Black Hole Entropy in Loop Quantum Gravity

Daniele Pranzetti

A. Ghosh and DP, Nucl. Phys. B 889, 1 (2014); e-print: gr-qc/1 405.7056

DP and H. Sahlmann, Phys. Lett. B (in print), e-print: gr-qc/1412.7435
and w.i.p. in collaboration with Jose Mourao

Institute for Quantum Gravity University Erlangen-Nürnberg

Black hole thermodynamics

[Bekenstein 72; Bardeen, Carter, Hawking 73; Hawking 74]
Black holes in their stationary phase behaves as thermodynamical systems:
$S \longleftrightarrow A /(8 \pi \alpha)$
$T \longleftrightarrow \alpha \kappa$

But, in classical GR: $T=0$

Hawking radiation:
thermal emission of pas
Statistical physics: entropy of any system is given by $S=\ln N$
$N=$ number of states of the system for the given macroscopic parameters
for a solar mass black hole

$$
N=e^{S} \sim 10^{10^{77}}
$$

1) Microscopic origin of the entropy?
2) Where do all these d.o.f. live?

Call for a quantum treatment of the gravitational dof

Weak holographic principle:
The entropy in the lst law is the log of the number of states of the black hole that can affect the exterior
[Bekenstein; Sorkin; Smolin; Jacobson; Rovelli...]
\Leftrightarrow The horizon carries some kind of information with a density of approximately l bit per unit area
"It from Bit"
[Wheeler]

What these bits of information represent depends on the deep structure of space-time
\triangleleft The finiteness of the BH entropy hints at discreteness of space-time at the Planck scale

Reshetikhin-Turaev path integral with the CS action for $S U(2)_{k \otimes} S U(2)_{-k}$ with $\Lambda>0$

Outline

> Basic ingredients of LQG

- Quantization of an Isolated Horizon
- Entropy counting from Chern-Simons theory:
- Old results and open issues
> New persepctives:
- $\gamma=i$
- Entropy from LQG methods
- CFT/gravity correspondence

The LQG approach

Metric variables

Einstein-Hilbert action

$$
\begin{gathered}
I\left[g_{a b}\right]=\frac{1}{2 \kappa} \int d^{4} x \sqrt{-g} R \\
\kappa=8 \pi G
\end{gathered}
$$

upon foliation of spacetime in terms of space-like three dimensional surfaces Σ

$$
q_{a b}, \pi^{a b}=\frac{1}{\sqrt{q}}\left(K^{a b}-K q^{a b}\right)
$$

symplectic structure

$$
\left\{\pi^{a b}(x), q_{c d}(y)\right\}=2 \kappa \delta_{(c}^{a} \delta_{d)}^{b} \delta(x, y)
$$

Hamiltonian

$H\left(q_{a b}, \pi^{a b}, N_{a}, N\right)=N_{a} V^{a}\left(q_{a b}, \pi^{a b}\right)+N S\left(q_{a b}, \pi^{a b}\right)$
vanishes identically on solutions of the e.o.m.

Connection variables
Triad $e_{a}^{i}, i=1,2,3$ su(2) indices
set of three l-forms defining a
frame at each point in Σ

$$
q_{a b}=e_{a}^{i} e_{b}^{j} \delta_{i j}
$$

densitized triad

$$
E_{i}^{a} \equiv \frac{1}{2} \epsilon^{a b c} \epsilon_{i j k} e_{b}^{j} e_{c}^{k} \quad K_{a}^{i} \equiv \frac{1}{\sqrt{\operatorname{det}(E)}} K_{a b} E_{j}^{b} \delta^{i j}
$$

symplectic structure

$$
\left\{E_{j}^{a}(x), K_{b}^{i}(y)\right\}=\kappa \delta_{b}^{a} \delta_{j}^{i} \delta(x, y)
$$

spin connection

$$
\partial_{[a} e_{b]}^{i}+\epsilon_{j k}^{i} \Gamma_{[a}^{j} e_{b]}^{k}=0
$$

Ashtekar-Barbero connection

$$
A_{a}^{i}=\Gamma_{a}^{i}+\gamma K_{a}^{i} \quad\left\{E_{j}^{a}(x), A_{b}^{i}(y)\right\}=\kappa \gamma \delta_{b}^{a} \delta_{j}^{i} \delta(x, y)
$$

