Computation, Statistics, and Optimization of Random Functions

Afonso S. Bandeira

Mathematics, Physics and Machine Learning (IST, Lisbon), June 4, 2020

The Age of Data

"The world's most valuable resource is no longer oil, but data"

- The Economist

The Age of Data

"The world's most valuable resource is no longer oil, but data"

- The Economist
- "We estimate Al-powered applications will add $\$ 13$ trillion in value to the global economy in the coming decade"
- McKinsey \& Company

Cryo-Electron Microscopy

Task: Reconstruct the $3 d$ molecule from noisy projections taken from unknown directions

Cryo-Electron Microscopy

Task: Reconstruct the $3 d$ molecule from noisy projections taken from unknown directions

Images courtesy of Amit Singer, Yoel Shkolnisky, and Fred Sigworth

Cryo-Electron Microscopy

Task: Reconstruct the $3 d$ molecule from noisy projections taken from unknown directions

Images courtesy of Amit Singer, Yoel Shkolnisky, and Fred Sigworth

Cryo-Electron Microscopy

Task: Reconstruct the $3 d$ molecule from noisy
projections taken from unknown directions

Images courtesy of Amit Singer, Yoel Shkolnisky, and Fred Sigworth

2017 Chemistry Laureates. III: N. Elmehed. (0) Nobel Media 2017

2017 Nobel Prize in Chemistry

The Nobel Prize in Chemistry 2017 was awarded to Jacques Dubochet, Joachim Frank and Richard Henderson "for developing cryoelectron microscopy for the highresolution structure determination of biomolecules in solution".

Mathematics of Data

- Are there limits to what we can learn?

Mathematics of Data

- Are there limits to what we can learn?
- Which methods work?

Why?

Mathematics of Data

- Are there limits to what we can learn?
- Which methods work?

Why?

- What are the bottlenecks?

Mathematics of Data

- Are there limits to what we can learn?
- Which methods work?

Why?

- What are the bottlenecks?
- Can we a posteriori certify?

Statistics - What are limits to learning?

- 1700's - Bayesian Statistics

Statistics - What are limits to learning?

- 1700's - Bayesian Statistics
- 1900-1920 - Fisher Information
- How much information about a parameter does a sample have?

Statistics - What are limits to learning?

1700's - Bayesian Statistics

- 1900-1920 - Fisher Information - How much information about a parameter does a sample have?
F. Y. EDGEWORTH AND R. A. FISHER

ON THE EFFICIENCY OF MAXIMUM LIKELIHOOD ESTIMATION ${ }^{\text {i }}$

By John W. Pratt
 Harvard University

F. Y. Edgeworth's $1908-9$ investigation is examined for its contribution to knowledge of the sampling properties of maximum likelihood and related estimates, especially asymptotic efficiency. The nature and extent of his progress and anticipation of R. A. Fisher are described. Fisher's relevant work is briefly examined in relation to Edgeworth's and to the CramérRao inequality.

1. Introduction. Francis Ysidro Edgeworth (1845-1926), the notable statistician (of the Edgeworth series) and economist (of the Edgeworth box), has been more noted by economists than statisticians. His work in mathematical statistics has been surveyed extensively by Bowley (1928) and, more briefly but more cogently for modern readers, by Pearson (1967). For broader sketches, see Hildreth (1968), who gives further references, or Kendall (1968).

In formal public discussions, Bowley (1935, with reference to 1928) and Neyman (1961; see also 1951) have said that R. A. Fisher's remarkable results on maximum likelihood estimation were considerably anticipated by Edgeworth (1908-9). On both occasions Fisher denied Edgeworth all credit without coming to grips with the central issue. Others grant Edgeworth a modest claim (Le Cam, 1953; Pearson, 1967) or almost none (Rao, 1961; Norden, 1972, citing Rao and Le Cam). L. J. Savage's (1976) interest stimulated me to look into the matter.

