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What is a quiver?

A quiver is a directed graph where multiple arrows and loops are allowed.

Hence, a quiver Q is specified by the following data: two finite sets A and V and
two maps s, t : A → V .

The set A is referred as the set of arrows, V is the set of vertices and the maps s
and t are called the start or source and the target of an arrow, respectively.

If a, b are two arrows with sb = ta, then we can define the path ba.
In general, if a1, . . . , aℓ is a sequence of ℓ arrows such that sak+1 = tak , then

p = aℓaℓ−1 . . . a1.

Remark
For reasons that will be clear later, we consider paths going from right to left:

◦ ◦ · · · ◦ ◦.
aℓ aℓ−1 a2 a1
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Acylcic quivers, sinks and sources

Definition (Acyclic quiver)

A quiver Q that has a non-trivial path with sp = tp is call cyclic. Such paths are
called cycles. If the Q has no cycles then it is an acyclic quiver.

Definition (Sinks and sources)

1 A vertex i is called a sink if it is connected to another vertex and sa 6= i for
any arrow a.

2 A vertex i is called a source if it is connected to another vertex and ta 6= i
for any arrow a.

sink: source:

• •
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Quivers: definition and first example

Alternatively, a quiver can be define using the language of category theory:

Definition (Quiver)

A quiver is a free category with finitely many objects and finite Hom sets. Given a
quiver (regarded as a graph) ΓQ, the objects of Q are the vertices of ΓQ and the
morphisms all the paths. (Given a vertex i , we need to define trivial path of length
0: sei = tei = i ).

Example

1 The Kronecker quiver

1 2.
a

b

2 The Dynkin quiver

1
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Quiver representations

Let Q be a quiver and let K be a field.

A K -representation of Q consists of an assignment of a finite-dimensional K -vector
space Xi to each vertex i ∈ V , and of a linear map La to each arrow a ∈ A.

If X is a K -representation of Q and p = aℓ . . . a1 a path on Q of length ℓ, we define
the image of p under X to be the composition

(1.1) X (p) = X (aℓ)X (a2) . . .X (a1).

Finally, if i is a vertex of Q, then X (ei ) = idX (i).

Recall that quiver Q is a category with objects the vertices of ΓQ and with mor-
phisms all the paths in Q. This fact, together with relation (1.1) allows one to give
a categorical definition for a quiver representation.

Javier Orts (IST) Quiver Representations LisMath Seminar 8 / 50
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Definition of quiver representation

Definition (Quiver representation)

Let Q be a quiver and let K be a field.

1 A K-representation of Q is a functor X from Q to the full subcategory of
ModK consisting of finite-dimensional vector spaces.

2 A quiver K-representation Y is said to be a subrepresentation of another
K-representation X if Y (i) ⊂ X (i) for every vertex i and X (a) restricts to
Y (a) for every arrow a.

3 A quiver K-representation is called a framed K -representation if each
vector space X (i) is K ni , for some ni ≥ 0.

4 A quiver K-representation is said to be trivial if X (i) = {0} for every vertex.

The dimension vector of a quiver representation X is the function
−→
dimX : V → NV

given by −→
dimX (i) = dimK X (i).

If nothing is said, any representation will be assumed to be non-trivial.
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The category RepK (Q)

Since any quiver is a small category, we can consider the functor category QVectfK .
This category will be denoted by RepK (Q) and consists of representations of Q.
It is an Abelian category.

Definition (Morphism)

Let Q be a quiver and let X and Y be objects in Rep(Q). A morphism ϕ : X → Y
is an element of HomRep(Q)(X ,Y ).

A morphism ϕ : X → Y is a natural transformation from X to Y , i.e. an assignment

i ∈ V
ϕ7→ ϕi ∈ HomK (X (i),Y (i)) making commutative the following diagram:

X (sa) Y (sa)

X (ta) Y (ta).

ϕsa

X (a) Y (a)

ϕta

Javier Orts (IST) Quiver Representations LisMath Seminar 10 / 50
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Examples of quiver representations

Example (Labelled representations)

Given a vertex i , there is a special case of frame K -representation given by the
assignment

Si (j) =

{
K , if i = j

{0}, otherwise.

Sometimes, we will refer to these representations as the labelled representation.

