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Short-exposure imaging: forward problem
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Short-exposure imaging: inverse problem
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Radio-astronomy: forward problem
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Radio-astronomy: inverse problem
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Problem statement

We are interested in an unknown image x ∈ Rd .

We measure y , related to x by some mathematical model.

For example, in many imaging problems

y = Ax +w ,

for some operator A that is poorly conditioned or rank deficient,
and an unknown perturbation or “noise” w .

The recovery of x from y is often ill-posed or ill-conditioned,
so we regularise the problem to make it well posed.
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The Bayesian framework

Bayesian statistics is a mathematical framework for deriving inferences
about x , from some observed data y and prior knowledge available.

Adopting a subjective probability approach, we represent x as a random
quantity and use probability distributions to model expected properties.

To derive inferences about x from y we postulate a joint statistical model
p(x , y); typically specified via the decomposition p(x , y) = p(y ∣x)p(x).
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The Bayesian framework

The decomposition p(x , y) = p(y ∣x)p(x) has two key ingredients:

The likelihood function: the conditional distribution p(y ∣x) that models
the data observation process (forward model).

The prior function: the marginal distribution p(x) = ∫ p(x , y)dy that
models our knowledge about the solution x .

For example, for y = Ax +w , with w ∼ N (0, σ2I), we have

y ∼ N (Ax , σ2I) ,

or equivalently
p(y ∣x)∝ exp{−∥y −Ax∥2

2/2σ2
} .
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Prior distribution

The prior distribution is usually of the form:

p(x) =
1

Z(θ)
e−θ

⊺ψ(x)1Ω(x) , Z(θ) = ∫
Ω
e−θ

⊺ψ(x)dx ,

for some statistic ψ ∶ Rd → Rm, θ ∈ Rm, and constraint set Ω ⊂ Rd .

Often ψ and Ω are convex on Rd and p(x) is log-concave.

Log-concave priors regularise the inverse problem by promoting solutions
for which ψ(x) is close to its expectation E(ψ∣θ), controlled by θ ∈ Rp.

M. Pereyra (MI — HWU) Bayesian mathematical imaging 11 / 39



Prior distribution

Formally, when ψ is convex we have concentration of probability mass on
the typical set (see Bobkov and Madiman (2011))

P{∥ψ(x) −E(ψ∣θ)∥ > η∣θ} < 3 exp{−η2d/16}, ∀η ∈ (0,2) (1)

Moreover, by differentiating Z(θ) and using Leibniz integral rule

E(ψ∣θ) = ∫
Ω
ψ(x)p(x)dx = −∇θ logZ(θ), (2)

hence p(x ∣θ) softly constrains ψ(x) ≈ −∇θ logZ(θ) when d is large.

Z(θ) is strongly log-concave, hence ∇θ logZ(θ) spans Rp (think duality).
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Prior distribution

For example, priors of the form

p(x)∝ e−θ∥Ψx∥� ,

for some basis or dictionary Ψ ∈ Rd×p and norm ∥ ⋅ ∥�, are encoding

E(∥Ψx∥�∣θ) =
d

θ
.

See Pereyra et al. (2015); Fernandez-Vidal and Pereyra (2018) for more
details and other examples.
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Posterior distribution

We base our inferences on the posterior distribution p(x ∣y).

We derive p(x ∣y) from the likelihood p(y ∣x) and the prior p(x) by using

p(x ∣y) =
p(y ∣x)p(x)

p(y)

where p(y) = ∫ p(y ∣x)p(x)dx measures model-fit-to-data.

The conditional p(x ∣y) models our knowledge about x after observing y .

In this talk we consider that p(x ∣y) is log-concave; i.e.,

p(x ∣y) = exp{−φ(x)}/∫ exp{−φ(x)}dx ,

where φ(x) is a convex function on Rd .
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Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

φ(x).
(3)

This Bayesian estimator is

1 efficiently computed by convex optimisation,

2 decision-theoretically optimal in the sense of the φ-Bregman error.

However, MAP estimation has some limitations, e.g.,

1 it provides little information about p(x ∣y),

2 it struggles with unknown/partially unknown models.

See, e.g., Chambolle and Pock (2016); Pereyra (2016) for more details.
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Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional degraded observation

y =MFx +w ,

where F is the continuous Fourier transform, M ∈ Cm×d is a measurement
operator, Ψ is a wavelet basis, and w ∼ N (0, σ2Im). We use the model

p(x ∣y)∝ exp (−∥y −MFx∥2
/2σ2

− θ∥Ψx∥1)1Rn
+(x). (4)

y
x̂MAP

Figure: Radio-interferometric image reconstruction of the W28 supernova.
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Inference by Markov chain Monte Carlo integration

Monte Carlo integration
Given a set of samples X1, . . . ,XM distributed according to p(x ∣y), we
approximate posterior expectations and probabilities

1

M

M

∑
m=1

h(Xm)→ E{h(x)∣y}, as M →∞

Markov chain Monte Carlo:
Construct a Markov kernel Xm+1∣Xm ∼ K(⋅∣Xm) such that the Markov
chain X1, . . . ,XM has p(x ∣y) as stationary distribution.

