{1}-r K \leq h(0)$	I.1, Lemma ${ }^{1}$
	$-r K \leq h(0)<r K_{1}-r K$	I.3, Lemma 3
	$-r K_{0} \leq h(0)<-r K$	III.1, Lemma 7
	$\begin{gathered} \qquad h(0)<-r K_{0} \text { and } \\ h\left(\delta_{\dagger}\right) \geq 0 \text { or }\left(h\left(\delta_{\dagger}\right)<0 \text { and } K_{1} \geq K_{1}^{\dagger}\right) \\ \text { or }\left(h\left(\delta_{\dagger}\right)<0, K_{1}<K_{1}^{\dagger} \text { and } K_{0} \geq K_{0}^{\dagger}\right) \end{gathered}$	III.1, Lemma 7
	$\begin{gathered} h(0)<-r K_{0}, \\ h\left(\delta_{\dagger}\right)<0, K_{1}<K_{1}^{\dagger} \text { and } K_{0}<K_{0}^{\dagger} \end{gathered}$	III.2, Lemma 8

- Zervos, M., Oliveira, C. and Duckworth, K., 2018. An investment model with switching costs and the option to abandon. Mathematical Methods of Operations Research, 88(3), pp.417-443.
- Table, page 25
- Project I_{2} has $\pi_{2}(p)=-\beta_{2}$, no production

Division of the parameter space

Proposition

Consider that, $r K_{x}+\alpha_{2} P_{2 x}-\beta_{2}<0$, and let $\delta=\frac{\left(\beta_{1}-r K_{x}\right)\left(d_{2}-1\right)}{\alpha_{1} d_{2}}$, then if

$$
\begin{aligned}
& \text { I. } 1-\beta_{1}+\beta_{2}+r K_{12}>0 \text { or } \\
& \text { I. } 2-\beta_{1}+\beta_{2}+r K_{12}<0 \text { and one of } \\
& \quad \pi_{1}(\delta)-\pi_{2}(\delta)>0 \\
& \pi_{1}(\delta)-\pi_{2}(\delta)<0 \text { and } K_{21} \geq K_{21}^{\dagger} \\
& \pi_{1}(\delta)-\pi_{2}(\delta)<0 \text { and } K_{21}<K_{21}^{\dagger} \text { and } K_{12}>K_{12}^{\dagger}
\end{aligned}
$$

the function V is of the type I, if the opposite holds, i.e.

Division of the parameter space

Proposition

Consider that, $r K_{x}+\alpha_{2} P_{2 x}-\beta_{2}<0$, and let $\delta=\frac{\left(\beta_{1}-r K_{x}\right)\left(d_{2}-1\right)}{\alpha_{1} d_{2}}$, then if

$$
\begin{aligned}
& \text { I. } 1-\beta_{1}+\beta_{2}+r K_{12}>0 \text { or } \\
& \text { I. } 2-\beta_{1}+\beta_{2}+r K_{12}<0 \text { and one of } \\
& \pi_{1}(\delta)-\pi_{2}(\delta)>0 \\
& \pi_{1}(\delta)-\pi_{2}(\delta)<0 \text { and } K_{21} \geq K_{21}^{\dagger} \\
& \pi_{1}(\delta)-\pi_{2}(\delta)<0 \text { and } K_{21}<K_{21}^{\dagger} \text { and } K_{12}>K_{12}^{\dagger}
\end{aligned}
$$

the function V is of the type I, if the opposite holds, i.e.

The thresholds K_{21}^{\dagger} and K_{12}^{\dagger} are constants that can be calculated from the parameters of the problem. Moreover, K_{21}^{\dagger} is independent of K_{21} and K_{12}, and K_{12}^{\dagger} is independent of K_{12}