Remark
Most of the operations you know for modules and vector spaces can be translated
to quivers. Most of the them are simply defined vertexwise and the one checks it
actually works.
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1.2 Indecomposable representations and the
Krull–Remak–Schmidt theorem
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Indecomposable and irreducible representations

Definition (Indecomposable and irreducible representations)

1 A quiver representations is called decomposable if it is isomorphic to the
product of two quiver representations. A quiver representation that is not
decomposable is called indecomposable.

2 A quiver representations is said to be simple or irreducible if any
subrepresentation is trivial or itself.

It is obvious that no decomposable representations can be irreducible.
However, not every indecomposable representation is simple.
In fact, this condition is achieved if and only if the quiver has no arrows.

Example (Simple representations of an acyclic quiver)

The unique simple representations of an acyclic quiver are (up to isomorphism) the
labelled representations

Si (j) =

{
C, if i = j

0, otherwise.

Javier Orts (IST) Quiver Representations LisMath Seminar 13 / 50
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The Krull–Remak–Schmidt theorem

Theorem 1.1 (Krull–Remak–Schmidt)

Every (finite dimensional) quiver representation is isomorphic to a direct sum of
indecomposable representations and this decomposition is unique up to isomorphism
and permutation of factors. More precisely, if

X1 ⊕ · · · ⊕ Xp
∼= Y1 ⊕ · · · ⊕ Yq,

and X1, . . .Xp,Y1, . . .Yq are indecomposable, then p = q and there exists a per-
mutation σ of {1, 2, . . . , p} such that Xk

∼= Yσ(k) for each k.

The proof of the theorem needs 2 previous lemmas:

Lemma

Let X be an indecomposable quiver representation. For each morphism ϕ : X → X,
either ϕ is invertible or nilpotent.

Javier Orts (IST) Quiver Representations LisMath Seminar 14 / 50
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Proof of the Krull–Remak–Schmidt theorem I

Lemma

Suppose that X1,X2,Y1 and Y2 are quiver representations and

ϕ =

(
ϕ11 ϕ12
ϕ21 ϕ22

)
: X1 ⊕ X2 −→ Y1 ⊕ Y2

is an isomorphism, where ϕij : Xj → Yi . If ϕ11 is an isomorphism, then so is ϕ22.

Proof of Theorem 1.1.
The first part of the theorem is done by induction on the norm of the dimension
vector: if X is decomposable, it splits in two terms Y and Z , with

‖
−→
dimY ‖, ‖

−→
dimZ‖ < ‖

−→
dimX‖. Apply the induction hypothesis and the result

follows.

The second part is again by induction on p and the previous lemmas are needed.
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Proof of the Krull–Remak–Schmidt theorem III

Proof of Theorem 1.1.

One considers an isomorphism ϕ = (ϕlm) between the two decompositions. If ψ is
the inverse of ϕ, then ∑

l

ψplϕlp = idXp ,

which implies that some ϕlp is not nilpotent. Then, it must invertible, by the first
lemma.

Moreover, rearranging the factors we can assume l = q we can separate each
decomposition in two blocks:

(X1 ⊕ · · · ⊕ Xp−1)⊕ Xp
∼= (Y1 ⊕ · · · ⊕ Yq−1)⊕ Yq.

The second lemma is used now, providing an isomrphism bewteen the two big
blocks and the induction hypothesis completes the proof.

QED
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Homology with quivers
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2.1 The path algebra
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The path algebra Projective representations and the hereditary property of CQ Euler form

Definition

The path algebra of Q is the free C-vector space generated by all the paths of Q
with the concatenation as operation (a semigroup ring). More precisely:

Definition (Path algebra)

Let Q be a quiver and let CQ denote the free C-vector space with basis all the
paths in Q. If p = a1 . . . al and q = b1 . . . bℓ′ are two paths in Q, define their
product as

pq =

{
aℓ . . . a1bℓ′ . . . b1, if tbℓ = sa1

0, otherwise.

The C-vector space CQ together with this operation is called the path algebra.

Proposition

The C-vector space CQ together with the product defined above constitutes an
associative C-algebra. If, moreover, Q is an acyclic quiver, then CQ has identity
element 1 =

∑
i∈V ei .

