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1. Operators associated with BVPs

This paper aims at showing the ease of operator factorization (OF)
in the treatise of a boundary value problem (BVP). To be specific we
confine ourselves to some standard situation, namely to

• T ∈ L(X,Y ) a bounded linear operator in Banach spaces (given)

• T = ESF factorization into bounded linear operator in Banach
spaces with certain properties (to be determined)

where T is ”closely related” to an elliptic linear BVP in the sense of,
e.g., Eskin 73/81, Wloka 82, Hsiao-Wendland 08, written in the form

Au = f in Ω (PDE in nice domain)

Bu = g on Γ = ∂Ω (boundary condition)

Associated operator Boutet de Monvel 66, ... Wloka 82, ...

L =

(
A
B

)
: X → Y = Y1 × Y2 (data space)

X = (solution space)
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Well-posed linear BVPs

Well-posed problem (Hadamard 1902 : for some given f, g)

• is solvable in X for all f, g ∈ Y = Y1 × Y2
• solution is unique,

• solution depends continuously on data.

This formulation in linear BVPs needs (at least) the assumption that
X and Y are topological vector spaces. In this case the BVP is well-
posed iff the associated operator is a linear homeomorphism (invertible
and bi-continuous) as a mapping

L =

(
A
B

)
: X → Y = Y1 × Y2
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What may be the ease of OF? Some examples

• Discovery and proof of properties - such as well-posedness etc

• explicit solution of ”canonical” BVPs - e.g. by WH factorization

• reduction to ”simpler” problems - BIEs, semi-homogeneous BVPs

• better understanding of ”equivalence” and ”reduction”

• regularity of solutions - considering operators acting on scales
of Banach spaces

• minimal normalization of ill-posed problems - by ”natural” change
of topologies in the given spaces

• singularities and asymptotic results - via ”factor properties” and
”intermediate spaces”
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2. A first glance at OF: Full rank factorization

Theorem If T = LR is a full rank factorization of a matrix
t11 . .
. . .
. . .
. . tmn

 =


a11 .
. .
. .
. amr

( b11 . .
. . brn

)

or a full range factorization of a bdd. lin. op. in Banach spaces

L−L = IX , RR− = IY

then the reverse order law holds:

T− = R−L−

is a generalized inverse (GI) of T , i.e.,

TT−T = T.

References:
Nashed 76, Nashed-Rall 76, Ben-Israel and Greville 1974/2003.
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A generalized reverse order law

Remarks All this holds for bounded linear operators in Banach
spaces, as well. But in general the reverse order law fails

• if L and R are only generalized invertible, or

• if L and R are exchanged (i.e., T = RL with above properties).
We shall give an example later where indR = 1, indL = −1,
but it helps to construct T−1 by splitting operators of rank 1.

Theorem If T = L C R where L,R are left resp. right in-
vertible and C is generalized invertible, then the reverse order law
holds:

T− = R−C−L− is a GI of T.

Examples Wiener-Hopf factorization : classical and abstract, Toeplitz
operators, Riemann problems, ... In many situations the case appears
where L,R are two-sided invertible.
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Generalized inverses (1-inverses)

• originated from matrix theory (similar ideas by Fredholm 1903)

Moore ∼ 1906, 1920, Penrose 1950s, Nashed, Nashed-Rall 1976,
Ben-Israel and Greville 1974, 2003 (2nd ed.)

• many results are valid for linear operators or ring elements

Nashed 1976, Nashed-Votruba 1976

Theorem Let T ∈ L(X,Y ) be a bdd. lin. op. in Banach spaces.
The following assertions are equivalent:
(i) T T− T = T for some T− ∈ L(Y,X) ;
(ii) ker T and im T are complemented (alg. and top.) ;
(iii) There is an operator T− ∈ L(Y,X) such that

Tf = g is solvable iff TT−g = g

and then, the general solution is given by

f = T−g + (I − T−T )h , h ∈ Y.
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Regularity classes of bounded linear operators
in Banach spaces (with closed image)

kerT kerT
α(T ) = 0 α(T ) <∞ complem. closed

bdd. right inv. right
β(T ) = 0 invertible Fredholm invertible surjective

left inv. right semi-Fred.
β(T ) <∞ Fredholm Fredholm regulariz. F−

imT left left generalized no
complem. invertible regulariz. invertible name

imT semi-Fred. no normally
closed injective F+ name solvable
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Fredholm vs. generalized invertible operators