Division of the parameter space

Proposition

Consider that, $r K_{x}+\alpha_{2} P_{2 x}-\beta_{2}<0$, and let $\delta=\frac{\left(\beta_{1}-r K_{x}\right)\left(d_{2}-1\right)}{\alpha_{1} d_{2}}$, then if

$$
\begin{aligned}
& \text { I. } 1-\beta_{1}+\beta_{2}+r K_{12}>0 \text { or } \\
& \text { I. } 2-\beta_{1}+\beta_{2}+r K_{12}<0 \text { and one of } \\
& \quad \pi_{1}(\delta)-\pi_{2}(\delta)>0 \\
& \pi_{1}(\delta)-\pi_{2}(\delta)<0 \text { and } K_{21} \geq K_{21}^{\dagger} \\
& \pi_{1}(\delta)-\pi_{2}(\delta)<0 \text { and } K_{21}<K_{21}^{\dagger} \text { and } K_{12}>K_{12}^{\dagger}
\end{aligned}
$$

the function V is of the type I, if the opposite holds, i.e.
II $\pi_{1}(\delta)-\pi_{2}(\delta)<0$ and $K_{21}<K_{21}^{\dagger}$ and $K_{12}<K_{12}^{\dagger}$ the function V is of the type II.

The thresholds K_{21}^{\dagger} and K_{12}^{\dagger} are constants that can be calculated from the parameters of the problem. Moreover, K_{21}^{\dagger} is independent of K_{21} and K_{12}, and K_{12}^{\dagger} is independent of K_{12}

Type II (hysteresis) solution

Illustration of HJB verification for Type II (hysteresis)

Example. The parameters: $\mu=0, \sigma=0.2, r=0.05, \alpha_{1}=1, \beta_{1}=1, \alpha_{2}=$ $0.5, \beta_{2}=0.5, K_{21}=0.3, K_{12}=0.1$.
Auxiliary $d_{1}=-1.16, d_{2}=2.16, \delta=0.56, K_{12}^{\dagger}=0.32, K_{21}^{\dagger}=21.55$,
Points: $P_{2 x}=0.50, P_{1 x}=0.54, P_{h}=0.60, P_{12}=0.78, P_{21}=1.37$,
Coefficients: $A=5.0, C_{1}=4.82, C_{2}=2.42, D_{1}=1.38, D_{2}=2.69$.

Illustration of HJB verification

Type II

The existence of solution of the certain type is a necessary condition but not sufficient, the HJB have to be verified

Type I

Experiments μ

μ	$P_{1 \times}$	P_{h}	P_{12}	$P_{2 x}$	P_{21}	K_{21}^{\dagger}	K_{12}^{\dagger}
-0.1500	0.9305			0.9654	1.5650	0.0144	0.0052
-0.1000	0.8857			0.9024	1.4864	0.0908	0.0020
-0.0500	0.7944			0.7777	1.4124	0.8665	0.0054
-0.0300	0.7285			0.6938	1.3970	2.6249	0.0366
-0.0100	0.6192	0.7059	0.7710	0.5750	1.3888	9.7253	0.1613
0.0000	0.5359	0.5978	0.7608	0.4983	1.3715	21.5473	0.3183
0.0100	0.4395	0.4829	0.7504	0.4094	1.3546	59.3298	0.6130
0.0250	0.2742	0.2964	0.7345	0.2564	1.3300	942.6027	1.5882

- As μ increases (market becomes more favourable) every point moves towards zero, the firm is interested in moving faster to more risky/profitable investment l_{1}.
- As μ decreases and gradually moves to (downward market) the firm exits faster and delays the movement from I_{2} to I_{1}.
- Decrease. The hysteresis region disappears, paying the cost of downgrading becomes unprofitable. $K_{12}=0.10$ threshold is triggered.

Experiments σ

σ	$P_{1 x}$	P_{h}	P_{12}	$P_{2 x}$	P_{21}	K_{21}^{\dagger}	K_{12}^{\dagger}
0.0200	0.9857			1.0011	1.0861	0.0052	
0.0250	0.9702			0.9820	1.0935	0.0330	
0.0500	0.8966			0.8906	1.1345	0.5448	0.0052
0.0800	0.8159			0.7919	1.1884	1.9002	0.0609
0.0900	0.7907	0.7907	-0.1047	0.7615	1.2071	2.5411	0.0837
0.1000	0.7654	0.8338	0.8392	0.7324	1.2251	3.2903	0.1063
0.1500	0.6398	0.7043	0.7964	0.6029	1.2999	9.2186	0.2175
0.2000	0.5359	0.5978	0.7608	0.4983	1.3715	21.5473	0.3183
0.2500	0.4509	0.5105	0.7301	0.4139	1.4416	48.7973	0.4051
0.5000	0.2088	0.2566	0.6186	0.1805	1.7905	$9,964.2000$	0.6456

- Increase. More uncertainty. Reluctant to make changes. The decision points spread further apart.
- Decrease. Less uncertainty. Concentration of all points at $-K_{x}$.
- Decrease. The hysteresis region disappears. K_{12} threshold is triggered.