MCMC simulation in high-dimensional spaces is very challenging.
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Unadjusted Langevin algorithm

Suppose for now that p(x ∣y) ∈ C1. Then, we can generate samples by
mimicking a Langevin diffusion process that converges to p(x ∣y) as t →∞,

X ∶ dX t =
1

2
∇ log p (X t ∣y)dt + dWt , 0 ≤ t ≤ T , X(0) = x0.

where W is the Brownian motion on Rd .

Because solving X t exactly is generally not possible, we use an Euler
Maruyama approximation and obtain the “unadjusted Langevin algorithm”

ULA ∶ Xm+1 = Xm + δ∇ log p(Xm∣y) +
√

2δZm+1, Zm+1 ∼ N (0, In)

ULA is remarkably efficient when p(x ∣y) is sufficiently regular.

Unfortunately, imaging models are often violate these regularity conditions.
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Non-smooth models

Without loos of generality, suppose that

p(x ∣y)∝ exp{−f (x) − g(x)} (5)

where f (x) and g(x) are l.s.c. convex functions from Rd → (−∞,+∞], f
is Lf -Lipschitz differentiable, and g ∉ C1.

For example,

f (x) = 1
2σ2 ∥y −Ax∥2

2, g(x) = α∥Bx∥� + 1S(x) ,

for some linear operators A, B, norm ∥ ⋅ ∥�, and convex set S.

Unfortunately, such non-models are beyond the scope of ULA.

Idea: Regularise p(x ∣y) to enable efficient Langevin sampling.
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Approximation of p(x ∣y)

Moreau-Yoshida approximation of p(x ∣y) (Pereyra, 2015):

Let λ > 0. We propose to approximate p(x ∣y) with the density

pλ(x ∣y) =
exp[−f (x) − gλ(x)]

∫Rd exp[−f (x) − gλ(x)]dx
,

where gλ is the Moreau-Yoshida envelope of g given by

gλ(x) = inf
u∈Rd

{g(u) + (2λ)−1
∥u − x∥2

2},

and where λ controls the approximation error involved.
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Moreau-Yoshida approximations

Key properties (Pereyra, 2015; Durmus et al., 2018):

1 ∀λ > 0, pλ defines a proper density of a probability measure on Rd .

2 Convexity and differentiability:

pλ is log-concave on Rd .

pλ ∈ C
1 even if p not differentiable, with

∇ log pλ(x ∣y) = −∇f (x) + {proxλg (x) − x}/λ,

and proxλg (x) = argminu∈RN g(u) + 1
2λ

∣∣u − x ∣∣2.

∇ log pλ is Lipchitz continuous with constant L ≤ Lf + λ
−1.

3 Approximation error between pλ(x ∣y) and p(x ∣y):

limλ→0 ∥pλ − p∥TV = 0.

If g is Lg -Lipchitz, then ∥pλ − p∥TV ≤ λL2
g .
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Illustration

Examples of Moreau-Yoshida approximations:

p(x)∝ exp (−∣x ∣) p(x)∝ exp (−x4) p(x)∝ 1[−0.5,0.5](x)

Figure: True densities (solid blue) and approximations (dashed red).
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Proximal ULA

We approximate X with the “regularised” auxiliary Langevin diffusion

X
λ
∶ dXλ

t =
1

2
∇ log pλ (X

λ
t ∣y)dt + dWt , 0 ≤ t ≤ T , X

λ
(0) = x0,

which targets pλ(x ∣y). Remark: we can make Xλ arbitrarily close to X .

Finally, an Euler Maruyama discretisation of Xλ leads to the
(Moreau-Yoshida regularised) proximal ULA

MYULA ∶ Xm+1 = (1 − δ
λ)Xm − δ∇f {Xm} + δ

λ proxλg{Xm} +
√

2δZm+1,

where we used that ∇gλ(x) = {x − proxλg(x)}/λ.
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Convergence results

Non-asymptotic estimation error bound

Theorem 2.1 (Durmus et al. (2018))

Let δmax
λ = (L1 + 1/λ)−1. Assume that g is Lipchitz continuous. Then,

there exist δε ∈ (0, δmax
λ ] and Mε ∈ N such that ∀δ < δε and ∀M ≥Mε

∥δx0Q
M
δ − p∥TV < ε + λL2

g ,

where QM
δ is the kernel assoc. with M iterations of MYULA with step δ.

Note: δε and Mε are explicit and tractable. If f + g is strongly convex
outside some ball, then Mε scales with order O(d log(d)). See Durmus
et al. (2018) for other convergence results.
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Illustration

Illustrative examples:

p(x)∝ exp (−∣x ∣) p(x)∝ exp (−x4) p(x)∝ 1[−0.5,0.5](x)

Figure: True densities (blue) and MC approximations (red histogram).
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Modern Bayesian computation

Surveys on Bayesian computation...