Theorem If T ∈ L(X,Y ) is a bounded linear operator in Banach
spaces, the following assertions are equivalent (see Mikhlin-Prössdorf
80/86, e.g.):

(a) T ∈ F(X,Y ) is Fredholm

(b) ∃R1,R2∈L(Y,X)R1T = IX + V1 , TR2 = IY + V2 , Vj compact

(c) ∃R1,R2∈L(Y,X) ... such that Vj have finite rank

(d) ∃R1,R2∈L(Y,X) ... such that Vj are finite rank projectors

(e) ∃T−∈L(Y,X) T T− T = T i.e. T is generalized invertible

and T−T − IX , TT− − IY are finite rank projectors

(onto the kernel and along the image of T , respectively)

Remark The construction of T− yields an explicit solution.

Contents First Last J I Back Close Full Screen



11

3. Operator factorization in BVP - how it appears

We shall consider the following examples:

• Potential methods, idea of BIEs (what is ”equivalent reduction”)

• Reduction to semi-homogeneous systems
(leading to equivalence after extension relations)

• Cross factorization of invertible operators in Banach spaces
(abstract and classical WHOs in Sommerfeld problems)

• Normalization (of WHOs as a prototype)

• Regularity of solutions (in scales of Sobolev spaces)

• Asymptotic behavior of solutions (from factor properties)

• Asymmetric factorization of scalar and matrix functions
(for WH±HOs in diffraction from rectangular wedges)

• Structured matrix operators in wedge diffraction problems
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Formulation of BVPs - a closer look at syntax

We look for the (general*) solution (in a certain form**) of

Au = f in Ω

Bu = g on Γ = ∂Ω

where the following are given: Ω is a Lipschitz domain (e.g.) in Rn.
A ∈ L(X , Y1), B ∈ L(X , Y2) are bounded linear operators in Banach
spaces of function(al)s living on Ω or Γ. (f, g) are arbitrarily given in
the data space Y = Y1 × Y2 (the topological product).

* all solutions for any data given in certain given sets

** explicit, closed analytic, series expansion, numerical (plenty
choices), with error estimate, ..., or just leave it open !?

OT formulation: Find (in a certain form**) a generalized inverse of

the associated operator L =

(
A
B

)
: X → Y = Y1 × Y2 .
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Sceneries of elliptic BVPs 1

Wloka 1982/87 ”Semi-classical formulation” (scalar PDE)

Ω ⊂ Rn bounded with (2m+ k, κ)− smooth boundary

m ∈ N , k + κ ≥ 1

X = W 2m+l
2 (Ω) , Y1 =W l

2(Ω) , Y2 =
m∏
j=1

W
2m+l−mj−1/2
2 (∂Ω)

A =
∑

|s|≤2m

as(x)D
s uniformly elliptic

with 2m− smooth coefficients

Bj =
∑

|s|≤mj

bj,s(x)T0D
s with Lopatinskii-Shapiro condition

ordBj ≤ 2m− 1 and 2m− smooth coefficients

Main Theorem about equivalence of (a) BVP is elliptic, (b) L is
smoothable, (c) L is Fredholm, (d) an apriori estimate holds.
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Sceneries of elliptic BVPs 2

Hsiao and Wendland 2008 Variational (weak) formulation for

Ω ∈ Rn strong Lipschitz domain

Au = −
n∑

j,k=1

∂

∂xj
(ajk(x)

∂u

∂xk
) +

n∑
j=1

bj(x)
∂u

∂xj
+ c(x)u = f inΩ

with elliptic symbol and f ∈ H̃−1
0 (Ω) = H̃−1(Ω)⊖ H̃−1

Γ (Ω) .
Sesquilinear form:

aΩ(u, v) =

∫
Ω

{
n∑

j,k=1

(ajk(x)
∂u

∂xk
)⊤

∂v̄

∂xj
+

n∑
j=1

(bj(x)
∂u

∂xj
)⊤v̄+(c(x)u)⊤v̄}dx

Weak solution of the Dirichlet problem (e.g.):

aΩ(u, v) = < f, v̄ >Ω for all v ∈ H1
0 (Ω)

T0,Γu = g ∈ H1/2(Γ).