Experiments K_{12}

$P_{1 x}$	P_{h}	P_{12}	$P_{2 x}$	P_{21}	A	K_{12}
0.5015	0.5063	0.7852	0.4975	1.3377	5.0069	0.0010
0.5248	0.5647	0.7726	0.4979	1.3552	5.0069	0.0500
0.5359	0.5978	0.7608	0.4983	1.3715	5.0069	0.1000
0.5510	0.6534	0.7396	0.4990	1.4007	5.0069	0.2000
0.5618	0.7073	0.7208	0.4996	1.4263	5.0069	0.3000
0.5632	0.7156	0.7182	0.4997	1.4299	5.0069	0.3150
0.5635	0.7173	0.7177	0.4997	1.4306	5.0069	0.3180
0.5635			0.4997	1.4307	5.0069	0.3184
0.5635			0.4997	1.4307	5.0069	0.6000
0.5635			0.4997	1.4307	5.0069	10.0000

- The exit option A is not affected
- Increase. Move from I_{1} to I_{2} for lesser prices, until it becomes non-profitable.
- Increase, threshold $K_{12}^{\dagger}=0.32$ is triggered, after that does not affect solution
- Decreases. Until $P_{1 x}-P_{h}$ collapse, if negative, it is not profitable to exit from I_{1}, it is more profitable to move to I_{2}, then exit. Strategy change.

Switching problem: Feel smart and happy

Investment problem: Set up

- The firm is not on the market, can enter investing in one of the projects (and then has a possibility to switch)
- K_{1} - Cost of entering in the project I_{1}
- K_{2} - Cost of entering in the project I_{2}

Investment problem: Set up

- The firm is not on the market, can enter investing in one of the projects (and then has a possibility to switch)
- K_{1} - Cost of entering in the project I_{1}
- K_{2} - Cost of entering in the project I_{2}

Problem (Investment problem - different costs)

Find the value function $W_{d} \in \operatorname{Car}[0,+\infty)$

$$
W_{d}(p)=\max \left\{\sup _{\tau \in \mathcal{T}} E_{p}\left[e^{-r \tau} \max \left\{v_{1}\left(P_{\tau}\right)-K_{1}, v_{2}\left(P_{\tau}\right)-K_{2}\right\}\right], 0\right\},
$$

or introducing

$$
\begin{aligned}
v^{*}(p) & =\max \left\{v_{1}(p)-K_{1}, v_{2}(p)-K_{2}\right\} \\
W_{d}(p) & =\sup _{\tau \in \mathcal{T}} E_{p}\left[\max \left\{e^{-r \tau} v^{*}\left(P_{\tau}\right), 0\right\}\right]
\end{aligned}
$$

Investment problem: Set up

- The firm is not on the market, can enter investing in one of the projects (and then has a possibility to switch)
- K_{1} - Cost of entering in the project I_{1}
- K_{2} - Cost of entering in the project I_{2}

Problem (Investment problem - different costs)

Find the value function $W_{d} \in \operatorname{Car}[0,+\infty)$

$$
W_{d}(p)=\max \left\{\sup _{\tau \in \mathcal{T}} E_{p}\left[e^{-r \tau} \max \left\{v_{1}\left(P_{\tau}\right)-K_{1}, v_{2}\left(P_{\tau}\right)-K_{2}\right\}\right], 0\right\},
$$

or introducing

$$
\begin{aligned}
v^{*}(p) & =\max \left\{v_{1}(p)-K_{1}, v_{2}(p)-K_{2}\right\} \\
W_{d}(p) & =\sup _{\tau \in \mathcal{T}} E_{p}\left[\max \left\{e^{-r \tau} v^{*}\left(P_{\tau}\right), 0\right\}\right]
\end{aligned}
$$

- Hamilton-Jacobi-Bellman: $\max \left\{\mathcal{L} W_{d}-r W_{d}, v^{*}-W_{d}\right\}=0$