Javier Orts (IST) Quiver Representations LisMath Seminar 19 / 50



Preliminaries Homology with quivers Gabriel’s Theorem References

The path algebra Projective representations and the hereditary property of CQ Euler form

Definition

The path algebra of Q is the free C-vector space generated by all the paths of Q
with the concatenation as operation (a semigroup ring). More precisely:

Definition (Path algebra)

Let Q be a quiver and let CQ denote the free C-vector space with basis all the
paths in Q. If p = a1 . . . al and q = b1 . . . bℓ′ are two paths in Q, define their
product as

pq =

{
aℓ . . . a1bℓ′ . . . b1, if tbℓ = sa1

0, otherwise.

The C-vector space CQ together with this operation is called the path algebra.

Proposition

The C-vector space CQ together with the product defined above constitutes an
associative C-algebra. If, moreover, Q is an acyclic quiver, then CQ has identity
element 1 =

∑
i∈V ei .

Javier Orts (IST) Quiver Representations LisMath Seminar 19 / 50



Preliminaries Homology with quivers Gabriel’s Theorem References

The path algebra Projective representations and the hereditary property of CQ Euler form

The equivalence ModfCQ and Rep(Q)s

Proposition

The path algebra a quiver Q is finite-dimensional if and only if Q is an acyclic
quiver.

Proposition

Let Q and Q ′ be acyclic quivers. Then, CQ is isomorphic to CQ ′ if and only if Q
is isomorphic to Q ′.

From now on, we shall consider finite-dimensional path algebras, i.e. acyclic quivers.

Theorem 2.1

Let ModfCQ denote the category of finitely generated left modules over the path
algebra CQ. The functor follwing functor F : ModfCQ → Rep(Q) defines an
equivalence:

F (X )(i) = eiX

Javier Orts (IST) Quiver Representations LisMath Seminar 20 / 50
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2.2 Projective representations and the hereditary
property of CQ
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Projective objects I

Recall that a ring R is called hereditary if, for each projective R-module P, every
submodule of P is again projective. Then the category the category ModR is said
to be hereditary.

Rep(Q) is an Abelian category =⇒ Projective (and injective) objects are defined:

Definition (Projective and injective representations)

Let Q be a quiver.

1 A representation P is called projective if P is a projective object in Rep(Q).

2 A representation I is called injective if I is an injective object in Rep(Q).

Because injective and projective objects are dual to each other, it is enough to study
one of them. We will focus on projective quiver representations.
For i ∈ V , define the left CQ-module generated by ei :

Pi = CQei .

We want to show that each Pi is a projective CQ-module.
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Projective objects II

Proposition

Let Q be a quiver and let V denote the set of vertices of Q. The path algebra of
Q admits the following decompositions:

(2.1) CQ =
⊕
i∈V

Pi

Corollary

Each Pi is a projective CQ-module.

The Pi can be interpreted as quiver representations by virtue of Theorem 2.1:

Pi (j) = ejCQei

Remark

Geometrically, each Pi is generated by the paths (from right to left) starting at the
vertex i .
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Preliminary results

Theorem
The quiver representations Pi are projective representations. Moreover, they are
the unique indecomposable projective representations, up to isomorphism.

Let Q be an acyclic quiver and let R = CQ denote the path algebra of Q. Given
X a finitely generated R-module, it is possible to achieve a sequence

0 −→
⊕
a∈A

Pta ⊗C esaX
fX−→

⊕
i∈V

Pi ⊗C eiX
gX−→ X −→ 0.

And it turns out to be a short exact sequence, where each term over X is projective.

Theorem 2.2

If Q is an acyclcic quiver, then the category ModfCQ is hereditary (CQ is semi-
hereditary).
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2.3 The Euler form
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Euler form

Definition (Euler form)

Let Q be a quiver with vertices V and arrows A, and let α and β be two dimension
vectors. The Euler form of Q acting on α and β is given by the formula

〈α, β〉 =
∑
i∈V

α(i)β(i)−
∑
a∈A

α(sa)β(ta).

Proposition

For an acyclic quiver, the entries of E−1 give the number of paths between any two
vertices.

Corollary

The rows of E−1 are the dimension vectors of the indecomposable projective repre-
sentations. Similarly, its columns are the dimension vectors of the indecomposable
injective representations.
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An example

Example

Let Q be given by the graph

1 2

3 5 4.

d

e

a

b

c

The Euler form of Q is

E =


1 −1 0 0 0
0 1 0 0 −1
0 0 1 0 −2
0 0 0 1 −1
0 0 0 0 1

 .
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Gabriel’s Theorem
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Definition (Finite representation type)

A quiver Q has finite representation type or is said to be of finite represen-
tation type if the category Rep(Q) contains finitely many isomorphism classes of
indecomposable objects.