Statistics - What are limits to learning?

- 1700's - Bayesian Statistics
- 1900-1920 - Fisher Information
- How much information about a parameter does a sample have?
- 1933: Neyman-Pearson Lemma:
- Limits on Hypothesis Testing

The Annals of Statisigs 196, Vol $4, \mathrm{No}, 3,501-514$

F. Y. EDGEWORTH AND R. A. FISHER

ON THE EFFICIENCY OF MAXIMUM LIKELIHOOD ESTIMATION ${ }^{1}$

By John W. Pratt
Harvard University
F. Y. Edgeworth's $1908-9$ investigation is examined for its contribution to knowledge of the sampling properties of maximum likelihood and related estimates, especially asymptotic efficiency. The nature and extent of his progress and anticipation of R. A. Fisher are described. Fisher's relevant work is briefly examined in relation to Edgeworth's and to the CramérRao inequality.

1. Introduction. Francis Ysidro Edgeworth (1845-1926), the notable statistician (of the Edgeworth series) and economist (of the Edgeworth box), has been more noted by economists than statisticians. His work in mathematical statistics has been surveyed extensively by Bowley (1928) and, more briefly but more cogently for modern readers, by Pearson (1967). For broader sketches, see Hildreth (1968), who gives further references, or Kendall (1968).

In formal public discussions, Bowley (1935, with reference to 1928) and Neyman (1961; see also 1951) have said that R. A. Fisher's remarkable results on maximum likelihood estimation were considerably anticipated by Edgeworth (1908-9). On both occasions Fisher denied Edgeworth all credit without coming to grips with the central issue. Others grant Edgeworth a modest claim (Le Cam, 1953; Pearson, 1967) or almost none (Rao, 1961; Norden, 1972, citing Rao and Le Cam). L. J. Savage's (1976) interest stimulated me to look into the matter.

The numatione at in..... ane animanilo.

Statistics - What are limits to learning?

- 1700's - Bayesian Statistics
- 1900-1920 - Fisher Information - How much information about a parameter does a sample have?
- 1933: Neyman-Pearson Lemma:
- Limits on Hypothesis Testing
- 1940's: Cramér-Rao Bound: - Limits on Statistical Estimation

F. Y. EDGEWORTH AND R. A. FISHER ON THE EFFICIENCY OF MAXIMUM LIKELIHOOD ESTIMATION ${ }^{1}$

By John W. Pratt
Harvard University
F. Y. Edgeworth's 1908-9 investigation is examined for its contribution to knowledge of the sampling properties of maximum likelihood and related estimates, especially asymptotic efficiency. The nature and extent of his progress and anticipation of R. A. Fisher are described. Fisher's relevant work is briefly examined in relation to Edgeworth's and to the CramérRao inequality.

1. Introduction. Francis Ysidro Edgeworth (1845-1926), the notable statistician (of the Edgeworth series) and economist (of the Edgeworth box), has been more noted by economists than statisticians. His work in mathematical statistics has been surveyed extensively by Bowley (1928) and, more briefly but more cogently for modern readers, by Pearson (1967). For broader sketches, see Hildreth (1968), who gives further references, or Kendall (1968).

In formal public discussions, Bowley (1935, with reference to 1928) and Neyman (1961; see also 1951) have said that R. A. Fisher's remarkable results on maximum likelihood estimation were considerably anticipated by Edgeworth (1908-9). On both occasions Fisher denied Edgeworth all credit without coming to grips with the central issue. Others grant Edgeworth a modest claim (Le Cam, 1953; Pearson, 1967) or almost none (Rao, 1961; Norden, 1972, citing Rao and Le Cam). L. J. Savage's (1976) interest stimulated me to look into the matter.

Statistics - What are limits to learning?