Contents First Last J I Back Close Full Screen



15

Further sceneries of elliptic BVPs (working with L = (A,B)⊤)

Eskin 1973/81 BVPs for elliptic pseudodifferential equations
Agmon, Agranovich, Boutet de Monvel, Lions, Shamir, Shubin ...

Explicit solution of canonical problems in diffraction theory
by operator factorization methods

Meister and Speck 1985-1991 Sommerfeld diffraction problems

Meister, Penzel, Speck, Teixeira 1992-94
Diffraction from rectangular wedges

Castro, Duduchava, Speck, Teixeira 2003-05
Unions of finite intervals, quadrants

Ehrhardt, Nolasco, Speck 2010-12 Non-rectangular wedges,
rational angles, conical Riemann surfaces

(∆ + k2)u = 0 in Ω

T0(αu+ β ∂u/∂x+ γ ∂u/∂y) = g on Γ = ∂Ω
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Potential methods

The classical idea of potential theory (reduction to a simpler
problem/operator) by a suitable potential ansatz

L =

(
A
B

)
H1(Ω)−−−−−→ Y

K↖ ↗
T

Z

Operator composition T = LK leads to the study of

• Boundary Integral Equations (BIE) Hsiao and Wendland 08

• Operator Factorization T = LK , L = TK−1 (simplest case),

• Operator Relations (for classes of ops.) in general Castro 98.
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Some questions

• In what sense is a BVP ”equivalent” or ”reduced” to the BIE?

−→ Properties of substitution operators K such as invertible
(only algebraically), boundedly invertible (algebraic and topo-
logically), only Fredholm etc - all this can happen, as we shall
see.

• What about the reduction of a BVP to a semi-homogeneous
problem?

−→ Equivalent after extension relations.

• Which kind of operator relations appear in practise?

−→ Operator matrix identities, classification of operator rela-
tions (application oriented) and their properties.
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Operator factorizations/relations that appear frequently

Equivalent operators S ∼ T ⇔ S = E T F
where E,F are boundedly invertible operators in Banach spaces.

Equivalence after extension BGK 80 (→minimal factorization)

S ∼∗ T ⇔
(
S 0
0 IZ1

)
= E

(
T 0
0 IZ2

)
F

∆ - related operators (appeared with WHHOs) Castro 98

S ∆ T ⇔
(
S 0
0 S∆

)
= E T F

If E or F are only linear bijections (not necessarily bi-continuous),
then S and T are called algebraically equivalent, etc, writing

S ∼alg T , S ∼∗alg T , S ∆alg T

Contents First Last J I Back Close Full Screen



19

4. Reduction to semihomogeneous systems

Consider the semihomogeneous (abstract) BVP (in the above syntax)

L0u =

(
A
B

)
u =

(
0
g

)
∈ {0} × Y2 ∼= Y2

with associated operator

B |kerA : X0 = kerA −→ Y2

How is this operator related to the full thing

L =

(
A
B

)
: X −→ Y = Y1 × Y2 ?

In general, they will not be equivalent operators, since Y and Y2 may
not be isomorphic.

But, if A is surjective and kerA is complemented, i.e., A : X −→ Y1
is right invertible, then we have the following relation:
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Reduction to semi-homogeneous systems
- considered as an operator relation

Lemma Let L =

(
A
B

)
∈ L(X , Y1 × Y2) be a bounded linear

operator in Banach spaces. Further let R be a right inverse of A, i.e.,

R ∈ L(Y1,X ) , AR = I .