Theorem (Gabriel’s theorem)

A quiver Q is of finite representation type if and only if ΓQ is a union of Dynkin
diagrams of type ADE. In addition, if Q is of finite representation type, then the

assignment X 7→
−→
dimX establishes a bijection between the isomorphism classes of

indecomposable representations and the set of positive roots.
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3.1 Dynkin diagrams
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ADE Dynkin diagrams

Definition (ADE Dynkin diagrams)

With a Dynkin diagram of type ADE we mean one of the following graphs:

An

Dn

E6

E7

E8
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Extended ADE Dynkin diagrams

Definition (Extended Dynkin diagrams)

By an extended ADE Dynkin diagram we mean one of the following graphs:

Ã0 Ẽ6

Ã1

Ãn Ẽ7

D̃n Ẽ8

Javier Orts (IST) Quiver Representations LisMath Seminar 32 / 50



Preliminaries Homology with quivers Gabriel’s Theorem References

Dynkin diagrams Quivers of finite representation type The reflection functors and the Coxeter functors Gabriel’s theorem

3.2 Quivers of finite representation type and the Tits
form

Javier Orts (IST) Quiver Representations LisMath Seminar 33 / 50



Preliminaries Homology with quivers Gabriel’s Theorem References

Dynkin diagrams Quivers of finite representation type The reflection functors and the Coxeter functors Gabriel’s theorem

Quivers of finite representation type and the Tits form I

Definition (Finite representation type)

A quiver Q has finite representation type or is said to be of finite represen-
tation type if the category Rep(Q) contains finitely many isomorphism classes of
indecomposable objects.

Remark
For a fixed dimension vector α, a quiver of finite representation type has finitely
many isomorphism classes of objects, by the Krull-Remak-Schmidt theorem.

Definition (Tits form)

Let Q be a quiver. The Tits form of associated to Q on the space of dimension
vectors is

BQ(α) =
∑
i∈V

α(i)2 −
∑
a∈A

α(sa)α(ta).
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Properties of the Tits form

Some properties/remarks of the Tits form:

1 It does NOT depend on the orientation of Q.

2 Then, one cannot expect different quivers to have different Tits forms. BQ it
is not a characteristic element of Q.

3 The Tits form is actually the quadratic form associated to the Euler form: for
general α, β the following holds:

BQ(α+ β) = BQ(α) + BQ(β)− 〈α, β〉 − 〈β, α〉.

Lemma

If Q ′ is a subquiver of Q and BQ(α) ≥ 1 for every non-zero dimension vector
α ∈ NV , then BQ′(α′) ≥ 1 for every nonzero dimension vector α′ ∈ NV ′

.

Proposition

Let Q be a quiver and let ΓQ denote its graph. If ΓQ is an extended Dynkin diagram
of type ADE, then there exists a non-zero dimension vector α such that BQ(α) = 0.

Javier Orts (IST) Quiver Representations LisMath Seminar 35 / 50



Preliminaries Homology with quivers Gabriel’s Theorem References

Dynkin diagrams Quivers of finite representation type The reflection functors and the Coxeter functors Gabriel’s theorem

Properties of the Tits form

Some properties/remarks of the Tits form:

1 It does NOT depend on the orientation of Q.

2 Then, one cannot expect different quivers to have different Tits forms. BQ it
is not a characteristic element of Q.

3 The Tits form is actually the quadratic form associated to the Euler form: for
general α, β the following holds:

BQ(α+ β) = BQ(α) + BQ(β)− 〈α, β〉 − 〈β, α〉.

Lemma

If Q ′ is a subquiver of Q and BQ(α) ≥ 1 for every non-zero dimension vector
α ∈ NV , then BQ′(α′) ≥ 1 for every nonzero dimension vector α′ ∈ NV ′

.

Proposition

Let Q be a quiver and let ΓQ denote its graph. If ΓQ is an extended Dynkin diagram
of type ADE, then there exists a non-zero dimension vector α such that BQ(α) = 0.