Same investment costs

Problem (Investment problem - same costs)
Find the value function $W_{s} \in \operatorname{Car}[0,+\infty)$

$$
W_{s}(p)=\max \left\{\sup _{\tau \in \mathcal{T}} E_{p}\left[e^{-r \tau}\left(v^{*}\left(P_{\tau}\right)\right)\right], 0\right\},
$$

where $K_{e}=K_{1}=K_{2}$ and $v^{*}=\max \left(v_{1}, v_{2}\right)-K_{e}$

Same investment costs

Problem (Investment problem - same costs)
Find the value function $W_{s} \in \operatorname{Car}[0,+\infty)$

$$
W_{s}(p)=\max \left\{\sup _{\tau \in \mathcal{T}} E_{p}\left[e^{-r \tau}\left(v^{*}\left(P_{\tau}\right)\right)\right], 0\right\},
$$

where $K_{e}=K_{1}=K_{2}$ and $v^{*}=\max \left(v_{1}, v_{2}\right)-K_{e}$

Method of solution

Same investment costs

Problem (Investment problem - same costs)
Find the value function $W_{s} \in \operatorname{Car}[0,+\infty)$

$$
W_{s}(p)=\max \left\{\sup _{\tau \in \mathcal{T}} E_{p}\left[e^{-r \tau}\left(v^{*}\left(P_{\tau}\right)\right)\right], 0\right\},
$$

where $K_{e}=K_{1}=K_{2}$ and $v^{*}=\max \left(v_{1}, v_{2}\right)-K_{e}$

Method of solution Guess solution

Same investment costs

Problem (Investment problem - same costs)
Find the value function $W_{s} \in \operatorname{Car}[0,+\infty)$

$$
W_{s}(p)=\max \left\{\sup _{\tau \in \mathcal{T}} E_{p}\left[e^{-r \tau}\left(v^{*}\left(P_{\tau}\right)\right)\right], 0\right\},
$$

where $K_{e}=K_{1}=K_{2}$ and $v^{*}=\max \left(v_{1}, v_{2}\right)-K_{e}$

Method of solution Guess solution \longrightarrow Check HJB

Same investment costs

Problem (Investment problem - same costs)
Find the value function $W_{s} \in \operatorname{Car}[0,+\infty)$

$$
W_{s}(p)=\max \left\{\sup _{\tau \in \mathcal{T}} E_{p}\left[e^{-r \tau}\left(v^{*}\left(P_{\tau}\right)\right)\right], 0\right\},
$$

where $K_{e}=K_{1}=K_{2}$ and $v^{*}=\max \left(v_{1}, v_{2}\right)-K_{e}$

Method of solution Guess solution \longrightarrow Check HJB \longrightarrow Feel smart and happy

Same investment costs: smart guess $1 / 2$

Case 0
No hysteresis,
$P_{1 x}<P_{2 x}$

Case 1
No hysteresis,
$P_{1 \times}>P_{2 x}$

Case 2
Hysteresis,
$P_{1 x}>P_{2 x}$

Same investment costs: smart guess $2 / 2$

$$
v^{*}(p) \begin{cases}-K_{x} & p<P_{1 x} \\ f_{1}(p) & p \geq P_{1 x}\end{cases}
$$

$$
f_{1}(p)=A p^{d_{1}}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r}
$$

Same investment costs: smart guess $2 / 2$

$$
\begin{aligned}
& v^{*}(p)\left\{\begin{array}{l}
-K_{x} \quad p<P_{1 x} \\
f_{1}(p) \quad p \geq P_{1 x}
\end{array} \quad v^{*}(p)= \begin{cases}-K_{x} & p<P_{2 x} \\
f_{2}(p), & P_{2 x} \leq p<\hat{p} \\
f_{1}(p) & p \geq \hat{p}\end{cases} \right. \\
& f_{1}(p)=A p^{d_{1}+\frac{\alpha_{1}}{r-\mu} p-\frac{\beta_{1}}{r},} \quad f_{2}(p)=C p^{d_{1}}+D p^{d_{2}}+\frac{\alpha_{2}}{r-\mu} p-\frac{\beta_{2}}{r}
\end{aligned}
$$

Same investment costs: solution

Proposition

For the case $P_{2 x}<P_{1 x}$ and for:

- $K_{e}^{+}>K_{e}>-K_{x}$
there are constants $A_{1}, B_{1}, B_{2}>0$ and $\gamma_{3}>\hat{p}>\gamma_{2}>\gamma_{1}>0$ such that

$$
W_{s}(p)= \begin{cases}B_{1} p^{d_{2}} & p \in\left[0, \gamma_{1}\right) \\ f_{2}(p)-K_{e} & p \in\left[\gamma_{1}, \gamma_{2}\right] \\ A_{1} p^{d_{1}}+B_{2} p^{d_{2}} & p \in\left(\gamma_{2}, \gamma_{3}\right) \\ f_{1}(p)-K_{e} & p \in\left[\gamma_{3},+\infty\right)\end{cases}
$$

Cases 1 and 2, Illustration 1/3

Cases 1 and 2, Illustration 2/3

Cases 1 and 2, Illustration 3/3

Same investment costs: Feel smart and happy

Different investment costs, No switching [Décamps et al., 2006]

Décamps, J.P., Mariotti, T. and Villeneuve, S., 2006. Irreversible investment in alternative projects., Economic Theory, 28(2), pp.425-448.

- Basic model (same as in [Dixit et al., 1994])
- Once invested you stay in the same project forever
- No exit option, no cost of production
- Project switching model
- The only profitable/existing possibility is to move from I_{2} to I_{1}, since there is no production costs.

Different investment costs: Type I 1/3

$-K_{1}-K_{x}<0$ and $-K_{2}-K_{x}<0$ no 'free lunch'.

- $K_{1}<K_{2}+K_{21}$ and $K_{2}<K_{1}+K_{12}$ no 'cheat switching'

Different investment costs: Type I 1/3

- $-K_{1}-K_{x}<0$ and $-K_{2}-K_{x}<0$ no 'free lunch'.
- $K_{1}<K_{2}+K_{21}$ and $K_{2}<K_{1}+K_{12}$ no 'cheat switching'

Solution of the form:

$$
W_{d}^{*}(p)= \begin{cases}B_{1} p^{d_{2}} & p \in\left[0, \gamma_{1}\right) \\ f_{2}(p)-K_{2} & p \in\left[\gamma_{1}, \gamma_{2}\right] \\ A_{1} p^{d_{1}}+B_{2} p^{d_{2}} & p \in\left(\gamma_{2}, \gamma_{3}\right) \\ f_{1}(p)-K_{1} & p \in\left[\gamma_{3},+\infty\right)\end{cases}
$$

Different investment costs: Type I 1/3

$--K_{1}-K_{x}<0$ and $-K_{2}-K_{x}<0$ no 'free lunch'.

- $K_{1}<K_{2}+K_{21}$ and $K_{2}<K_{1}+K_{12}$ no 'cheat switching'

Solution of the form:

$$
W_{d}^{*}(p)= \begin{cases}B_{1} p^{d_{2}} & p \in\left[0, \gamma_{1}\right) \\ f_{2}(p)-K_{2} & p \in\left[\gamma_{1}, \gamma_{2}\right] \\ A_{1} p^{d_{1}}+B_{2} p^{d_{2}} & p \in\left(\gamma_{2}, \gamma_{3}\right) \\ f_{1}(p)-K_{1} & p \in\left[\gamma_{3},+\infty\right)\end{cases}
$$

Can we define the conditions?

Different investment costs: Type I 2/3

Proposition

For the functions of the Type I, i.e. Cases 0 and 1, there are bounds K_{2}^{+} and K_{1}^{-}

- $K_{2}^{+}>K_{2}>-K_{x}$, where K_{2}^{+}is independent of K_{1} or K_{2}, and
- $K_{2}+K_{21}>K_{1}>K_{1}^{-}$, where K_{1}^{-}is independent of K_{1},
then solution is of the form $W_{d}^{*}(p)$

Different investment costs: Type I 2/3

Proposition

For the functions of the Type I, i.e. Cases 0 and 1, there are bounds K_{2}^{+} and K_{1}^{-}

- $K_{2}^{+}>K_{2}>-K_{x}$, where K_{2}^{+}is independent of K_{1} or K_{2}, and
- $K_{2}+K_{21}>K_{1}>K_{1}^{-}$, where K_{1}^{-}is independent of K_{1}, then solution is of the form $W_{d}^{*}(p)$