Then the following OF holds

L = E T F =

(
0 A|X1

I|Y2 B|X1

)(
B|X0 0
0 I|X1

)(
Q
P

)
where P = RA , Q = I − RA are continuous projectors in X ,
X0 = kerA = kerP = imQ , X1 = imP = kerQ. The first and third
factor are (boundedly) invertible as

E = Y2 ×X1 −→ Y1 × Y2
F = X −→ X0 ×X1 .
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Reduction to semi-homogeneous systems
- an example for equivalence after extension

The previous Lemma is proved by verification. A and B are exchange-
able. So we arrive at the following result (which seems to be not
completely known, cf. HW08):

Theorem Let L =

(
A
B

)
∈ L(X , Y1 ⊕ Y2) be a bounded linear

operator in Banach spaces. Then

∃R∈L(Y1,X )AR = I ⇒ L ∼∗ B|kerA,
∃R∈L(Y2,X )BR = I ⇒ L ∼∗ A|kerB .

There are several interpretations and conclusions, we mention a few.
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Well-posedness and reduction to semi-homogeneous systems

Corollary The BVP is well-posed (i.e., L is boundedly invertible)
if and only if

1. the two semi-homogeneous problems are well-posed,

2. the solution splits uniquely as u = u0 + u0 where

L0u0 =

(
f
0

)
L0u0 =

(
0
g

)
,

3. A and B admit right inverses.

Each of the three conditions for its own is not sufficient for the BVP
to be well-posed, but the first two or the last two conditions suffice.
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What happens if A or B is not right invertible?

If A is not right invertible, then
(i) A is not surjective, the BVP is not solvable for all data f ∈ Y1,

i.e., Y1 is chosen too large for a well-posed problem; or
(ii) A is surjective but kerA not complemented, in which case it

may help to change the topology of Y1 or of X .

Remarks
1. The right inverses R of A or B in applications are often a volume

or surface potential (see HW08) or an extension operator, left
invertible to a trace operator, see Wloka 82 ...

2. Each of the formulation has advantages in certain situations, see
for instance Mikhailov: Boundary-domain integro-differential
equations.
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5. Equivalence after extension and matrical coupling
- a closer look at equivalence after extension relations

We identified the relation between L and B|kerA and A|kerB as ∼∗
provided A and B, respectively, are right invertible.

S ∼∗ T ⇔
(
S 0
0 IZ1

)
= E

(
T 0
0 IZ2

)
F

Remark This kind of operator relation (which belongs to the class
of so-called operator matrix identities) is very important in theory
and applications. It appears frequently in ”substitution, factorization,
extension and reduction methods”.

We study some of their properties. Of course, it is an equivalence re-
lation (in the genuine sense), i.e., reflexive, symmetric and transitive.
However there is much more.
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The Theorem of Bart and Tsekanovskii

Theorem BT - part 1 Let T ∈ L(X1, X2) and S ∈ L(Y1, Y2)
be bounded linear operators in Banach spaces and assume T ∼∗ S.

Then kerT ∼= kerS. Also imT is closed if and only if imS is
closed, and in that case X2/ imT ∼= Y2/ imS.
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Transfer properties of an EAE relation

Transfer property 1 If S∼∗T , the two operators belong to the
same regularity class (of the 16 classes mentioned before on p. 9).

Transfer property 2 If the inverses of the operators E,F in
the relation S∼∗T are known, a generalized inverse of T can be
computed from a generalized inverse of S , namely by a ”reverse
order law”(
S 0
0 IZ1

)
= E

(
T 0
0 IZ2

)
F ⇒ T− = R11 F

−1

(
S− 0
0 IZ1

)
E−1

where R11 denotes the restriction to the first block of the operator
matrix.

More results can be found in the PhD thesis of Castro 1998.
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The Theorem of Bart and Tsekanovskii:
- part 2, inverse conclusion

Theorem BT - part 2 Let T ∈ L(X1, X2) and S ∈ L(Y1, Y2)
be bounded linear operators in Banach spaces and assume that T and
S are generalized invertible*.

Then T∼∗S if and only if kerT ∼= kerS and X2/ imT ∼= Y2/ imS.

*This assumption is essential (there is an example where sufficiency
fails otherwise, see BT 1992).
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Matricial coupling Bart, Gohberg, Kaashoek 1984

Theorem BGK 84 Let S ∈ L(X1, Y1) , T ∈ L(X2, Y2). Then

S
∗∼ T if the two operators are matricially coupled, i.e.,(

S ∗
∗ ∗

)
=

(
∗ ∗
∗ T

)−1

.

In symmetric setting, this is just an interpretation of the formula
PAP +Q ∼ P +QA−1Q, see BGK 85, which is well known.