Javier Orts (IST) Quiver Representations LisMath Seminar 35 / 50



Preliminaries Homology with quivers Gabriel’s Theorem References

Dynkin diagrams Quivers of finite representation type The reflection functors and the Coxeter functors Gabriel’s theorem

Properties of the Tits form

Some properties/remarks of the Tits form:

1 It does NOT depend on the orientation of Q.

2 Then, one cannot expect different quivers to have different Tits forms. BQ it
is not a characteristic element of Q.

3 The Tits form is actually the quadratic form associated to the Euler form: for
general α, β the following holds:

BQ(α+ β) = BQ(α) + BQ(β)− 〈α, β〉 − 〈β, α〉.

Lemma

If Q ′ is a subquiver of Q and BQ(α) ≥ 1 for every non-zero dimension vector
α ∈ NV , then BQ′(α′) ≥ 1 for every nonzero dimension vector α′ ∈ NV ′

.

Proposition

Let Q be a quiver and let ΓQ denote its graph. If ΓQ is an extended Dynkin diagram
of type ADE, then there exists a non-zero dimension vector α such that BQ(α) = 0.

Javier Orts (IST) Quiver Representations LisMath Seminar 35 / 50



Preliminaries Homology with quivers Gabriel’s Theorem References

Dynkin diagrams Quivers of finite representation type The reflection functors and the Coxeter functors Gabriel’s theorem

Quivers of finite representation type and the Tits form II

Proposition

If Q is of finite representation type, then BQ(α) ≥ 1 for every non-zero α

Corollary

Quivers whose underlaying graph is an extended Dynkin diagram of type ADE are
not of finite representation type.

Theorem 3.1

If Q is a quiver of finite representation type, then ΓQ is a union of Dynkin diagrams
of type ADE.

The main argument used in the proof is the result of the corollary.

Corollary

Quivers of finite representation type are acyclic.
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3.3 The reflection functors and the Coxeter functors
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Reflections I

Definition (Reflected quiver)

Let Q a quiver with vertices V and arrows A. For each i ∈ V , the reflected quiver
with respect to i is the quiver si (Q) with the same vertices that Q but where the
arrows connecting the vertex i are reversed.

The reflections si are also defined on dimension vectors:

si (α)(j) =


∑
a∈A
ta=i

α(sa) +
∑
a∈A
sa=i

α(ta)− α(i), if i = j

α(j), otherwise.

Lemma

For any quiver Q, vertex i and dimension vector α,

Bsi (Q)(si (α)) = BQ(α).
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Reflections II

Example

Suppose that Q is given by the graph

3

4 2 1

then the graph of s2(Q) is

3

4 2 1.
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Reflection functors and the Bernstein–Gelfand–Ponomarev theorem

When i is a sink or a source, we can define the reflection functors

C+
i ,C

−
i : Rep(Q) −→ Rep(si (Q)).

They satisfy:

Theorem 3.2 (Bernstein–Gelfand–Ponomarev)

Let Q be a quiver and let X be a non-trivial indecomposable representation of Q.

1 Suppose that i ∈ V is a sink. Then:

1 X ∼= Si if and only if C+
i (X ) is trivial

2 If X ̸∼= Si , then C+
i (X ) is also indecomposable with dimension vector

si
(−→
dimX

)
and C−

i (C+
i (X )) ∼= X.

2 Suppose that i ∈ V is a source. Then:

1 X ∼= Si if and only if C−
i (X ) is trivial

2 If X ̸∼= Si , then C−
i (X ) is also indecomposable with dimension vector

si
(−→
dimX

)
and C+

i (C−
i (X )) ∼= X.
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Sequences of sinks and socurces

In the theory of Lie algebras, a Coxeter transformation is a distinguished element
in the Weyl group defined by concatenating all the reflections associated to a base
of the root system.

Things here are more subtle, since the reflection functors are not defined for arbitrary
vertices.

1 We say that a sequence of vertices i1, i2, . . . , ip is an admissible sequence of
sinks if for each 1 ≤ k ≤ p, the vertex ik is a sink in sik−1sik−2 · · · si1(Q).

2 We say that a sequence of vertices i1, i2, . . . , ip is an admissible sequence of
sources if for each 1 ≤ k ≤ p, the vertex ik is a source in sik−1sik−2 · · · si1(Q).

