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The Continuum Hypothesis

The Continuum Hypothesis, CH, is the statement that every infinite
set of reals is either in one-one correspondence with N or with R.



The Continuum Hypothesis problem

Is the Continuum Hypothesis true or false?

The main results about this problem are:

I The consistency of CH with ZFC (Gödel, 1940),

I The independence of CH from ZFC (Cohen, 1964).

For some this settles the question.

For others it means that we should add axioms to ZFC that decide
the CH problem.



Feferman’s perspective on CH

“[...] I believe that the Continuum Hypothesis (CH) is not a definite
mathematical problem. My reason for that is that the concept of
arbitrary set essential to its formulation is vague or
underdetermined and there is no way to sharpen it without
violating what it is supposed to be about. In addition, there is
considerable circumstantial evidence to support the view that CH is
not definite” (Feferman, 2011)



Feferman’s framework for definiteness

“One way of saying of a statement ϕ that it is definite is that it is
true or false; on a deflationary account of truth that’s the same as
saying that the Law of Excluded Middle (LEM) holds of ϕ , i.e. one
has ϕ ∨¬ϕ . Since LEM is rejected in intuitionistic logic as a basic
principle, that suggests the slogan, ‘What’s definite is the domain
of classical logic, what’s not is that of intuitionistic logic.’
[...] And in the case of set theory, where every set is conceived to
be a definite totality, we would have classical logic for bounded
quantification while intuitionistic logic is to be used for unbounded
quantification” (Feferman, 2011)



Semi-Constructive Set theory

Language: {∈};

Formulas:

Atomic formulas: x ∈ y, x = y;
Logical connectives: ∧,∨,→,¬;

Quantifiers: ∀,∃;

Quantifiers of the forms ∀x ∈ u, ∃x ∈ u are called bounded.

Bounded or ∆0-formulas are formulas where all quantifiers are
bounded.

SCS is based on intuitionistic logic.



Axioms of SCS
Extensionality: ∀u∀v [∀x ∈ u(x ∈ v)∧∀y ∈ v(y ∈ u)→ u = v];

Pair: ∀u∀v∃w(u ∈ w∧ v ∈ w);

Union: ∀u∃w∀x ∈ u(x ⊆ w);

Infinity: There is a smallest inductive set;

∆0-Separation: ∀u∃w∀x [x ∈ w ↔ x ∈ u∧ϕ(x)]
for all bounded formulas ϕ(x);

ε-Induction: ∀x [(∀y ∈ xθ(y))→ θ(x)]→∀xθ(x)
for all formulas θ(x);

∆0-LEM: ϕ ∨¬ϕ for all bounded formulas ϕ ;

ACSet: ∀x ∈ u∃yψ(x,y)→
∃ f [Fun( f )∧dom( f ) = u∧∀x ∈ uψ(x, f (x))]
for all formulas ψ(x,y);

MP: ¬¬∃xϕ(x)→∃xϕ(x) for all bounded formulas ϕ .



Semi-Constructive Set theory

Remarks

I SCS proves Strong Collection i.e.

∀x ∈ u∃yψ(x,y)→
∃z [∀x ∈ u∃y ∈ zψ(x,y)∧∀y ∈ z∃x ∈ uψ(x,y)]

for all formulas ψ(x,y);

I SCS proves the Bounded Omniscience Scheme, i.e.

∀x ∈ u [ϕ(x)∨¬ϕ(x)]→ [∀x ∈ uϕ(x)∨∃x ∈ u¬ϕ(x)]

for all formulas ϕ(x).

I SCS does not have the Power Set axiom.



Semi-intuitionistic set theory T

T is the theory SCS + ‘R is a set’

Any of the following equivalent statements can be used to
formalize the existence of R as a set:

I The collection of all functions form N to N, NN, is a set;

I The collection of all subsets of N is a set.



Main Theorem

In T we can formulate the Continuum Hypothesis in this manner:

∀x ⊆ R [x , /0 → (∃ f f : N� x∨∃ f f : x� R)]

Theorem (Rathjen)
T does not prove CH ∨¬CH.



The relativized constructible hierarchy L[A]

Definition (Language of L[A])
The language of L[A], L∈(P), consists of the language of set
theory augmented by a unary predicate symbol P.
Any two sets A, X give rise to a structure 〈X ,∈,A∩X〉 for L∈(P).

Definition (Definable set)
A set Y ⊆ X is said to be definable in 〈X ,∈,A∩X〉 if there is a
formula ϕ(x,y1, . . . ,yr) of L∈(P) and b1, . . . ,br ∈ X such that

Y = {a ∈ X | 〈X ,∈,A∩X〉 |= ϕ(a,b1, . . . ,br)}

De f A(X) denotes the class of the sets definable in 〈X ,∈,A∩X〉.



The relativized constructible hierarchy L[A]

The sets Lα [A] are defined by recursion on α as follows:

L0[A] = /0,

Lα+1[A] = De f A(Lα [A]),

Lγ [A] =
⋃

α<γ

Lα [A] for limit γ,

L[A] =
⋃

α∈Ord

Lα [A].



The relativized constructible hierarchy L[A]

Proposition

1. α 6 β ⇒ Lα [A]⊆ Lβ [A].

2. α < β ⇒ Lα [A] ∈ Lβ [A].

3. Lα [A] is transitive.

4. L[A]∩α = Lα [A]∩α = α .

5. For α > ω , |Lα [A]|= |α|.

6. L[A] |= ZF.



The relativized constructible hierarchy L[A]

Proposition (Cont.)