Hamiltonian
$H=N_{a} V^{a}\left(E_{j}^{a}, A_{a}^{j}\right)+N S\left(E_{j}^{a}, A_{a}^{j}\right)+N^{i} G_{i}\left(E_{j}^{a}, A_{a}^{j}\right)$
$G R=$ background independent $S U(2)$ gauge theory (partly analogous to $\mathrm{SU}(2)$ Yang-Mills theory)
$>$ Kinematical structure: holonomy along a path $\gamma \quad h_{\gamma}[A]=P \exp -\int_{\gamma} A$
Cylindrical functionals $\Psi_{\Gamma, f}[A]=f\left(h_{\gamma_{1}}[A], \ldots, h_{\gamma_{N_{\ell}^{\Gamma}}}[A]\right)$

$$
\begin{aligned}
\left\langle\Psi_{\Gamma_{1}, f}, \Psi_{\Gamma_{2}, g}\right\rangle & \equiv \mu_{A L}\left(\overline{\Psi_{\Gamma_{1}, f}[A]} \Psi_{\Gamma_{2}, g}[A]\right) \\
& =\int \prod_{i=1}^{N_{\ell}^{\tilde{\Gamma}}} d h_{i} \overline{\tilde{f}}\left(h_{\gamma_{1}}, \cdots, h_{\gamma_{N_{\ell}^{\tilde{\Gamma}}}} \tilde{g}\left(h_{\gamma_{1}}, \cdots, h_{\gamma_{N_{\ell}^{\tilde{\Gamma}}}}\right)\right.
\end{aligned}
$$

Spin network states basis: graphs colored with SU(2) spins

$\left|\Gamma, \boldsymbol{j}_{i}, v_{n}\right\rangle$ description of quantized geometries

$$
\text { Peter-Weyl th. } \quad f(g)=\sum_{j} f_{j}^{m m^{\prime}} \Pi_{m m^{\prime}}^{j}(g)
$$

$$
\begin{gathered}
\text { with } \\
{\left[\hat{J}^{i}(p), \hat{J}^{j}(p)\right]=\epsilon^{i j}{ }_{k} \hat{J}^{k}(p)}
\end{gathered}
$$

* Area operator:

$$
\hat{A}_{S}|\Psi\rangle=\sqrt{\hat{E}_{i}^{a} n_{a} \hat{E}_{j}^{b} n_{b} \delta^{i j}}|\Psi\rangle=8 \pi \gamma \ell_{P}^{2} \sum_{p \in \gamma \cap S} \sqrt{j_{p}\left(j_{p}+1\right)}|\Psi\rangle
$$

> Spectral analysis of geometrical operators

Planck scale discreteness

Quasi local definition of BH

Isolated Horizons

IH boundary conditions

- $\Delta=S^{2} \times \mathbb{R}$ null hyper-surface with vanishing expansion
- $\ell^{a}=$ normal future pointing null vector field with vanishing expansion within Δ
- Einstein's field equations hold at Δ

$$
p=(\Sigma, A) \in \Gamma \quad \delta=(\delta \Sigma, \delta A) \in \mathrm{T}_{\mathrm{p}}(\Gamma)
$$

for the pull back of fields on the horizon $\delta=$ linear combinations of $S U(2)$ gauge transformations and diffeomorphisms preserving the preferred foliation of Δ
The presymplectic structure

$$
\begin{aligned}
\kappa \Omega_{M}\left(\delta_{1}, \delta_{2}\right) & =\int_{M} 2 \delta_{[1} \Sigma_{i} \wedge \delta_{2]} K^{i} \quad \begin{array}{r}
\text { is preserved in the presence of an IH } \\
\text { (no boundary term needed) }
\end{array} \\
& =\frac{1}{\gamma} \int_{M} 2 \delta_{[1} \Sigma^{i} \wedge \delta_{2]} A_{i}-\underbrace{\frac{a_{H}}{\pi \gamma\left(1-\gamma^{2}\right)} \int_{H} \delta_{1} A_{i} \wedge \delta_{2} A^{i}}
\end{aligned}
$$

