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Preliminaries

Continuous Stochastic Process

Definition
A probability space is a triple (22,4, P) such that Q is a given set, A is a
o-algebra and P a probability measure.

» W" = C(]0, c0); R").
> B(W") =o{B e W", B cylinder set}.

Definition
X is a n-dimensional continuous process on (2, A, P) if is a W"-valued
random variable, i.e. X : Q — W" is A/B(W")-measurable.

Definition
X = (Xt)e>0 is measurable if the mapping X : [0,00) x Q — R" is
B([0,0)) x A/B(R")-measurable.
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Filtration

Let (2, A, P) be a probability space.

Definition
A Filtration (A;):>0 is an increasing family of sub o-fields of A,
At C ./45 0 S t § S

Definition
X = (Xt)e>o is adapted to (At)e>o if X; is Ai-measurable for every t.

Next,

> (Pe)e>0 := (At)e>0 will denote the increasing Past filtration.

> (Ft)e>o will denote the decreasing Future filtration.
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Brownian Motion

» 19th cent. Brown,
» 1906 Einstein,

» 1923 Wiener and 1940
Kolmogorov,

> 1948 Levy,
> 1950 It6.

0

A single realization of a 3d Wiener process.
Wikipedia.
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Brownian Motion

L N\
p(t,x)zieut, t>0,xecR"”

(2wt)n/?

Definition
A n-dimensional process (W;):>o such that for every 0 < t; < ... < ty
and E € B(R"),i=1,....m

P{W,, € E,...,W,, € Ep,} :/ u(dx)/ p(t1, x1 — x)dx
n E:

/ p(tZ - t17X2 - Xl)dXZ o / p(tm - tm—17Xm - Xm—l)dxm
E>

m

with 14 a probability measure on (R”, B(R")), is called a n-dimensional
Brownian motion with the initial distribution p

Remark
If P{W, =0} =1, (W,)e>0 is a “standard” Brownian motion.
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Properties of Brownian Motion

(We)e>0 is @ (Pt)e>o-standard Brownian motion.

v

W; — Ws ~ N(0,t — s) for t > s> 0.

W — Ws UL Ps.

Trajectories of Brownian motion are not differentiable a.e. with
probability one.

v

v

v

(W:)e>0 is @ Markov process i.e. for any bounded measurable f
E[f(Wo)|Ps] = E[f(W,)|Ws], s<t
Definition

(Xt)e>0 is a Bernstein process if for any bounded measurable f and for all
u<t<v

E[f(X:)|Pu U F,] = E[f(Xe)| Xu, X]-




Probability «~ PDE

ulx.t) = [ ply)olex = )dy = ELo(We)] We = ]

solves the heat equation

0 1 .
au(x, t) = EAU(X, t) with u(x,0) = ¢(x).

Theorem (Feynman-Kac formula)

u(t,x) = E lgp(WT) exp {—/t V(Ws)ds} W, = x]

solves the (backward) heat equation
0 1 ,
—au(x7 t) = EAU(X, t) + V(x)u(x, t) with u(x, T) = p(x)

with V' continuous and lower bounded.
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Our framework

Ambient space, L?(R3). On R3 x [0, T] for T > 0 consider

/\

0 h?
_haﬁ(X, t) = —?Aﬁ(X’ t) + V(X)’II’}(X, t)7
Ai(x,0) = %(x)
and
B2, t) = N (x, 1) + V(x)n(x, t)
atn 2 X, mx,t),
n(x, T) = x(x) <+ final condition!
> V:R® — R such that H := —*A + V is a lower bounded

self-adjoint operator on L2(R3).
» ¢, x € D(e™) positive and bounded. 3 (strong) solutions in L2(R3).
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Let h(t — s, x, y) be the integral kernel of e~ (!=5)" in [?(R3)
Is it possible to construct from h a probability density?
> h(t —s,x,y) is jointly continuous in x,y,t — s, (V in Kato class).

> h(t —s,x,y) is strictly positive, (V continuous and lower bounded).