25th anniversary special issue on Bayesian computation
P. Green, K. Latuszynski, M. Pereyra, C. P. Robert, ”Bayesian computation: a perspective on
the current state, and sampling backwards and forwards”, Statistics and Computing, vol. 25,
no. 4, pp 835-862, Jul. 2015.

Special issue on “Stochastic simulation and optimisation
in signal processing”
M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and S.
McLaughlin, “A Survey of Stochastic Simulation and Optimization Methods in Signal Pro-
cessing” IEEE Sel. Topics in Signal Processing, vol. 10, no. 2, pp 224 - 241, Mar. 2016.
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Uncertainty quantification in radio-interferometric imaging

Where does the posterior probability mass of x lie?

A set Cα is a posterior credible region of confidence level (1 − α)% if

P [x ∈ Cα∣y] = 1 − α.

The highest posterior density (HPD) region is decision-theoretically
optimal (Robert, 2001)

C∗
α = {x ∶ φ(x) ≤ γα}

with γα ∈ R chosen such that ∫C∗
α
p(x ∣y)dx = 1 − α holds.
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Visualising uncertainty in radio-interferometric imaging

Astro-imaging experiment with redundant wavelet frame (Cai et al., 2017).

x̂penMLE (y) x̂MAP (by optimisation) credible intervals (scale 10 × 10)

x̂penMLE (y) x̂MAP (by optimisation) credible intervals (scale 10 × 10)

3C2888 and M31 radio galaxies (size 256 × 256 pixels).

M. Pereyra (MI — HWU) Bayesian mathematical imaging 30 / 39



Visualising uncertainty in radio-interferometric imaging

Astro-imaging experiment with redundant wavelet frame (Cai et al., 2017).

x̂penMLE (y) x̂MMSE = E(x ∣y) x̂MAP (by optimisation)

x̂penMLE (y) x̂MMSE = E(x ∣y) x̂MAP (by optimisation)

3C2888 and M31 radio galaxies. Visual comparison MMSE and MAP estimation.
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Hypothesis testing

Bayesian hypothesis test for specific image structures (e.g., lesions)

H0 ∶ The structure of interest is ABSENT in the true image

H1 ∶ The structure of interest is PRESENT in the true image

The null hypothesis H0 is rejected with significance α if

P(H0∣y) ≤ α.

Theorem (Repetti et al., 2018)
Let S denote the region of Rd associated with H0, containing all images
without the structure of interest. Then

S ∩ Cα = ∅ Ô⇒ P(H0∣y) ≤ α .

If in addition S is convex, then checking S ∩ Cα = ∅ is a convex problem

min
x̄ , x∈Rd

∥x̄ − x∥2
2 s.t. x̄ ∈ Cα , x ∈ S .
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Uncertainty quantification in MRI imaging

x̂MAP x̄ ∈ C̃0.01 x ∈ S

x̂MAP (zoom) x̄ ∈ C̃0.01 (zoom) x ∈ S (zoom)

MRI experiment: test images x̄ = x, hence we fail to reject H0 and conclude that

there is little evidence to support the observed structure.
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Uncertainty quantification in MRI imaging

x̂MAP x̄ ∈ C0.01 x ∈ S0

x̂MAP (zoom) x̄ ∈ C0.01 (zoom) x ∈ S0 (zoom)

MRI experiment: test images x̄ ≠ x, hence we reject H0 and conclude that there is

significant evidence in favour of the observed structure.
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Uncertainty quantification in radio-interferometric imaging

Quantification of minimum energy of different energy structures, at level
(1 − α) = 0.99, as the number of measurements T = dim(y)/2 increases.

∣y ∣ x̂MAP(T = 200)
ρα, energy ratio preserved at α = 0.01

Figure: Analysis of 3 structures in the W28 supernova RI image.

Note: energy ratio calculated as

ρα =
∥x̄ − x∥2

∥xMAP − x̃MAP∥2

where x̄ , x are computed with α = 0.01, and x̃MAP is a modified version of xMAP

where the structure of interest has been carefully removed from the image.
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Conclusion & Perspectives

The challenges facing modern imaging sciences require a
methodological paradigm shift to go beyond point estimation.

The Bayesian framework can support this paradigm shift, but this
requires significantly accelerating computation methods.

We explored improving efficiency by integrating modern stochastic
and variational approaches to construct proximal MCMC methods.

MYULA has been superseded by more advanced proximal MCMC
methods, e.g., the accelerated method of Pereyra et al. (2020).

Future works should focus on improving frequentist coverage
properties by using more accurate Bayesian priors; e.g., by integration
with machine learning, plug-and-play, and scene-adapted approaches.
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