Theorem Bart-Tsekanovsky 1992
S

∗∼ T iff S and T are matricially coupled.

Remark As we know already: This implies that

kerS ∼= kerT , cokerS ∼= cokerT

and the inverse conclusion holds if both operators S and T
are generalized invertible.
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Examples of BVPs which are matricially coupled
more precisely: whose associated operators are matricially coupled

Diffraction of time-harmonic waves from plane screens in R3.

Given a 2D special Lipschitz domain Σ (see Stein 70) and g ∈ H1/2(Σ)
(the trace of a primary field) we look for the weak solution of the
Dirichlet problem

∆+ k2u = 0 in Ω = R3 \ Γ where Γ = Σ× {0}
T0 u = g on Γ = ∂Ω (both banks)

The Neumann problem for the complementary screen Σ∗ = R2 \ Σ is
briefly written as

∆ + k2u = 0 in Ω∗ = R3 \ Γ∗ where Γ∗ = Σ∗ × {0}
T1 u = ∂u/∂x3|x3=0 = h on Σ∗ = ∂Ω∗ (both banks)

where h ∈ H−1/2(Σ∗) is given.
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Examples of BVPs which are matricially coupled ctd

Theorem The operators associated to the last two BVPs are ma-
tricially coupled and (therefore) equivalent after extension:

LD,Ω
∗∼ LN,Ω∗ .

Proof Putting γ(ξ1, ξ2) =
√
ξ21 + ξ22 + k2, we can show (see MS88)

LD,Ω
∗∼ Wγ−1,Σ = rΣAγ−1 = F−1γ−1 · F : H

−1/2
Σ → H1/2(Σ).

By analogy, the Neumann problem for the complementary screen Σ∗
yields an associated operator which satisfies

LN,Ω∗
∗∼ Wγ,Σ∗ = rΣ∗Aγ = F−1γ · F : H

1/2
Σ∗
→ H−1/2(Σ∗).

ComposingWγ−1,Σ with a continuous extension operator ℓ2 : H1/2(Σ)→
H1/2(R2) we obtain that P2 = ℓ2rΣ projects along H1/2(Σ∗) and

Wγ−1,Σ
∗∼ W̃γ−1,Σ = ℓ2Wγ−1,Σ = P2Aγ−1 |P1H−1/2 : H

−1/2
Σ → P2H

1/2.
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Similarly

Wγ,Σ∗
∗∼ W̃γ,Σ∗ = ℓ1Wγ,Σ∗ = Q1Aγ |Q2H−1/2 : H

1/2
Σ∗
→ Q1H

−1/2.

Now we have

• P1 is a projector in H−1/2(R2) onto H
−1/2
Σ

• P2 is a projector in H1/2(R2) along H
1/2
Σ∗

• Q1 = I − P1 is a projector in H−1/2(R2) along H
−1/2
Σ

• Q2 = I − P2 is a projector in H1/2(R2) onto H
1/2
Σ∗

.(
P2Aγ−1P1 P2Aγ−1Q1

Q2Aγ−1P1 Q2Aγ−1Q1

)
=

(
P1AγP2 P1AγQ2

Q1AγP2 Q1AγQ2

)−1

because of Aγ−1 = A−1
γ . Hence W̃γ−1,Σ and W̃γ,Σ∗ are matricially

coupled , thus equivalent after extension to each other and to LD,Ω
and LN,Ω∗ , as well, by transitivity.
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OF methods for singular operators
related to BVPs such as boundary integral operators

• Rich history: Muskhelishvili, Gakhov, Vekua, Mikhlin, Gohberg-
Krein, Simonenko, Prössdorf, Coburn, Douglas, Devinatz-Shinbrot,
Spitkovsky, ...

• Many operator classes: Wiener-Hopf, Toeplitz, Riemann prob-
lems, abstract settings, ...