The single intertwiner BH model

\diamond Bulk theory: LQG Hilbert space associated to a fixed graph $\gamma \subset M$ with end points p s on H

$$
\begin{equation*}
\hat{a}_{H}\left|\left\{j_{p}, m_{p}\right\}_{1}^{n} ; \ldots\right\rangle=8 \pi \gamma \ell_{p}^{2} \sum_{p=1}^{n} \sqrt{j_{p}\left(j_{p}+1\right)}\left|\left\{j_{p}, m_{p}\right\}_{1}^{n} ; \ldots\right\rangle \tag{j,m}
\end{equation*}
$$

spin network states
boundary condition

$$
-\frac{a_{H}}{\pi\left(1-\gamma^{2}\right)} \epsilon^{a b} \hat{F}_{a b}^{i}=16 \pi G \gamma \sum_{p \in \gamma \cap H} \delta\left(x, x_{p}\right) \hat{J}^{i}(p)
$$

\diamond Boundary theory: SU(2) Chern-Simons with punctures

$$
\begin{aligned}
S_{C S}+S_{i n t} & =\frac{k}{4 \pi} \int_{D \times \mathbb{R}} \operatorname{tr}\left[A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right] \\
& +\lambda_{j} \int_{c} \operatorname{tr}\left[\tau_{3}\left(\Lambda^{-1} d \Lambda+\Lambda^{-1} A \Lambda\right)\right]
\end{aligned}
$$

Poisson brackets:

$$
\begin{aligned}
& \left\{A_{a}^{i}(x), A_{b}^{j}(y)\right\}=\delta_{i j} \epsilon_{a b} \frac{2 \pi}{k} \delta^{2}(x-y), \quad a, b=1,2 ; x^{0}=y^{0} \\
& \left\{S^{i}, \Lambda\right\}=-\tau^{i} \Lambda, \quad\left\{S^{i}, S^{j}\right\}=i \epsilon^{i j}{ }_{k} S^{k}
\end{aligned}
$$

$\Lambda \in S U(2) \quad$ particle d.o.f.
$S^{i} \in \mathfrak{s u}(2) \quad$ momentum conjugate to Λ
E.O.M. $\quad \epsilon^{a b} F_{a b}^{i}(A(x))=-\frac{2 \pi}{k} S^{i} \delta^{2}(x-p)$
> Combinatorial quantization:
$\Leftrightarrow \quad k \leftrightarrow a_{H} /\left(4 \pi \ell_{P}^{2} \gamma\left(1-\gamma^{2}\right)\right), \quad S^{i} \leftrightarrow J^{i}, \quad \mathscr{H}_{k i n}^{C S}\left(j_{1} \ldots j_{n}\right) \leftrightarrow \operatorname{Inv}\left(\otimes_{p} j_{p}\right)$

Quantum BH dof described by a Chern-Simons
theory on a punctured 2-sphere H
[Ashtekar, Baez, Corichi, Krasnov 99]
[Engle, Noui, Perez, DP 11]

$$
\operatorname{dim}\left[\mathscr{H}^{\mathrm{CS}}\left(\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{n}}\right)\right]=\operatorname{dim}\left[\operatorname{Inv}\left(\mathrm{j}_{1} \otimes \cdots \otimes \mathrm{j}_{\mathrm{n}}\right)\right]
$$

we can model the IH by a single $S U(2)$ intertwiner

$\Leftrightarrow \quad S=\ln \sum_{j_{1}, \ldots, j_{n}} \operatorname{dim}\left[\mathscr{H}^{C S}\left(j_{1} \cdots j_{n}\right)\right]=\frac{a_{H}}{4 \ell_{P}^{2}} \frac{\gamma_{0}}{\gamma}-\frac{3}{2} \log a_{H}$
Bekenstein-Hawking formula for $\gamma=\gamma_{0}, \quad$ with $\gamma_{0}=0.274067 \ldots$
[Kaul, Majumdar 98]
[Agullo, Barbero, Diaz-Polo, Fernandez-Borja, Villasenor 08]
[Ghosh, Mitra 05]
[Livine, Terno 05]
[Engle, Noui, Perez, DP 11]
Semiclassical limit of the $\mathrm{SU}(2)$ intertwiner quantum geometry: tesselated surfaces
[Livine, Terno 05; Bianchi 10]