Set

H(s,x; t, A u, z) ::/ h(s, x; t, y)h(t, y: u, 2) dy

A h(s,x; u,z)
for s <t <u, Ac B(R3).

Remark
A H(s,x;t,A;u,z) is a “reciprocal”’ probability measure, in the sense
of S. Bernstein (1932).
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Time reversible processes

Let o) = o{X;, t € I}.

Theorem

Let m(x,y) be a probability measure on B(R3) x B(R3). 3! P,
probability measure such that, Z;, t € I = [0, T] is a Bernstein process
w.rt. (R% 0/, Py,) and

> Pm(Zo € By, Zr € Br) = m(By x B7), By, Br € B(R3);

> P, (ZoEBo,ZleBl,.. Z, EB"’ZTEBT):IBOXBTdm(X’y)
f H(O X; t1, X1; T y Xm fB th—1,Xn—1; tn, Xn; T,y)dx,,

When is a Bernstein process also Markovian?

11/24
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Theorem
Z:, t €1 =0, T] is Markovian < there exist two nonzero bounded
function of the same sign @g, @1 such that

m(Bo x Br) — / 20(x)h(0. x: T, y)r(y)dxdy,
Box Bt

By, Bt € B(RS)

Remark
Marginal probability densities:

Po(x)dx : = @o(x)dx/

. h(0,x; T,y)er(y)dy,

pr(y)dy : = ¢7(y)dy /Ra @o(x)h(0, x; T, y)dx,
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1. Vtel,zeR3 p(z,t) :== @(2)p:(z)dz is a probability density,

PLZ( €A = [ Gudpn(a)dz. tel




1. Vtel,zeR3 p(z,t) :== @(2)p:(z)dz is a probability density,

PLZ( €A = [ Gudpn(a)dz. tel

2. (Forward) transition probability density
Ps(x)ps(x)dx @ —— h(s, x; t,y)

3. (Backward) transition probability density
h(t,yis,x)dx <—— o @e(y)pe(y)dy

)

s(X

>

Pe(¥)

Gy
for x,y € R3and s < t.
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Remark
Under our assumptions,

V potential + Bo(x) = 7j(x,0), o7(x) =n(x, T)
1

Markovian Bernstein process!

Corollary

If o7, Pg are positive and C?, the Markovian Bernstein process Z; is a
diffusion satisfying the following P;, F; 1td’s stochastic differential
equations

dZ, = B*2dW; + hV Inn(Zy)dt,
d*Z, = W2d*W, — hV In(Z,)dt

with d*f(t) = f(t) — f(t — dt), dt > 0 and W, a F;-Brownian motion.

14 /24
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Examples

» Brownian motion as a Bernstein.
» Brownian bridge.

» Ornstein-Uhlenbeck process.



...the relevant Feynman-Kac formula

Feynman-Kac formula for time reversible processes

Let £ > 0 and V; : R® — R measurable potential such that

0 . n? R N
() = = A (x,€) + V(x)in(x, 1) + Vi x, 1),

ﬁl(Xv 0) = )A((X),

has a sufficiently regular solution 7j;

ﬁl(X7 t) X t) / / =t X, Xn) Vl(Xn)ﬁl(an tn)dxndtn
R3




...the relevant Feynman-Kac formula

Feynman-Kac formula for time reversible processes

Let € > 0 and V4 : R?® — R measurable potential such that

o . o N "
—ham(xv t) = _?Anl(xv t) + V(X)nl(xv t) + 5V1771(X’ t))

ﬁl(xao)

X(x),

has a sufficiently regular solution 7}

t
M(x,t) =f(x, t) — %/ / h(t — tn; X, Xn) Vi (X )A(Xn, tn) dxndt,+
0o Jr3

ot (—;)/Ot/ot/ot /R/R h(t — t; X, Xn) Vi (x0)

h(tn — ta—1; Xn, Xo—1) Vi(Xa—1)...h(t2 — t1; X2, x1) VA (x1) 71 (X1, t1)
dxy...dx,dt;...dt,.



