Quantum many-body scars:
a new form of weak ergodicity breaking in constrained quantum systems
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What is a quantum scar?

Chladni received 6000 francs from Napoleon,

* with the request to publish the Akustik in French
Ernst Chladni

Napoleon

TRAITE
D’ACOUSTIQUE,

Pax E-F.-F. CHLADNI,

NAPOLEON-LE-GRAND

Docteur en Philosophie et en Droit; Membre de la Société A DAIGNE AGREER
Royale d'Harlem , de la Société des Scrutateurs de la Nature
de Berlin,‘de I'Académie des Sciences utiles d'Erfort, et
de la Société départementale de Mayence ; Correspondant LA DEDIC ACE DE CET OUVRAGE
de I'Académie Impériale de Saint-Pétershourg, des Sociétés .
Royales de Gottingne et de Munich, de la Société Philo
matique de Paris, et de la Société Bataye de Rotterdam. APRES EN AVOIR VU

Avec huit Planches.
LES EXPERIENCES FONDAMENTALES.

PARIS,

Chez COURCIER , Imprimeur-Libraire pour les Mathématiques;
quai des Augustins , n° 57.

1809.

Napoleon also gave a prize of 3000 francs for the
theory of the sound patterns.

In 1816 this prize was awarded to Sophie Germain



What is a quantum scar?

WIKIPEDIA Scar (physics)

The Free Encycl i
et From Wikipedia, the free encyclopedia

In physics, and especially quantum chaos, a wavefunction scar is an enhancement (i.e. increased norm squared) of

an eigenfunction along unstable classical periodic orbits in classically chaotic systems .They were discovered and

explained in 1984 by E.J. Heller[!] and are part of the large field of quantum chaos. Scars are unexpected in the

sense that stationary classical distributions at the same energy are completely uniform in space with no special
concentrations along periodic orbits, and quantum chaos theory of energy spectra gave no hint of their existence.
Scars stand out to the eye in some eigenstates of classically chaotic systems, but are quantified by projection of the

eigenstates onto certain test states, often Gaussians, having both average position and average momentum along
the periodic orbit. These test states give a provably structured spectrum that reveals the necessity of scars,
especially for the shorter and least unstable periodic orbits.[21(3]

Scars have been found and are important in membranes(#], wave mechanics, optics, microwave systems, water
waves, and electronic motion in microstructures.

References [edit]

1. ~ Heller, Eric J. (15 October 1984). "Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of
Periodic Orbits". Physical Review Letters. 53 (16): 1515-1518. Bibcode:1984PhRvL..53.1515H&.
doi:10.1103/PhvsRevLett.53.1515¢.
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““Quasimodes”

b(x,y) = o(x)sin(mny/ L)
Not an eigenstate but has high
overlap with O(1) eigenstates
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Motivation: many-body dynamics in quantum simulators

The model: “Fibonacci chain”

Many-body scars in the Fibonacci chain:
quasimodes and periodic orbits

Future directions



Motivation #1: Understand generic behavior of closed quantum systems

Example: (isolated) disordered spin chain

What is the generic behavior of isolated

quantum many-body systems at arbitrary
energy density?
(open problem even in 1D)

uenched disorder (random field)

h; € [— ,h]

Experimental probe: global quench

1. Prepare a simple initial state ooy = | ... T}t ...)

2. Evolve with a known Hamiltonian () = 6_%tH¢0

One body Many body
Complexity increases linearly with Complexity increases exponentially with
the number of lattice sites ~ L the number of lattice sites ~ 2°

VS. Wavefunction lives in Fock space;
NW\ no direct real space interpretation
Wavefunction has direct () N(e)xp(—z'kx) EYES
real space interpretation .
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Motivation #2: Many-Body Dynamics in

doi:10.1038/nature24622

Probing many-body dynamics on a
51-atom quantum simulator

Hannes Bernien', Sylvain Schwartz"2, Alexander Keesling', Harry Levine', Ahmed Omran!, Hannes Pichler"?, Soonwon Choi',
Alexander S. Zibrov!, Manuel Endres*, Markus Greiner!, Vladan Vuleti¢? & Mikhail D. Lukin®
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[also, the 53-qubit simulator with trapped ions:

J. Zhang et al., Nature 551, 601 (2017)]
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Quantum Simulators

Z, ordered
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H = Z X — A nz) + Z Vi,jnmj

i<j

Detuning, A/Q

|Oi> —n; =0
’.i> —>fn,z- = 1

1/r2j

Time after quench (us)

Quench from Z2to A =0

Vij ~
gb 8888 o pog Even more striking is the coherent and persistent oscillation
1 '°o o | 8o of the crystalline order after the quantum quench. With respect
| Q %0 to the quenched Hamiltonian (A = 0), the energy density of our
{ o 9atoms | Z2-ordered state corresponds to that of an infinite-temperature
T o 51 atoms | ensemble within the manifold constrained by Rydberg blockade.
MPS Also, our Hamiltonian does not have any explicitly conserved quan-
' , , 1 tities other than total energy. Nevertheless, the oscillations persist
0 0.4 0.8 1.2 well beyond the natural timescale of local relaxation (1/£2) and the

fastest timescale (1/Vi; ).
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https://www.quantamagazine.org/quantum-scarring-appears-to-defy-universes-push-for-disorder-20190320/
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Effective model: Fibonacci chain

For homogeneous couplings
inthelimit V; ;11 > Q0> A

:> “Fibonacci chain” dim ~ ¢*
[Lesanovsky and Katsura, PRA 86, 041601 (2012)]

H = ZPJ 1 X; P11 “PXPmodel”

Prolector

P =

Hilbert space

+

Remove such states

because they cost
co energy

The PXP model is chaotic:

]..O -L\ R — L — 32

\ :

\\ - == Poisson
0.849 \ — == Semi-Poisson

[C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papic,
Nature Physics 14, 745 (2018)]

Model has a rich ground state phase diagram

under perturbations:
[Fendley, Sengupta, Sachdev, PRB 69, 075106 (2004)]



A puzzle: oscillatory quench dynamics in a thermalizing system

S NWH) |, 7, (1)) = e~ 57 |2,)

|Zo) =|cece...)

Entire many-body wavefunction
— (superposition of 70 000 states!)
returns to itself many times

Entanglement entropy,
correlation functions,
local observables

' ' ' ' also revive with the

0 10 20 30 same frequency

[C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papic, Nature Physics 14, 745 (2018)]
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From dynamics to eigenstates

0 szerlap of all eigenstates with Neel state (7|7 (1)) = Z o~ HtEn (Epn|Zs) ‘2

n

— « A band of special eigenstates
with anomalously high overlap
with the Neel state

« Special eigenstates are approximately
equidistant in energy, which is the cause
of oscillatory dynamics

« Apart from the special band, the rest of
the spectrum is also organized in towers

How to construct or explain the special states?




Many-body scarred quasimodes

cee coe S -+

Inspiration: free paramagnet > N-dim hypercube

PXP Hamiltonian: H = H™ + H™

Increases distance Decreases distance
from Neel state by 1 from Neel state by 1 X~St+ 8™

Basis of the "tight-binding" model:

10) = [Z2), (1), .., | L) }
n) oc (H™)"0)

l

Quasimode approximations

[ o] o/ Je)

[C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papic, Nature Physics 14, 745 (2018)] C. Lanczos



Many-body scarred quasimodes

Quasimodes leave an imprint on eigenstates = scarring.
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[C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papic, Nature Physics 14, 745 (2018)] C. Lanczos




Many-body scars as embedded algebras

[S. Choi, C. J. Turner, et al., PRL 122, 220603 (2019); Bull, Desaules, ZP, arXiv:2001.08232]

- _doupling§
- Special eigenstates form

an approximate rep of su(2)

0 10 20 30

= 1
~ + g7 _ + -
S H = H™ H ,HZ:§[H , H™]
@ Thermal
= Z2) =lowest weight state of H *
—20 —10 0 10 20
E
Algebra is only approximate but [Hz H:l:] _ :le:l: 4+ 5:1: [see also Khemani, Laumann, Chandran,
can be systematically improved: ) _ PRB 99, 161101 (2019)]
' 7 - —
1.5 1= Ho _ 101 o @ © © e e o
= Opt. ® . ®
4= PXP model 104 - © . ©
™~ 1.0 - = ? SRS ©
;50 Nearly perfect|] = 100 1 © ‘ ®
% O 5 - SU(Z) rep \Nilo—l() 1® ®
. o . g..o ks , < .
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Many-body scars as embedded algebras

[S. Choi, C. J. Turner, et al., PRL 122, 220603 (2019); Bull, Desaules, ZP, arXiv:2001.08232]

su(2) rep = embedded spin;
spin precession = periodic orbit

Multiple su(2) reps can be embedded!