BH microstates \Longleftrightarrow horizon quantum shapes

$$
\gamma_{0}=0.274067 \ldots \quad \text { quite random number!! }
$$

No physical insight: γ not expected to play any role in the semi-classical limit

> [Frodden, Geiller, Noui, Perez 12; Ben Achour, Mouchet, Nuoi 14]

However, one can make sense of the analytic continuation of the Verlinde formula to $\gamma=i$ and obtain an entropy which does not depend on the Immirzi parameter any more
$>$ But what's so special about $\gamma=i$?
The self-dual Ashtekar connection can be derived from a manifestly covariant action (maintaining full local Lorentz invariance) [Jacobson, Smolin 88] while the Ashtekar-Barbero connection cannot be interpreted as a space-time connection [Samuel 00; Alexandrov 01]
"The nature of BH entropy is intimately related to the nature of BH temperature.
We cannot understand the one without the other." [Bill Unruh, Loops13]

* Local observer perspective + Unruh temp. by hand [Ghosh, Perez 11; Frodden, Ghosh, Perez 11]
* KMSS-state of a quantum IH: $\quad \beta_{I H}=2 \pi(1-1 / k) \Leftrightarrow \gamma=i \quad$ [DP 13]

5
Thermality of the density matrix associated to the horizon quantum state originates from the entanglement between internal and external horizon dof
$\left.\rightarrow S=\frac{A_{I H}}{4 \ell_{P}^{2}}+\mu N\right) \quad \begin{gathered}\text { quantum hair argued to be associated to } \\ \text { a new horizon microscopic observable } \\ \text { (call for a GFT description in order to } \\ \text { make sense of it) }\end{gathered}$

ふை

$$
S_{B o l}=-\beta^{2} \frac{\partial}{\partial \beta}\left(\frac{1}{\beta} \ln Z\right) \quad \text { Boltzmann ent. }=\text { Entanglement ent. }
$$

$S_{e n t}=-\operatorname{tr}(\hat{\rho} \ln \hat{\rho})$
[Sorkin 86]
$S=k \cdot \log W$
W = number of horizon
‘quantum shapes'

Intertwiner structure encoding

[DP 13]

Carlip's proposal

$>2+1$ gravity acquires new degrees of freedom in presence of a boundary (broken gauge invariance)
$>$ In the Chern-Simons formulation, these are described by WZW theory
\rangle new, dynamical "would-be gauge" d.o.f. can account for the BH entropy

```
Attempt to describe the microphysics of BH in terms of a "dual" 2-dim Conformal Field Theory
```

Powerful method
Cardy formula:

$$
S=2 \pi \sqrt{\frac{c L_{0}}{6}}
$$

However, several open questions:

* what is the microscopic nature of the d.o.f.?
* where do the d.o.f. live?
* extension to higher dimensions?

Cos Universality problem:
(hidden) CFT symmetry underlying different microscopic approaches to BH entropy?

BH Entropy in LQG

$$
S_{L Q G}=\frac{A}{4 \ell_{p}^{2}}+\mu N
$$

Main open questions:

$>$ Can inclusion of new (matter) d.o.f. on the IH give the Bekenstein-Hawking formula? (see e.g. proposal of [Ghosh, Noui, Perez 13])
$>$ Is there a unified treatment to quantize bulk and boundary d.o.f.?
$>$ Are there CFT d.o.f. lurking somewhere?
(does LQG belongs to Carlip's `universality class'?)
$>$ Can we learn something about the full theory?
(see the example of AdS/CFTT)

Turaev-Viro/LQG

$\mathrm{SU}(2) \mathrm{BF}$ variables for IH

[DP, Sahlmann 14]

$$
\begin{aligned}
\kappa \Omega\left(\delta_{1}, \delta_{2}\right) & =\frac{1}{\gamma} \int_{M} \delta_{[1} \Sigma^{i} \wedge \delta_{2]} \gamma K_{i} \\
& =\frac{1}{\gamma} \int_{M} \delta_{[1} \Sigma^{i} \wedge \delta_{2]} A_{i}-\frac{1}{\gamma} \int_{\partial M} \delta_{[1} e^{i} \wedge \delta_{2]} e_{i} \\
& =\frac{1}{\gamma} \int_{M} \delta_{[1} \Sigma^{i} \wedge \delta_{2]} A_{i}+\frac{1}{\gamma^{2}} \sqrt{\frac{a_{I H}}{2 \pi}} \int_{I H} \delta_{[1} e^{i} \wedge \delta_{2]} A_{i}
\end{aligned}
$$

