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Cryo-Electron Microscopy

Task: Reconstruct the 3d molecule from noisy

projections taken from unknown directions
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Mathematics of Data
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Statistics — What are limits to learning?

I 1700’s - Bayesian Statistics

Bayes Laplace Lagrange Gauss
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Information Theory

Claude Shanon ’48:
A Mathematical Theory of

Communication
Shannon Entropy

Richard Hamming ’50:
”Error detecting and error correcting

codes”
Hamming Distance

Shannon Entropy: # of bits “of information” needed to identify a draw of X
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Learning/Estimating is (also) optimization

Goal: Find parameter/signal/model that best “fits” the data
I Maximum likelihood estimation

I Training of Neural Networks

I · · ·

Are these computational tasks feasible/easy?

Many optimization/computational
problems are NP-hard (e.g. Knapsack)

1956: Gödel’s letter to von Neumann
(and John Nash’s 1955)

1971-72: Cook and Karp’s NP-hardness

Should we design (statistical) models so that optimization is easy?
Linearity, Convexity, ...
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An example: Communities in Social Networks

Given two disjoint sets of m = n
2 nodes each. Independently:

I pairs between clusters have an edge with probability p

I pairs across clusters have an edge with probability q < p
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L. Massoulie, 2013.

E. Abbe, A. S. Bandeira, G. Hall, 2014.
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An example: continued

I Theorem: For p = α log n
n and q = β log n

n , If (iff)

√
α−

√
β >
√

2,

the Minimum Bisection coincides with the true communities.

I Theorem: Minimum Bisection is an NP-hard problem.

I Theorem: If √
α−

√
β >
√

2,

Minimum Bisection can be computed efficiently.

Does this always happen?

E. Abbe, A. S. Bandeira, G. Hall, 2014.

E. Mossel, J. Neeman, and A. Sly, 2014

B. Hajek, Y. Wu, and J. Xu., 2014

A. S. Bandeira, 2015.
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Statistical-to-Computational Gaps

Hidden Clique Problem

I A graph G
(
n, 1

2

)
— each edge appears with

probability 1
2

Vs

I G
(
n, 1

2

)
+ k-clique

k picked at random and all the
edges between them added

2 log n
Largest
Clique

k

I Alon-Krivelevich-Sudakov ’98: Efficient algorithm for k &
√

n (as opposed to k > 2 log n)

I No improvement since; believed to be hard and used as reduction primitive (e.g. Berthet-Rigollet ’12)

Statistical-to-Computational Gap “Hypothesis”
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What Makes a Problem Hard?

Complexity/Geometry of Posterior/Solutions

P ( node labels | SBM Graph ) ↔ Spin Glass (Physics)

What is the geometry of cliques ≥ ω in G
(
n, 1

2

)
I Community Detection in the Stochastic Block Model has a

computational gap for ≥ 5 communities

I Finding a clique of size (1 + ε) log n in a G
(
n, 1

2

)
is hard

I Many versions of structured Random Matrix Spike Models have a
computational gap in recovery

I · · ·

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011

D. Gamarnik, M. Sudan, 2013

A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, 2018
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Algebraic Considerations

Sum-of-Square: A Hierarchy of algorithms
inspired on Hilbert Nullstellensatz (Parrilo ’00, Lassere ’01, . . . )

What if we restrict to low-degree polynomials of the data?
(Hopkins-Steurer ’17, . . . )

I Exploiting sparsity ρn in Sparse PCA requires exp(ρ2n) computation
xk ∼ N (0, I + βxxT ), ‖x‖0 = ρn

I Certifying a non-trivial upper bound on the max
x∈{±1}n

xTWx

Sherrington-Kirkpatrick Hamiltonian is hard Wij ∼ N (0, 1)

I · · ·

Y. Ding, D. Kunisky, A. S. Wein, A. S. Bandeira, 2019

A. S. Bandeira, D. Kunisky, A. S. Wein, 2020
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Statistics and Computation in Cryo-EM

I Connection between Statistics of Cryo-EM
and Algebraic Invariant Theory gives:

Optimal Reconstruction Quality ∼
√

# of samples× SNR3

No computational gap!