- 1700's - Bayesian Statistics
- 1900-1920 - Fisher Information
- How much information about a parameter does a sample have?
- 1933: Neyman-Pearson Lemma:
- Limits on Hypothesis Testing
- 1940's: Cramér-Rao Bound: - Limits on Statistical Estimation
- 1950+ Minimax, Contiguity, ...

Bayes
Laplace Lagrange Gauss 1770's 1800's

The Annaly of Statistics
1976, Vol $4, \mathrm{No} .3,501-514$
F. Y. EDGEWORTH AND R. A. FISHER

ON THE EFFICIENCY OF MAXIMUM LIKELIHOOD ESTIMATION ${ }^{1}$

By John W. Pratt

Harvard University
F. Y. Edgeworth's 1908-9 investigation is examined for its contribution to knowledge of the sampling properties of maximum likelihood and related estimates, especially asymptotic efficiency. The nature and extent of his progress and anticipation of R.A. Fisher are described. Fisher's relevant work is briefly examined in relation to Edgeworth's and to the CramérRao inequality.

1. Introduction. Francis Ysidro Edgeworth (1845-1926), the notable statistician (of the Edgeworth series) and economist (of the Edgeworth box), has been more noted by economists than statisticians. His work in mathematical statistics has been surveyed extensively by Bowley (1928) and, more briefly but more cogently for modern readers, by Pearson (1967). For broader sketches, see Hildreth (1968), who gives further references, or Kendall (1968).

In formal public discussions, Bowley (1935, with reference to 1928) and Neyman (1961; see also 1951) have said that R. A. Fisher's remarkable results on maximum likelihood estimation were considerably anticipated by Edgeworth (1908-9). On both occasions Fisher denied Edgeworth all credit without coming to grips with the central issue. Others grant Edgeworth a modest claim (Le Cam, 1953; Pearson, 1967) or almost none (Rao, 1961; Norden, 1972, citing Rao and Le Cam). L. J. Savage's (1976) interest stimulated me to look into the matter.

Tha nomation. at i...... are n-rimanilv.

Information Theory

Claude Shanon '48:
A Mathematical Theory of Communication Shannon Entropy

Richard Hamming '50:
" Error detecting and error correcting codes"
Hamming Distance

Information Theory

Claude Shanon '48:
A Mathematical Theory of Communication Shannon Entropy

Richard Hamming '50:
"Error detecting and error correcting codes"
Hamming Distance

Shannon Entropy: \# of bits "of information" needed to identify a draw of X

Learning/Estimating is (also) optimization

Goal: Find parameter/signal/model that best "fits" the data

- Maximum likelihood estimation
- Training of Neural Networks

Learning/Estimating is (also) optimization

Goal: Find parameter/signal/model that best "fits" the data

- Maximum likelihood estimation
- Training of Neural Networks

Are these computational tasks feasible/easy?

Learning/Estimating is (also) optimization

Goal: Find parameter/signal/model that best "fits" the data

- Maximum likelihood estimation
- Training of Neural Networks
- ...

Are these computational tasks feasible/easy?

Many optimization/computational problems are NP-hard (e.g. Knapsack)

Learning/Estimating is (also) optimization

Goal: Find parameter/signal/model that best "fits" the data

- Maximum likelihood estimation
- Training of Neural Networks
- ...

Are these computational tasks feasible/easy?

Many optimization/computational problems are NP-hard (e.g. Knapsack)

1956: Gödel's letter to von Neumann (and John Nash's 1955)

Learning/Estimating is (also) optimization

Goal: Find parameter/signal/model that best "fits" the data

- Maximum likelihood estimation
- Training of Neural Networks
- ...

Are these computational tasks feasible/easy?

Many optimization/computational problems are NP-hard (e.g. Knapsack)

1956: Gödel's letter to von Neumann (and John Nash's 1955)

1971-72: Cook and Karp's NP-hardness

Learning/Estimating is (also) optimization

Goal: Find parameter/signal/model that best "fits" the data

- Maximum likelihood estimation
- Training of Neural Networks
- ...