$p=(\Sigma, A) \in \Gamma \quad \delta=(\delta \Sigma, \delta A) \in \mathrm{T}_{\mathrm{p}}(\Gamma) \quad$ for the pull back of fields on the horizon $\delta=$ linear combinations of $\mathrm{SU}(2)$ gauge transformations and diffeomorphisms preserving the preferred foliation of Δ

$$
\begin{aligned}
K_{a}^{i} & =-\sqrt{\frac{2 \pi}{a_{I H}}} e_{a}^{i} & & \left\{A_{a}^{i}(x), \tilde{e}_{b}^{j}(y)\right\}
\end{aligned}=\kappa \gamma \epsilon_{a b} \delta^{i j} \delta^{(2)}(x, y)
$$

and the Ashtekar-Barbero boundary
connection becomes non-commutative

IH boundary conditions:

$$
F^{i}(A)=-\frac{\pi}{a_{I H}}\left(1-\gamma^{2}\right) \Sigma^{i}
$$

$$
d_{A} \tilde{e}^{i}=-\Sigma^{i}
$$

But we know how to deal with non-commutative holonomies in $2+1$ LQG [Noui, Perez, DP 11]:

$$
\begin{aligned}
A_{a}^{i} & =\Gamma_{a}^{i}+\gamma K_{a}^{i}=\Gamma_{a}^{i}-\frac{2 \pi \gamma^{2}}{a_{I H}} \tilde{e}_{a}^{i} \\
\tilde{A}^{i} & =A^{i}+\alpha_{+} \tilde{e}^{i}=\Gamma^{i}+\frac{2 \pi \gamma}{} \tilde{\rho}^{i}
\end{aligned} \quad \text { with } \quad \alpha_{ \pm}=\gamma(\gamma \pm 1) \frac{2 \pi}{a_{I H}}
$$

after introducing a cellular decomposition $\Gamma_{I H}$ of the horizon 2-sphere

$$
\begin{array}{ll}
F_{p}^{i}(A)=0, d_{A} \tilde{e}^{i}=0 & \forall p \notin \cup \ell_{i} \\
F_{p}^{i}(\tilde{A})=0, d_{A} \tilde{e}^{i}=-\Sigma_{p}^{i} & \forall p \in \cup \ell_{i}
\end{array}
$$

> Quantization: we can extend LQG techniques from the bulk to the IH
blowing up of point punctures to finite loops due to the extended nature of the phase space variables used for quantization in LQG
$\rightarrow \quad$ generalized spin-network states
[Freidel, Louapre 04]
[Noui, Perez 04]
IH quantum states:

$$
\text { nature or the pnase space variadies used for quantization in } L Q G
$$

IH Hilbert space observables: holonomies of the non-commutative connections and appropriately smeared functionals of the dyad field represented as quantum operators on $L_{2}\left(\overline{\mathcal{A}}, \mathrm{~d} \mu_{\mathrm{AL}}^{q}\right)$
modified Gauss law
$\left[\hat{\tilde{e}}(\eta), h_{\gamma}\right]=i \hbar \kappa \gamma \sum_{p \in \eta \cap \gamma} \operatorname{sign}\left(\epsilon_{a b} \dot{\eta}^{a} \dot{\gamma}^{b}(p)\right) h_{\gamma_{2}(p)} \hat{J}_{i} h_{\gamma_{1}(p)} \quad \rightarrow \quad \epsilon^{a b} \hat{\Sigma}_{a b}^{i}(x)=2 \kappa \gamma \sum_{p \in \Gamma \cap I H} \delta\left(x, x_{p}\right) \hat{J}^{i}(p)$
the bulk geometry induces conical singularities in the boundary torsion, which can be interpreted as point particles