Recall:

- $-K_{1}-K_{x}<0$ and $-K_{2}-K_{x}<0$ no 'free lunch'.
- $K_{2}<K_{1}+K_{12}$ and $K_{2}<K_{1}+K_{12}$ no 'cheat switching'

Different investment costs: Type I 3/3 Bounds

Note
Bounds K_{2}^{+}and K_{1}^{-}

Investment problem with switching $(2+1)$ modes

Investment problem with switching $(2+1)$ modes

- What did we looked at:

Investment problem with switching $(2+1)$ modes

- What did we looked at:
- Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between $\{$ stay, switch, exit $\}$. Classification of the parameter space for the interesting types of solutions (I and II)

Investment problem with switching $(2+1)$ modes

- What did we looked at:
- Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between $\{$ stay, switch, exit $\}$. Classification of the parameter space for the interesting types of solutions (I and II)
- Optimal stopping problem (Investment problem): firm decides when to enter the market

Investment problem with switching $(2+1)$ modes

- What did we looked at:
- Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between $\{$ stay, switch, exit $\}$. Classification of the parameter space for the interesting types of solutions (I and II)
- Optimal stopping problem (Investment problem): firm decides when to enter the market
- Same costs of investment. Complete classification of the parameter space.

Investment problem with switching $(2+1)$ modes

- What did we looked at:
- Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between $\{$ stay, switch, exit $\}$. Classification of the parameter space for the interesting types of solutions (I and II)
- Optimal stopping problem (Investment problem): firm decides when to enter the market
- Same costs of investment. Complete classification of the parameter space.
- Different costs of investment. Partial classification of the parameter space.

Investment problem with switching $(2+1)$ modes

- What did we looked at:
- Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between $\{$ stay, switch, exit $\}$. Classification of the parameter space for the interesting types of solutions (I and II)
- Optimal stopping problem (Investment problem): firm decides when to enter the market
- Same costs of investment. Complete classification of the parameter space.
- Different costs of investment. Partial classification of the parameter space.
- Questions to answer:

Investment problem with switching $(2+1)$ modes

- What did we looked at:
- Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between $\{$ stay, switch, exit $\}$. Classification of the parameter space for the interesting types of solutions (I and II)
- Optimal stopping problem (Investment problem): firm decides when to enter the market
- Same costs of investment. Complete classification of the parameter space.
- Different costs of investment. Partial classification of the parameter space.
- Questions to answer:
- How to evaluate the 'switching option' and what is its value?

Investment problem with switching $(2+1)$ modes

- What did we looked at:
- Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between \{stay, switch, exit $\}$. Classification of the parameter space for the interesting types of solutions (I and II)
- Optimal stopping problem (Investment problem): firm decides when to enter the market
- Same costs of investment. Complete classification of the parameter space.
- Different costs of investment. Partial classification of the parameter space.
- Questions to answer:
- How to evaluate the 'switching option' and what is its value?
- Is it possible to have investment during the hysteresis region? And if yes in what conditions?

Investment problem with switching $(2+1)$ modes

- What did we looked at:
- Finding optimal strategy (Switching problem): firm is already on the market and has to make a decision between \{stay, switch, exit $\}$. Classification of the parameter space for the interesting types of solutions (I and II)
- Optimal stopping problem (Investment problem): firm decides when to enter the market
- Same costs of investment. Complete classification of the parameter space.
- Different costs of investment. Partial classification of the parameter space.
- Questions to answer:
- How to evaluate the 'switching option' and what is its value?
- Is it possible to have investment during the hysteresis region? And if yes in what conditions?
- Applications to test! Real markets, real data lets predict!

Bibliography

R Décamps, J.-P., Mariotti, T., and Villeneuve, S. (2006).
Irreversible investment in alternative projects.
Economic Theory, 28(2):425-448.
R Dixit, A. K., Dixit, R. K., and Pindyck, R. S. (1994).
Investment under uncertainty.
Princeton university press.
Ti
Zervos, M. (2003).
A problem of sequential entry and exit decisions combined with discretionary stopping.
SIAM Journal on Control and Optimization, 42(2):397-421.
a
Zervos, M., Oliveira, C., and Duckworth, K. (2018).
An investment model with switching costs and the option to abandon.
Mathematical Methods of Operations Research, 88(3):417-443.