• Plenty of constructive methods: Scalar and matrix functions,
rational functions, decomposing algebras, generalized factoriza-
tion, ... LU, polar decomposition, ...
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6. General Wiener-Hopf operators (WHOs)

Here we consider some algebraic methods, which become construc-
tive when combined with explicit factorization of matrix functions.
The following type of operators are so-called general WHOs (Shin-
brot 1964), abstract Wiener-Hopf operators (Cebotarev 1967), or pro-
jections of operators (Gohberg-Krupnik 1973/79)

W = TP (A) = PA|PX : PX → PX (= imP )

where X is a Banach (or even Hilbert) space, P = P 2 ∈ L(X) a
bounded projector, A ∈ GL(X) an invertible linear operator.

Variants which partly admit the same results:

W = P2A|P1X : P1X → P2Y asymmetric WHO

where X,Y are a Banach spaces, P1, P2 bounded projector in X and
Y , respectively and A ∈ L(X,Y ) an invertible linear operator; further

w = pap

where a, p ∈ R, which is a unital algebra, a invertible and p2 = p.
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The cross factorization theorem

Theorem S 83 Let W = TP (A) = PA|PX be a general WHO
(i.e.) where X is a Banach space, A ∈ GL(X) , P 2 = P ∈ L(X).
Then W is generalized invertible if and only if

A = A− C A+

where A± ∈ GL(X), A+PX = PX,A−QX = QX (Q = I − P )
and C splits the space X twice into four subspaces such that

X =

PX︷ ︸︸ ︷
X1 +̇ X0 +̇

QX︷ ︸︸ ︷
X2 +̇ X3

= Y1 +̇ Y2︸ ︷︷ ︸
PX

+̇ Y0 +̇ Y3︸ ︷︷ ︸
QX

where C maps each Xj onto Yj , j = 0, 1, 2, 3 , i.e.,
X0 = C−1QCPX , X1 = C−1PCPX etc. In this case,

W− = PA−1
+ PC−1PA−1

− |PX is a GI of W.
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The cross factorization theorem - sketch of proof

The sufficient part is quickly done by verification in a few lines. The
necessary part works with space decomposition and reduction to a
one-sided invertible, restricted operator, it needs one page and a half.
Both are done for the asymmetric version, see S 83.

The sufficient part for the algebra setting is as simple as before. Ne-
cessity of the factorization consists in guessing a cross factorization
from a generalized inverse, i.e. if wvw = w, then

a = a− c a+

= [e+ qav] [a− ava+ w + a(p− vw)a−1(p− wv)a]×
× [e+ vaq − (p− vw)a−1(p− wv)a]

represents a cross factorization of a.

However verification needs almost two pages, see S 85.

Contents First Last J I Back Close Full Screen



36

The cross factorization theorem - historic remarks

Shinbrot 1964 : Definition and basic properties of general WHOs.

Cebotarev 1967 : One-sided invertibility in the algebraic setting.

Devinatz and Shinbrot 1969 : Invertibility of (symmetric) general
WHOs in separable Hilbert spaces.

Gohberg and Krupnik 1973 : Properties of a projection of a bounded
linear operator.

Speck 1983 : Symmetric version of the cross factorization theorem.

Speck 1985 : Asymmetric and algebraic versions.

A F dos Santos 1988 : A geometric perspective ...
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Associated WHOs QA−1|QX

were discussed for Hilbert space operators by Devinatz-Shinbrot 1969

The following observation was made by Speck 1984 during a confer-
ence in Oberwolfach, Germany, after the talk of I. Gohberg.

Remark Associated general WHOs are equivalent after extension:

PA|PX
∗∼ QA−1|QX

where X is a Banach space, A ∈ GL(X) , P 2 = P = I −Q ∈ L(X).
This well-known relation has a certain similarity with matricial cou-
pling (in symmetric space settings Xj = Yj).

Proof

PAP +Q = (I − PAQ)(PA+Q) = (I − PAQ)(P +QA−1)A

= (I − PAQ)(I +QA−1P )(P +QA−1Q)A.

The remark was published and commented by BGK 1985 in an ad-
dendum in IEOT 8 (1985) 890-891.
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Variants of the Cross Factorization Theorem

Theorem (asymmetric version of cross factorization) S 85
Let W = P2A|P1X be an asymmetric WHO (i.e.) where X,Y are
Banach spaces, A ∈ L(X,Y ) invertible , P 2

1 = P1 ∈ L(X) , P 2
2 =

P2 ∈ L(Y ).
Then W is generalized invertible if and only if there exists a Banach
(intermediate) space Z and a projector P ∈ L(X) such that A splits
into invertible operators

A = A− C A+

Y ← Z ← Z ← X

where A+ maps P1X onto PZ , A− maps QZ onto Q2Y ,
and C is a cross factor (in modified obvious setting). In this case,

W− = P1A
−1
+ PC−1PA−1

− |P2Y is a GI of W.