We can use techniques developed for the quantization of $2+1$ gravity with CC [DP 14]:

$$
C[N]=\lim _{\epsilon \rightarrow 0} \sum_{p \notin \cup \ell_{i}} \operatorname{tr}\left[N_{p} W_{p}(A)\right]+\lim _{\epsilon \rightarrow 0} \sum_{p \in \cup \ell_{i}} \operatorname{tr}\left[N_{p} W_{p}(\tilde{A})\right]=0
$$

and in order to have an anomaly-free (first class) constraint algebra

(at each plaquette, the recoupling theory of the classical SU(2) group has to be replaced with the one of the quantum group UqSL(2)

has to be modified, since it does not satisfy the projector property anymore
in order to preserve the properties of the Ashtekar-Lewandowski measure:

\uparrow Physical scalar product for the IH boundary theory : $\left\langle s, s^{\prime}\right\rangle_{p h y s}=\left\langle P[A, \tilde{A}] s, s^{\prime}\right\rangle \quad$ where projector operator into the IH physical Hilbert space (same form of the physical projector of $2+1$ gravity with CC)

$$
\begin{aligned}
P[A, \tilde{A}] & =\lim _{\epsilon \rightarrow 0} \prod_{p \notin \cup \ell_{i}} \delta\left(W_{p}(A)\right) \prod_{p \in \cup \ell_{i}} \delta\left(W_{p}(\tilde{A})\right) \\
& =\lim _{\epsilon \rightarrow 0} \sum_{j_{p}} \prod_{p \notin \cup \ell_{i}}(-)^{2 j_{p}}\left[2 j_{p}+1\right]_{q} \chi_{j_{p}}\left(W_{p}(A)\right) \prod_{p \in \cup \ell_{i}}(-)^{2 j_{p}}\left[2 j_{p}+1\right]_{q} \chi_{j_{p}}\left(W_{p}(\tilde{A})\right)
\end{aligned}
$$

[Witten 89] argument: if M is obtained from the connected sum of two three manifolds M_{1} and M_{2} joined along a two sphere S^{2} and containing N unlinked and unknotted circles C_{i}

$$
\begin{gathered}
M=S^{2} \times S^{1} \\
\left\langle\Psi_{2} \mid \Psi_{1}\right\rangle=Z\left(M ; \prod_{i=1}^{N} C_{i}\right) \stackrel{\downarrow}{=} \operatorname{dim} \mathscr{H}_{S^{2} ; \otimes_{i} j_{i}}
\end{gathered}
$$

$\begin{aligned} & \text { equivalence between Chern-Simons } \\ & \text { and BF formulations }\end{aligned} \quad \Rightarrow S_{I H}=\log (\mathscr{N})$ with

$$
\left|Z_{R T}(\mathbb{M})\right|^{2}=Z_{T V}(\mathbb{M})
$$

$\sim \prod_{i}(-)^{2 k_{i}}\left[2 k_{i}+1\right]_{q}=\prod_{i} \underbrace{e^{2 \pi i k_{i}}}\left[2 k_{i}+1\right]_{q}$

Holographic bound: $\exp \left(\frac{a_{i}}{4 \ell_{P}^{2}}\right)$ [DP, Sahlmann 14]

$$
\text { with } \gamma=i, \quad\left(a_{i}=8 \pi \ell_{P}^{2} \gamma k_{i}\right)
$$

CFT/LQG

$>$ Regularization procedure introduces a new boundary at each puncture
> Infinite set of charges satisfying a Kac-Moody algebra (diffeos on the circle)
aynamics induced by Lo particles self-interactions
> Due to central extension would-be-gauge d.o.f. become physical
> IH boundary conditions \rightarrow CFT/gravity correspondence
$q_{0}^{(B) i}=-\frac{k}{2 \pi} \oint_{\partial B} A^{i}=J^{i} \rightarrow \quad$ gravitational d.o.f.

$q_{N}^{(B) i}=-\frac{k}{2 \pi} \oint_{\partial B} e^{i N \theta} A^{i}, N>0 \rightarrow \begin{gathered}\text { new matter d.o.f. } \\ \text { (bosonic modes) }\end{gathered}$

Affinization' of the gravitational $S U(2)$ finite Lie algebra \Rightarrow Infinite tower of new d.o.f.