Lemma
Let Q be an acyclic quiver with n vertices. There exists a labelling for V such that
V = {1, . . . , n} and 1, . . . , n is an admissible sequence of sinks.
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The Coxeter functors

Definition (The Coxeter functors)

Let Q be an acyclic quiver with n vertices. The functors

C+ = C+
n C+

n−1 · · ·C
+
1 : Rep(Q) −→ Rep(Q)

and
C− = C−

1 C−
2 · · ·C−

n : Rep(Q) −→ Rep(Q)

are called the Coxeter functors of Q.

Remark

1 It can be proved that different orderings of V produce naturally isomorphic
Coxeter functors.

2 The Coxeter functors play an important role in the proof of Gabriel’s
theorem. However, most of their properties are given by the well behaviour of
the reflection functors showed in the Bernstein–Gelfand–Ponomarev theorem.
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3.4 Gabriel’s theorem
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Terminology

Suppose that Q is a quiver whose underlying graph is a union of Dynkin diagrams
of type ADE.

1 We will write −→ϵi to denote the the dimension vectors of the labelled
representations Si .

2 Recall that the reflections si were defined also on dimension vectors, so the si
are linear transformations of ZV (or of RV ).

3 Let W (Q) denote the subgroup of EndZ(Zv ) generated by these elements; we
will refer to this group as the Weyl group of Q.

4 If V = {i1, . . . , in}, then the element c = sin · · · si1 is called a Coxeter
transformation of Q.

5 We also say that a dimension vector α is a root if it lies on the orbit of −→ϵi ,
for some i .

6 Finally, we say that a root is positive (resp. negative) and write α ≥ 0
(resp. α ≤ 0), if α(i) ≥ 0 (resp. α(i) ≤ 0) for every vertex i .
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Preliminary results

With the above notation, we have:

Proposition 3.3

Suppose that Q is a quiver whose underlying graph is a union of Dynkin diagrams
of type ADE. The following statements hold:

1 The Tits form BQ is positive definite.

2 If α is a root, then BQ(α) = 1.

3 There are only finitely many roots.

4 W (R) is finite.

5 For each root α, either α ≥ 0 or α ≤ 0.

6 If v = {1, . . . , n} with 1, . . . , n an admissible sequence of sinks and if X is a
quiver representation without projective summands, then

−→
dimC+(X ) = c(

−→
dimX ).
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Gabriel’s theorem

Lemma
Let Q be a quiver whose underlying graph is the union of Dynkin diagrams of type
ADE. Then, for every nonzero v ∈ Rn there exists l ∈ N such that c l(v) has a
negative coordinate.

Lemma
Suppose that the underlying graph of Q is a union of Dynkin diagrams of type ADE
and that α is a dimension vector on Q such that α ≥ 0 and si (α) has a negative
component. Then α = −→ϵi .

Theorem 3.4 (Gabriel’s theorem)

A quiver Q is of finite representation type if and only if ΓQ is a union of Dynkin
diagrams of type ADE. In addition, if Q is of finite representation type, then the

assignment X 7→
−→
dimX establishes a bijection between the isomorphism classes of

indecomposable representations and the set of positive roots.
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Proof of Gabriel’s theorem

Start assuming that the underlying graph of Q is a union of Dynkin diagrams
of type ADE and let c = sn · · · s1 be the corresponding Coxeter
transformation. Let X be an indecomposable representation of Q.

There exists l ∈ N such that c l(
−→
dimX ) has a negative coordinate. Choose l

to be minimal and let k be the first natural such that

sk · · · s1
(
c l−1

(−→
dimX

))
has a negative coordinate, 1 ≤ k ≤ l .

We have
sk−1 · · · s1

(
c l−1

(−→
dimX

))
≥ 0

and
sk · · · s1

(
c l−1

(−→
dimX

))
has a negative component. Then

sk−1 · · · s1
(
c l−1

(−→
dimX

))
= −→ϵk .
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Proof of Gabriel’s theorem (cont.)

Similarly
C+
k · · ·C+

1 ((C+)l−1(X )) = 0

while
C+
k−1 · · ·C

+
1 ((C+)l−1(X )) 6= 0.

By Theorem 3.2 we conclude that

C+
k−1 · · ·C

+
1 ((C+)l−1(X )) ∼= Sk .

Because of the properties the functors C±
i satisfy, it follows that

X ∼= (C−)l−1C−
1 · · ·C−

m−1(Sk).

and also −→
dimX = c l−1s1 · · · sk−1(

−→ϵm).
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