Orbits have an elegant semiclassical description in terms of
TDVP on a small bond-dimension MPS manifold!

[Ho et al., PRL 122, 040603(2019),
Michailidis et al., arXiv:1905.08564 (to appear in PRX)]
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(More) rigorous results on PXP model

* Embedded eigenstates at/closeto £/ =~ 0

Analogous to AKLT ground state!

[Shiraishi and Mori, PRL 119, 030601 (2017);
Lin and Motrunich, PRL 122, 173401 (2019);
Shiraishi, J. Stat. Mech. 083103 (2019)]

* Anew construction of quasimodes
based on enlarged permutation symmetry

IC = span{|ni,no)}

[C. Turner, J-Y. Desaules, K. Bull, ZP, to appear]

* Analytical expressions
for matrix elements,

- energy variance,
entanglement...

e (Can be viewed as
TDVP + quantum flucts
at all orders




Many-body scars beyond 1D PXP model

e AKLT model

TR TS T T T TN

[Arovas, Physics Lett. A 137, 431 (1989);
Moudgalya, Regnault, Bernevig, PRB 98, 235156 (2018)]

* Models with U(1) symmetry

[Schecter and ladecola, PRL 123, 147201 (2019)]

[ Chattopadhyay, Pichler, Lukin, Ho, arXiv:1910.08101]
[Lee, Melendrez, Pal, Changlani, arXiv:2002.08970]

* Periodically driven/dissipative systems

Buca, Tindall, Jaksch,
Nature Commun. 10, 1730 (2019);
Haldar et al., arXiv:1909.04064]

* “Krylov restricted thermalization”
[Moudgalya et al., arXiv:1910.14048]

* Miscellanea

[Seulgi Ok et al., PRR 1, 033144 (2019),

Moudgalya, Bernevig, Regnault, arXiv:1906.05292;
ladecola and Shecter, PRB 101, 024306 (2020);
Shibata, Yoshioka, Katsura, arXiv:1912.13399]

Kinetically constrained models

2D PXP model [Michailidis et al, arXiv:2003.02825]
E - —
S 6l L
C% 4+ 7 * o )
o0 :"'.ﬂ ¢ ¢ N"".
% 2:. o * ¢ ¢ < * o * o
-E 4 4
L O ...................
-1.0 -0.5 0.0 0.5 1.0
E/Ey

Quantum clocks
[Bull, Martin, ZP,
PRL 123, 030601 (2019)]

Bosonic models

[Hudomal, Vasic,
Regnault, ZP, arXiv:1910.09526]
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Conclusions and outlook

« A new class of non-integrable many-body systems which feature atypical
(non-thermal) eigenstates throughout the spectrum and display periodic
quantum revivals that have been observed in quench experiments

« Analogous to single-particle quantum scars (quasimodes, periodic orbits)

o Scarred eigenstates form approximate reps of Lie algrebras [typically su(2)]

o Stability under perturbations? Full classification of orbits and host systems?
e New experiments? Wil Kao et al., arXiv:2002.10475

« Consequences of weakly broken Lie algebras for the ETH? Connection with
spectral theory of graphs?

Pai and Pretko, PRL 123, 136401 (2019);

o Relations to fracton-like models? Khemaniand Nandkishore, arXiv:1904.04815;
Sala, Rakovszky, Verresen, Knap, Pollmann, arXiv:1904.04266

Kormos et al, Nat. Physics 13, 246 (2016);

« Relations to confinement/lattice gauge theories? James, Konik, Robinson, PRL 122, 130603 (2019)
F. M. Surace et al., arXiv:1902.09551
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