(9) Let's exploit this CFT/Turaev-Viro duality to understand better the analytic continuation to $\gamma=i$:

Notion of phase space 'Wick rotation' via an invertible phase space make W:

$$
A_{a}^{\mathbb{C} j}(x)=W^{-1} \cdot A_{a}^{j}(x)=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!}\left\{A_{a}^{j}(x), C\right\}_{(n)}
$$

infinitesimal generator
Complexifier
corresponding operator acting on $\mathscr{H}=L_{2}\left(\overline{\mathcal{A}}, \mathrm{~d} \mu_{\mathrm{AL}}\right): \quad \hat{W}:=\exp \left(-\frac{\hat{C}}{\hbar}\right), \quad \hat{A}^{\mathbb{C}}:=\hat{W}^{-1} \hat{A} \hat{W}$

Thiemann's proposal (in $2+1$ for generic γ), using IH boundary conditions:

$$
C=-\left(\frac{\pi}{2}-i \ln \gamma\right) \frac{1}{4 \kappa G \hbar\left(1-\gamma^{2}\right)} \frac{1}{k} \int_{I H} d^{2} x \epsilon^{a b} \tilde{e}_{a}^{i} \tilde{e}_{b}^{j} \delta_{i j} \quad \text { where } \quad \tilde{e}_{a}^{i}:=\frac{1}{\gamma} \sqrt{\frac{a_{I H}}{2 \pi}} e_{a}^{i}
$$

by means of the Poisson bracket of the IH theory in its BF formulation

$$
\rightarrow \quad A_{a}^{\mathbb{C}}(x)=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!}\left\{\left(\Gamma_{a}(x)+\gamma K_{a}(x)\right), C\right\}_{(n)}=\Gamma_{a}(x)-i K_{a}(x)
$$

>Quantization: let us recall $\quad \hat{\tilde{e}}_{a}^{i}=-i 8 \pi G \hbar \gamma \epsilon_{a b} \delta_{j}^{i} \frac{\delta}{\delta A_{b}^{j}}, \quad \tilde{e}^{i}(\eta)=\int_{\eta} d t \tilde{e}_{a}^{i} \dot{\eta}^{a}$
dual cellular decomposition

$$
\hat{W}=\lim _{\varepsilon \rightarrow 0} \exp \left(\frac{(\pi / 2-i \ln \gamma)}{32 \pi(G \hbar)^{2} \gamma} \frac{1}{k} \sum_{p} \sum_{a=1}^{4} \frac{1}{4} \hat{\tilde{e}}^{i}\left(\eta_{a}\right) \hat{\tilde{e}}^{j}\left(\eta_{a+1}\right) \delta_{i j}\right)
$$

$$
\left.\left.\Rightarrow \quad \hat{W} \bigodot_{\mathrm{j}_{\mathrm{N}}}^{\bigcirc_{\mathrm{i}_{1}}}\right\rangle=\exp \left(2 \pi\left(\frac{\pi}{2}-i \ln \gamma\right) \gamma \sum_{p=1}^{N} \frac{j_{p}\left(j_{p}+1\right)}{k}\right) \bigcirc_{\mathrm{j}_{\mathrm{N}}}^{\bigcirc_{\mathrm{i}_{1}}} \bigcirc_{\mathrm{i}_{2}}\right\rangle
$$

Complexifier $\hat{C} \leftrightarrow \hat{L}_{0}$ Virasoro energy generator

$$
\begin{gathered}
\text { where recall } \\
\hat{L}_{0}\left|v_{j}\right\rangle=\frac{j(j+1)}{k+2}\left|v_{j}\right\rangle
\end{gathered}
$$

[Mourao and DP w.i.p.]
\hat{L}_{0} is the time evolution generator in the CFT \rightarrow Entropy from the Euclidean time evolution of the physical scalar product

$$
\left\langle\bigodot_{\mathrm{j}_{\mathrm{N}}}^{\mathrm{j}_{1}}\right| \hat{W}^{\dagger} \hat{W}|\emptyset\rangle_{p h y s}=\prod_{p} Z_{C F T}^{p}(\tau=\pi \gamma / 2)
$$

The CFT dual description could guide us towards the physical understanding and, at the same time, rigorous implementation of the analytic continuation to $\gamma=i$

Reshetikhin-Turaev path integral with the CS action for $S U(2)_{k \otimes} S U(2)_{-k}$ with $\Lambda>0$