Remark This includes operators acting between Sobolev spaces of
different order and Simonenkos concept of generalized factorization.
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7. WHOs in Sobolev spaces
- originated from diffraction theory

W = r+A : L2
+ → L2(R+)

A = F−1ΦA · F , ΦA ∈ Cµ(R̈) ∩ GL∞(R)

Ws =

{
RstW : Hs

+ → Hs(R+) , s > 0
ExtW : Hs

+ → Hs(R+) , s < 0

Then it is well known that (see Eskin 1973, Duduchava 1979, ...)

• W ∼ ℓ0r+A : L2
+ → L2

+ which has the form of a general WHO,

• a cross factorization A = A−CA+ exists explicitly provided
ΦA(+∞)/ΦA(−∞) /∈ R− , i.e., ΦA is 2-regular,

• a generalized inverse W−
s = ... is explicitly obtained provided

the lifted symbol (ξ − i)s ΦA(ξ) (ξ + i)−s , is 2-regular.
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Explicit formulas for W−

Instead of the Fourier symbol Φ consider the index-free function
(see Duduchava 1979)

Φ0 = ζ−ω Φ−1(+∞)Φ

where

ω =
1

2πi

∫
R
d log Φ , ℜe ω +

1

2
/∈ Z , ζ(ξ) =

λ−(ξ)

λ+(ξ)
=
ξ − i
ξ + i

.

Φ0 admits a canonical Wiener-Hopf factorization in Cµ(Ṙ)

Φ0 = Φ0− Φ0+ , Φ0± = exp{P± log Φ0}
where P± denote the Hilbert projections P± = (I ± SR)/2 . A
generalized factorization (see Simonenko 1968) is given by

Φ = Φ− · ζκ · Φ+ = λω−κ− Φ0− · ζκ · λ−ω+κ+ Φ0+Φ(+∞)

κ = max{z ∈ Z : z ≤ ℜe ω +
1

2
}.
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Now a cross factorization of A is obtained putting

A = A− C A+ = F−1Φ− · F F−1ζκ · F F−1Φ+ · F .

It represents a bounded operator factorization through the Sobolev
space Z = Hℜeω−κ.

A generalized inverse of W is given by

W− = A−1
+ PZC

−1PZA
−1
− ℓ0.

where PZ is the extension/restriction of the Hilbert projection on Z.

Further it enables asymptotic results in terms of an expansion of the
generalized inverse in a scale of Sobolev spaces, using the chain of
generalized inverses of Ws , see Penzel-S 1993.
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8. WH systems and factorization of matrix functions

W = r+A : (L2
+)
n×n → L2(R+)

n×n

A = F−1ΦA · F , ΦA ∈ Cµ(R̈)n×n ∩ GL∞(R)n×n

lead to the factorization of matrix functions. A few keywords are

• rational matrix functions, see Clancey-Gohberg 81

• decomposing, R-algebras Goh-Feldman 71, Mikhlin-Pröss 80

• generalized factorization Simonenko 67, Litvinchuk-Spit 87

• piecewise continuous matrix functions Duduchava 79

• constructive methods: triangular, Daniele-Khrapkov, paired,
Jones, ... Chebotarev 56, Khrapkov 71, ..., A F dos Santos

• rationally reducible to those Spit-Tashbaev 89, Ehrhardt-S 02

• AP, SAP, ... Böttcher-Karlovich 97, B-K-Spit 02, ..., Bastos
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9. Factor properties, intermediate spaces and singularities

There is a close relation between properties of the factors, here par-
ticularly their increase at infinity, the kind of intermediate space, and
the asymptotic behavior of solutions at zero.

Example: Classical, scalar WHO with analytical index zero

W = r+A : L2
+ → L2(R+)

A = F−1ΦA · F , ΦA ∈ Cµ(R̈) ∩ GL∞(R)

A = A− A+ , ΦA = Φ− Φ+ (generalized fact.)