Are these computational tasks feasible/easy?

Many optimization/computational problems are NP-hard (e.g. Knapsack)

1956: Gödel's letter to von Neumann (and John Nash's 1955)

1971-72: Cook and Karp's NP-hardness

Should we design (statistical) models so that optimization is easy? Linearity, Convexity, ...

An example: Communities in Social Networks

Given two disjoint sets of $m=\frac{n}{2}$ nodes each. Independently:

- pairs between clusters have an edge with probability p
- pairs across clusters have an edge with probability $q<p$

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011
E. Mossel. J. Neeman, A. Sly, 2012, 2013.
L. Massoulie, 2013.
E. Abbe, A. S. Bandeira, G. Hall, 2014.
A. S. Bandeira, 2018.

An example: Communities in Social Networks

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011
E. Mossel. J. Neeman, A. Sly, 2012, 2013.
L. Massoulie, 2013.
E. Abbe, A. S. Bandeira, G. Hall, 2014.
A. S. Bandeira, 2018.

An example: Communities in Social Networks

Can we recover the labels?
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011
E. Mossel. J. Neeman, A. Sly, 2012, 2013.
L. Massoulie, 2013.
E. Abbe, A. S. Bandeira, G. Hall, 2014.
A. S. Bandeira, 2018.

An example: continued

- Theorem: For $p=\alpha \frac{\log n}{n}$ and $q=\beta \frac{\log n}{n}$, If (iff)

$$
\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}
$$

the Minimum Bisection coincides with the true communities.
E. Abbe, A. S. Bandeira, G. Hall, 2014.
E. Mossel, J. Neeman, and A. Sly, 2014
B. Hajek, Y. Wu, and J. Xu., 2014
A. S. Bandeira, 2015.

An example: continued

- Theorem: For $p=\alpha \frac{\log n}{n}$ and $q=\beta \frac{\log n}{n}$, If (iff)

$$
\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}
$$

the Minimum Bisection coincides with the true communities.

- Theorem: Minimum Bisection is an NP-hard problem.
E. Abbe, A. S. Bandeira, G. Hall, 2014.
E. Mossel, J. Neeman, and A. Sly, 2014
B. Hajek, Y. Wu, and J. Xu., 2014
A. S. Bandeira, 2015.

An example: continued

- Theorem: For $p=\alpha \frac{\log n}{n}$ and $q=\beta \frac{\log n}{n}$, If (iff)

$$
\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}
$$

the Minimum Bisection coincides with the true communities.

- Theorem: Minimum Bisection is an NP-hard problem.
- Theorem: If

$$
\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}
$$

Minimum Bisection can be computed efficiently.
E. Abbe, A. S. Bandeira, G. Hall, 2014.
E. Mossel, J. Neeman, and A. Sly, 2014
B. Hajek, Y. Wu, and J. Xu., 2014
A. S. Bandeira, 2015.

An example: continued

- Theorem: For $p=\alpha \frac{\log n}{n}$ and $q=\beta \frac{\log n}{n}$, If (iff)

$$
\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}
$$

the Minimum Bisection coincides with the true communities.

- Theorem: Minimum Bisection is an NP-hard problem.
- Theorem: If

$$
\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}
$$

Minimum Bisection can be computed efficiently.
Does this always happen?
E. Abbe, A. S. Bandeira, G. Hall, 2014.
E. Mossel, J. Neeman, and A. Sly, 2014
B. Hajek, Y. Wu, and J. Xu., 2014
A. S. Bandeira, 2015.