I Computational gap believed to arise in Heterogeneity problem

Bandeira, Niles-Weed, Rigollet, 2017.

Perry, Weed, Bandeira, Rigollet, Singer, 2017.

Bandeira, Blum-Smith, Kileel, Perry, Weed, Wein, 2017.
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Behavior observed 20 years ago!

creases to a level where reliable a lignment is no
longer possible? Presumably the increased uncer-
ta in ty in a lignment resu lt s in increased noise or
bias in the refined image. This can be seen to be
the case in the ML reconst ruct ions in Fig. 4. Al-
though they resemble the t rue st ructu re, their
Four ier r ing cor rela t ions show a lower usefu l resolu-
t ion than tha t obta ined from the ‘‘t rue average,’’
obta ined by averaging the 4000 data images after
cor rect a lignmen t (see the ‘‘Average’’ panels in
Fig. 3). The lower qua lity of the ML reconst ruc-
t ions wou ld be approxima t ely ma tched if on ly
200 correct ly a ligned da ta images were to be aver-
aged.
To test the asymptot ic behavior of the ML align-

ment , a very simple test st ructure was used to
synthesize up to 200 000 data images, each 8 3 8
pixels in size, a t va r ious signa l-to-noise ra t ios.
The under lying st ructure W was a pa t tern of five
ones in a background of 59 zeros (Fig. 6A). The
probability of cor rect a lignment of these da ta im-
ages, based on cross-cor rela t ion with W , is seen to
drop steeply for SNR , 5 in th is case (Fig. 6B). Above
th is threshold, the SNR of the refined image is
propor t iona l to tha t of the da ta images as is ex-
pected from the sta t ist ics of averaging. Below the
threshold, however, the SNR of the refined image
decreases much more steeply than linear ly with
decreases in the da ta SNR (Fig. 6C), roughly as the
th ird power.

FIG. 6. ML refinement of a simple st ructure, consist ing of 5 pixels having va lue 1 and 59 pixels with va lue 0. (A) The t rue st ructure W
and two examples of simula ted images obta ined as in Eq. (1) with amplitude z 5 6. Also shown is the resu lt from ML refinement (700
itera t ions) from a data set of 200 000 images having z 5 0.3. In the da ta simula t ion , a ll x and y t ransla t ions have equa l probability,
rota t ions are quant ized to mult iples of 90°, and per iodic boundary condit ions are used. (B) Probability of cor rect a lignment of the 8 3 8 pixel
object is shown as a funct ion of the da ta signa l-to-noise ra t io z 2. (C) Quality of reconst ructed image as a funct ion of the signa l-to-noise ra t io
of the da ta images (filled circles). The reconst ruct ion signa l-to-noise ra t io s was computed from the refined image A according to

s 5
0A 2 zW 0 2

NM
,

where N is the number of da ta images and M 5 64 is the number of pixels. In each simula t ion N was chosen la rge enough to ensure
convergence of the refinement . Open circles are from corresponding CCA analyses of the same data set s. Lines represen t a linear
rela t ionsh ip between input and output signa l-to-noise a t h igh da ta SNR (upper r igh t ) and a th ird-power rela t ionsh ip a t low SNR (lower
left ).
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I The surprising 1/SNR3 scaling at low SNR was observed in ‘98

F. Sigworth, Journal of Structural Biology, 1998.

14 / 17



Other Methods

I Reductions — If X is hard, so is Y

I Geometry of Random Optimization Landscapes
e.g.: Kac-Rice formula

I Statistical Query Models

I Automatic algorithm learning
— Deep Learning, Graph Neural Networks, ...

I · · ·

Are these related?
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Looking ahead

I What makes problems hard? How do we find SNR∗
Comp?

I Are the methods/heuristics shown equivalent/related?

I Which atypical (random) properties are quiet? (Hidden Rare
Events)

I Is there a universality phenomenon?

I Can we develop an algorithm that refutes all this?

I Can this help explain Learning?
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Muito Obrigado

www.afonsobandeira.com

Shameless plug: Take a look at Ten Lectures and Forty-Two Open Problems in the
Mathematics of Data Science for some open problems
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