...the relevant Feynman-Kac formula

Feynman-Kac formula for time reversible processes
Let € > 0 and V4 : R3 — R measurable potential such that

9
ot
ﬁl(Xvo) = )A((X)v

>

R R R
—hoin(x, t) = == Afu(x, t) + V(x)ia(x, ) + e Vadu(x, 1),

has a sufficiently regular solution 7);

=

X, t 13 t
1((x t)) 1- ﬁ/ p(t — tn; X, Xn) V1(xa) dxp dt,+
’ 0

ot (;)/Ot/ot/ot /R/R Pt — t: %, x0) Vi (x0)

fi(x, t1)
(x1, t1)

=>

p(tn — th—1; Xn, Xn—1) V1 (Xn—1)...p(t2 — t1; X2, x1) Va1(x1)

dxy...dx,dt;...dt,
where p is the backward transition probability density of Z;!

16 /24



...the relevant Feynman-Kac formula

ﬁl(X, t)
(x t)

t
=1- %/ P(t - tn;van)Vl(Xn)dX"dt”+
0

ot (;)/Ot/ot/ot /R/R Pt — t: %, x0) Vi (xn)

p(tn — tn—1; Xns Xn—1) V1 (Xn—1)...p(t2 — t1; X2, x1) V1(x1)
dxy...dxpdt;...dt,+... well-defined probabilistic meaning

e - S Ge[([ e

n=0




...the relevant Feynman-Kac formula

Under the hypothesis set before,

u(t x) = 6D e [exp {—; /Ot V1(Zs)dsH

where
d*Z, = W2d*W, — hV Inf(Z,)dt
Theorem (F; Feynman-Kac formula for Bernstein)

u(t, x) solves

D, u(t, x) + %Vl(x)u(t,x) =0

tl_l,rng u(t,x) =1.

where D, 1= % + B,V — BA and B.(t,x) = —hV Inf(t, x)



...the relevant Feynman-Kac formula

Analogously

where
dZ; = h*2dW; + hV Inn(Z;)dt

Theorem (P; Feynman-Kac formula for Bernstein)
v(t, x) solves
Dv(t,x) — %Vl(x)v(t,x) =0

li t =1.
JSim_v(tx)

where D := % + BV + 2A and B(t,x) = hV Inn(t, x).



...the relevant Feynman-Kac formula

Examples

» Usual Feynman-Kac formula.
» Absolute continuity relations.

» Other relations between stochastic processes.
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Richard Feynman, The Principle of Least Action in
Quantum Mechanics

» Space-time visualization of quantum path.

Let t € [s,u] and Q2 = {w € C([s, u]; R3) : w(s) = x,w(v) = z}
L(w, ) = %|@|2 — V(w) and S[w, u— 5] = / L(w(t), o(t))dt
Feynman Path Integral:
<wiles>= [ [ | outertrdnug, 2y

with Dw =[], ., dw(t) and 9, ¢, two states at time u.
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Integration by parts formula:

< SF[w](6w) >s= —71'1 < FSS[w](0w) >s

> JF[w](dw) the directional derivative of a regular funcional.
» < . >g the expectation wrt the measure e*"/"Dw on
Q' = {we C¥[s, t]; R?) : w(t) = y}.
Integration by parts formula implies:
>

<O >s=—< VV(w) >s

( Ehrenfest theorem dd—:z < WY|Q(T)Y >o= — < Y|VV(Q(7))¢ >2).
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> <y () DT (AT, (1) = i

(Heisenberg commutation relations QxP; — PjQx = ifidy j.)

with Q, P, H = 7%2A + V the position, momentum and energy
observables. < - >; inner product of L?(R3).

Remark
» Feynman path integral approach inspired all existing Feynman-Kac
and integration by parts formula in Stochastic Analysis.

» Probabilistic version of Feynman's path integral approach also
motivated stochastic perturbation of Geometric Mechanics.

> Classical Lagrangian evaluated on the stochastic process and its
mean derivative,
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