Statistical-to-Computational Gaps

Hidden Clique Problem

- A graph $G\left(n, \frac{1}{2}\right)$
- each edge appears with probability $\frac{1}{2}$

Statistical-to-Computational Gaps

Hidden Clique Problem

- A graph $G\left(n, \frac{1}{2}\right)$
- each edge appears with
probability $\frac{1}{2}$$\quad$ Vs
- $G\left(n, \frac{1}{2}\right)+\mathbf{k}$-clique
k picked at random and all the edges between them added

Statistical-to-Computational Gaps

Hidden Clique Problem

- A graph $G\left(n, \frac{1}{2}\right)$
— each edge appears with
Vs
- $G\left(n, \frac{1}{2}\right)+\mathbf{k}$-clique
\mathbf{k} picked at random and all the edges between them added
$2 \log n$
Largest Clique
k

Statistical-to-Computational Gaps

Hidden Clique Problem

- A graph $G\left(n, \frac{1}{2}\right)$
- $G\left(n, \frac{1}{2}\right)+\mathbf{k}$-clique
- each edge appears with Vs probability $\frac{1}{2}$
$2 \log n$

Largest Clique
\mathbf{k} picked at random and all the edges between them added
k

- Alon-Krivelevich-Sudakov '98: Efficient algorithm for $\mathbf{k} \gtrsim \sqrt{n}$

Statistical-to-Computational Gaps

Hidden Clique Problem

- A graph $G\left(n, \frac{1}{2}\right)$
- each edge appears with probability $\frac{1}{2}$
$2 \log n$

Largest Clique

- $G\left(n, \frac{1}{2}\right)+\mathbf{k}$-clique
k picked at random and all the edges between them added
k
- Alon-Krivelevich-Sudakov '98: Efficient algorithm for $\mathbf{k} \gtrsim \sqrt{n} \quad$ (as opposed to $\mathbf{k}>2 \log n$)
- No improvement since; believed to be hard and used as reduction primitive (e.g. Berthet-Rigollet '12)

Statistical-to-Computational Gaps

Hidden Clique Problem

- A graph $G\left(n, \frac{1}{2}\right)$
- each edge appears with probability $\frac{1}{2}$
$2 \log n$

Vs

Largest Clique

- $G\left(n, \frac{1}{2}\right)+\mathbf{k}$-clique
\mathbf{k} picked at random and all the edges between them added

Alon-Krivelevich-Sudakov '98: Efficient algorithm for $\mathbf{k} \gtrsim \sqrt{n} \quad$ (as opposed to $\mathbf{k}>2 \log n$)
\rightarrow No improvement since; believed to be hard and used as reduction primitive (e.g. Berthet-Rigollet '12)

Statistical-to-Computational Gap "Hypothesis"

Statistical-to-Computational Gaps

Hidden Clique Problem

- A graph $G\left(n, \frac{1}{2}\right)$
- each edge appears with probability $\frac{1}{2}$
$2 \log n$

Vs

Largest Clique

- $G\left(n, \frac{1}{2}\right)+\mathbf{k}$-clique
\mathbf{k} picked at random and all the edges between them added
- Alon-Krivelevich-Sudakov '98: Efficient algorithm for $\mathbf{k} \gtrsim \sqrt{n} \quad$ (as opposed to $\mathbf{k}>2 \log n$)
- No improvement since; believed to be hard and used as reduction primitive (e.g. Berthet-Rigollet '12)

Statistical-to-Computational Gap "Hypothesis"

What Makes a Problem Hard?

Complexity/Geometry of Posterior/Solutions

$$
\mathbb{P} \text { (node labels } \mid \text { SBM Graph }) \leftrightarrow \text { Spin Glass (Physics) }
$$

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011
D. Gamarnik, M. Sudan, 2013
A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, 2018

What Makes a Problem Hard?

Complexity/Geometry of Posterior/Solutions

\mathbb{P} (node labels \mid SBM Graph) \leftrightarrow Spin Glass (Physics)

What is the geometry of cliques $\geq \omega$ in $G\left(n, \frac{1}{2}\right)$
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011
D. Gamarnik, M. Sudan, 2013
A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, 2018

What Makes a Problem Hard?