7. There is a Σ1 formula wo(x,y,z) such that

ZF ` “{〈x,y〉 | wo(x,y,A)} is a wellordering of L[A]′′

and if <L[A] denotes the wellordering of L[A] determined by
wo, then for any limit γ > ω ,

<L[A] ∩Lγ [A]×Lγ [A] is Σ
Lγ [A]
1 .

8. L[A] is a model of AC.

9. B = A∩L[A]⇒ L[A] = L[B]∧ (V = L[B])L[A].

10. γ > ω limit ∧B = A∩Lγ [A]⇒ Lγ [A] = Lγ [B].



Ordered pair, projection, n-tuples

I 〈a,b〉 denotes the ordered pair of two sets a and b.

I If c = 〈a,b〉 let (c)0 = a and (c)1 = b.

I Ordered n-uples are defined via
I 〈a1〉 := a1,
I 〈a1, . . . ,an+1〉 := 〈〈a1, . . . ,an〉,an+1〉.



Satisfiability

To each formula ψ of L∈(P) we assign a Gödel number pψq.

There is a formula Sat(v,w) of L∈(P) such that for all ∆0 formulas
ϕ(x1, . . . ,xn) of L∈(P) the following holds for any limit γ > ω and all
~a = a1, . . . ,an ∈ Lγ [A]:

Lγ [A] |= ϕ(~a) iff Lγ [A] |= Sat(pϕq,〈~a〉).

Sat is uniformly ∆
Lγ [A]
1 for limits γ > ω .



Indexes for partial Σ
L[A]
1 functions

Let γ > ω be a limit.
For e,a1, . . . ,an ∈ Lγ [A] define

[e]Lγ [A]
n (a1, . . . ,an)' b

if e is an ordered pair 〈pψq,c〉 with ψ a ∆0 formula of L∈(P), not
involving free variables other than x1, . . . ,xn+2, such that

Lγ [A] |= Sat(pψq,〈a1, . . . ,an,c,d〉) (1)

and (d)0 = b where d is the <L[A]-least pair satisfying (1).

Likewise, [e]L[A]n (a1, . . . ,an)' b is defined replacing Lγ [A] by L[A] in
the definition above.



Indexes for partial Σ
L[A]
1 functions

Lemma
Let τ > ω be a limit of limits.

1. For e ∈ Lτ [A], the partial function f on Lτ [A] given by

f (a1, . . . ,an) = b iff [e]Lτ [A]
n (a1, . . . ,an)' b

is Σ
Lτ [A]
1 .

2. For every n-ary partial Σ
Lτ [A]
1 function f there exists an index

e ∈ Lτ [A] such that, for all a1, . . . ,an ∈ Lτ [A],

f (a1, . . . ,an) = b iff [e]Lτ [A]
n (a1, . . . ,an)' b

3. 1 and 2 hold with L[A] in place of Lτ [A].

4. [e]Lτ [A]
n (a1, . . . ,an)' b implies [e]L[A]n (a1, . . . ,an)' b and

[e]Lλ [A]
n (a1, . . . ,an)' b for all limits λ > τ .

5. If [e]L[A]n (a1, . . . ,an)' b then [e]Lλ [A]
n (a1, . . . ,an)' b for some

limit λ .



Realizability

For d ∈ L[A] and set-theoretic sentences ψ with parameters in L[A]
we define the realizability relation d 
A ψ as:

e 
A c ∈ d iff c ∈ d

e 
A c = d iff c = d

e 
A ϕ ∧ψ iff (e)0 
A ϕ and (e)1 
A ψ

e 
A ϕ ∨ψ iff [(e)0 = 0∧ (e)1 
A ϕ] or [(e)0 = 1∧ (e)1 
A ψ]

e 
A ϕ → ψ iff ∀a [a 
A ϕ ⇒ [e]L[A](a) 
A ψ]

e 
A ∃xθ(x) iff (e)1 
A θ((e)0)

e 
A ∀xθ(x) iff ∀a [e]L[A](a) 
A θ(a).



Realizability Theorem

Let RL[A] be the set of real numbers in the sense of L[A].
If ψ(x1, . . . ,xn) is a formula of set theory and D is a proof of
ψ(x1, . . . ,xn) in T, then we can effectively construct a hereditarily
finite set eD , which does not depend on A, such that for all
a1, . . . ,an ∈ L[A]

[eD ]
L[A](a1, . . . ,an,R

L[A]) 
A ψ(a1, . . . ,an).



Sketch of the Main Theorem’s proof

1. Towards a contradiction, assume T `CH ∨¬CH.

2. Then exists e ∈ L[A] such that, for all A,

[e]L[A](RL[A]) 
A CH ∨¬CH.

3. [e]L[A](RL[A]) is either 〈0,eCH〉, where eCH realizes CH, or
〈1,e¬CH〉, where e¬CH realizes ¬CH.



Sketch of the Main Theorem’s proof

4. Using forcing we construct C such that, in L[C], RL[C] has
cardinality ℵ2.

5. Then L[C] 2CH and there is no d ∈ L[C] such that d 
C CH.

6. Hence, [e]L[C](RL[C])' b with (b)0 = 1.



Sketch of the Main Theorem’s proof

7. By forcing again, we construct E such that

I [e]L[C∪E](RL[C])' b,

I RL[C] = RL[C∪E],

I L[C∪E] |=CH.

8. Using the order <L[C∪E] we can construct a Σ
L[C∪E]
1 function

that realizes CH in L[C∪E].

9. Then (b)0 = 0. Contradiction!
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