Complexity/Geometry of Posterior/Solutions

\mathbb{P} (node labels \mid SBM Graph) \leftrightarrow Spin Glass (Physics)

What is the geometry of cliques $\geq \omega$ in $G\left(n, \frac{1}{2}\right)$

- Community Detection in the Stochastic Block Model has a computational gap for ≥ 5 communities
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011
D. Gamarnik, M. Sudan, 2013
A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, 2018

What Makes a Problem Hard?

Complexity/Geometry of Posterior/Solutions

\mathbb{P} (node labels \mid SBM Graph) \leftrightarrow Spin Glass (Physics)

What is the geometry of cliques $\geq \omega$ in $G\left(n, \frac{1}{2}\right)$

- Community Detection in the Stochastic Block Model has a computational gap for ≥ 5 communities
- Finding a clique of size $(1+\varepsilon) \log n$ in a $G\left(n, \frac{1}{2}\right)$ is hard
D. Gamarnik, M. Sudan, 2013
A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, 2018

What Makes a Problem Hard?

Complexity/Geometry of Posterior/Solutions

\mathbb{P} (node labels \mid SBM Graph) \leftrightarrow Spin Glass (Physics)

What is the geometry of cliques $\geq \omega$ in $G\left(n, \frac{1}{2}\right)$

- Community Detection in the Stochastic Block Model has a computational gap for ≥ 5 communities
- Finding a clique of size $(1+\varepsilon) \log n$ in a $G\left(n, \frac{1}{2}\right)$ is hard
- Many versions of structured Random Matrix Spike Models have a computational gap in recovery
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011
D. Gamarnik, M. Sudan, 2013
A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, 2018

Algebraic Considerations

Sum-of-Square: A Hierarchy of algorithms inspired on Hilbert Nullstellensatz (Parrilo '00, Lassere '01, ...)
Y. Ding, D. Kunisky, A. S. Wein, A. S. Bandeira, 2019
A. S. Bandeira, D. Kunisky, A. S. Wein, 2020

Algebraic Considerations

Sum-of-Square: A Hierarchy of algorithms inspired on Hilbert Nullstellensatz (Parrilo '00, Lassere '01, ...)

What if we restrict to low-degree polynomials of the data? (Hopkins-Steurer '17, ...)
Y. Ding, D. Kunisky, A. S. Wein, A. S. Bandeira, 2019
A. S. Bandeira, D. Kunisky, A. S. Wein, 2020

Algebraic Considerations

Sum-of-Square: A Hierarchy of algorithms inspired on Hilbert Nullstellensatz (Parrilo '00, Lassere '01, ...)

What if we restrict to low-degree polynomials of the data? (Hopkins-Steurer '17, ...)

- Exploiting sparsity $\rho \boldsymbol{n}$ in Sparse PCA requires $\exp \left(\rho^{2} \mathbf{n}\right)$ computation

$$
x_{k} \sim \mathcal{N}\left(0, I+\beta x x^{T}\right), \quad\|x\|_{0}=\rho n
$$

Y. Ding, D. Kunisky, A. S. Wein, A. S. Bandeira, 2019
A. S. Bandeira, D. Kunisky, A. S. Wein, 2020

Algebraic Considerations

Sum-of-Square: A Hierarchy of algorithms inspired on Hilbert Nullstellensatz (Parrilo '00, Lassere '01, ...)

What if we restrict to low-degree polynomials of the data? (Hopkins-Steurer '17, ...)

- Exploiting sparsity $\rho \boldsymbol{n}$ in Sparse PCA requires $\exp \left(\rho^{2} \mathbf{n}\right)$ computation

$$
x_{k} \sim \mathcal{N}\left(0, I+\beta x x^{T}\right), \quad\|x\|_{0}=\rho n
$$

- Certifying a non-trivial upper bound on the Sherrington-Kirkpatrick Hamiltonian is hard

$$
\begin{array}{r}
\max _{x \in\{ \pm 1\}^{n}} x^{T} W x \\
W_{i j} \sim \mathcal{N}(0,1)
\end{array}
$$

Y. Ding, D. Kunisky, A. S. Wein, A. S. Bandeira, 2019
A. S. Bandeira, D. Kunisky, A. S. Wein, 2020

Statistics and Computation in Cryo-EM

- Connection between Statistics of Cryo-EM and Algebraic Invariant Theory gives:

Optimal Reconstruction Quality $\sim \sqrt{\# \text { of samples }} \times \mathrm{SNR}^{3}$

Statistics and Computation in Cryo-EM

- Connection between Statistics of Cryo-EM and Algebraic Invariant Theory gives:

Optimal Reconstruction Quality $\sim \sqrt{\# \text { of samples }} \times \mathrm{SNR}^{3}$
No computational gap!

Bandeira, Niles-Weed, Rigollet, 2017.
Perry, Weed, Bandeira, Rigollet, Singer, 2017.
Bandeira, Blum-Smith, Kileel, Perry, Weed, Wein, 2017.

Statistics and Computation in Cryo-EM

- Connection between Statistics of Cryo-EM and Algebraic Invariant Theory gives:

$$
\text { Optimal Reconstruction Quality } \sim \sqrt{\# \text { of samples }} \times \mathrm{SNR}^{3}
$$

No computational gap!

- Computational gap believed to arise in Heterogeneity problem

Behavior observed 20 years ago!

- The surprising $1 / \mathrm{SNR}^{3}$ scaling at low SNR was observed in '98

Other Methods

- Reductions - If X is hard, so is Y

Other Methods

- Reductions - If X is hard, so is Y
- Geometry of Random Optimization Landscapes
e.g.: Kac-Rice formula

Other Methods

- Reductions - If X is hard, so is Y
- Geometry of Random Optimization Landscapes
e.g.: Kac-Rice formula
- Statistical Query Models

Other Methods

- Reductions - If X is hard, so is Y
- Geometry of Random Optimization Landscapes
e.g.: Kac-Rice formula
- Statistical Query Models
- Automatic algorithm learning
- Deep Learning, Graph Neural Networks, ...

Other Methods

- Reductions - If X is hard, so is Y
- Geometry of Random Optimization Landscapes
e.g.: Kac-Rice formula
- Statistical Query Models
- Automatic algorithm learning
- Deep Learning, Graph Neural Networks, ...

Are these related?

Looking ahead

- What makes problems hard? How do we find SNR ${ }_{\text {Comp }}$?

Looking ahead

- What makes problems hard? How do we find SNR $_{\text {Comp }}^{*}$?
- Are the methods/heuristics shown equivalent/related?

Looking ahead

- What makes problems hard? How do we find SNR $_{\text {Comp }}^{*}$?
- Are the methods/heuristics shown equivalent/related?
- Which atypical (random) properties are quiet? (Hidden Rare Events)

Looking ahead

- What makes problems hard? How do we find SNR $_{\text {Comp }}^{*}$?
- Are the methods/heuristics shown equivalent/related?
- Which atypical (random) properties are quiet? (Hidden Rare Events)
- Is there a universality phenomenon?

Looking ahead

- What makes problems hard? How do we find SNR $_{\text {Comp }}^{*}$?
- Are the methods/heuristics shown equivalent/related?
- Which atypical (random) properties are quiet? (Hidden Rare Events)
- Is there a universality phenomenon?
- Can we develop an algorithm that refutes all this?

Looking ahead

- What makes problems hard? How do we find SNR $_{\text {Comp }}^{*}$?
- Are the methods/heuristics shown equivalent/related?
- Which atypical (random) properties are quiet? (Hidden Rare Events)
- Is there a universality phenomenon?
- Can we develop an algorithm that refutes all this?
- Can this help explain Learning?

Muito Obrigado

```
WWW.afonsobandeira.com
```

Shameless plug: Take a look at Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science for some open problems