Y ← Z ← X , Z = Hℜe ω , ℜe ω ∈ ]− 1/2, 1/2[.

For g ∈ C∞(R+) ∩ L2(R+), the singular behavior of the solution is

W−1g(x) = A−1
+ P A−1

− ℓ0g(x) ∼ | x |−ℜe ω as | x |→ 0.

In the system’s case there appear log terms, as well, see Castro 95.
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Minimal normalization of WHOs

Theorem MoST 1998
Let W as before, s ∈ R be critical, i.e., Ws not Fredholm.
Then Ws+ε is Fredholm for ε ∈]0, 1/2[ with generalized inverse
W−
s+ε given by factorization (usual formula) and Ws can be

image normalized replacing the image space Hs(R+) by a proper

dense subspace
<

Hs (R+) = r+Λ
−s−1/2
− H

−1/2
+ ⊂ Hs(R+)

such that the restricted operator

<

W s= RstWs : H
s
+ →

<

Hs (R+)

is Fredholm and has a GI given by

(
<

W s)− = ExtW−
s+ε :

<

Hs (R+) → Hs
+.

Remark There is an analog for domain normalization, matrix
cases, transfer of normalization by operator relations like

∗∼ etc.
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10. Wiener-Hopf plus/minus Hankel operators (CTOS)

T = r+A(I ± J)ℓ0 = r+Aℓ
c : L2(R+)→ L2(R+)

A = F−1ΦA · F , ΦA ∈ Cµ(R̈) ∩ GL∞(R)

Jf(x) = f(−x) , x ∈ R , ℓc = ℓe or ℓo (even/odd extension)

Then

• T ∼ ℓ0r+A : L2
e/o → L2

+ which is understood as general WHO,

• a cross factorization A = A−CAe exists explicitly provided
ΦA(+∞)/ΦA(−∞) /∈ eiπ/2R+ resp. /∈ e3iπ/2R+ ,

• and then a generalized inverse W−
s = ... is explicitly obtained

by asymmetric factorization, see CST 2004.

Matrix versions by Castro-S 2005 and Castro-Duduchava-S 2006.

Contents First Last J I Back Close Full Screen



46

Asymmetric factorization (scalar case):
a direct approach to the inversion of CTOS

The idea comes from Basor and Ehrhardt 2004. Instead of the Fourier
symbol Φ consider the index-free function (see Duduchava 1979)

Ψ = ζ−ω Φ−1(+∞) Φ

where

ω =
1

2πi

∫
R
d log Φ , ℜe(ω)± 1

4
/∈ Z , ζ(ξ) =

λ−(ξ)

λ+(ξ)
=
ξ − i
ξ + i

.

Putting Ψ̃ = JΨ define the symmetrized function

G = ΨΨ̃−1 ∈ Cµ(Ṙ) with indG = 0,

which admits an antisymmetric Wiener-Hopf factorization in Cµ(Ṙ)

G = G−G+ = G−G
−1
− .
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From antisymmetric to asymmetric factorization (scalar)

Now a cross factorization is obtained putting (see Castro-S 2004)

Φ = Φ− ζ
κ Φe , κ = max{z ∈ Z : z ≤ ℜe(ω)± 1

4
}

Φ− = λ
2(ω−κ)
− exp{P− logG} , Φe = ζ−κΦ−1

− Φ.

It can be proved that Φe is an even function!

The above sign of ± depends on which version we consider:

T = r+A(I ± J)ℓ0 = r+Aℓ
c : L2(R+)→ L2(R+)

ℓc = ℓe or ℓo (even/odd extension)
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11. Structured matrix operators (by example):

ΨDOs occurring in BVPs for the HE in a quarter-plane

Q1 = {(x1, x2) ∈ R2 : x1 > 0 , x2 > 0}
Γ1 = {(x1, x2) ∈ R2 : x1 > 0 , x2 = 0}
Γ2 = {(x1, x2) ∈ R2 : x1 = 0 , x2 > 0}

Determine (all weak solutions) u ∈ H1(Q1) (explicitly and in closed
analytical form) such that

Au(x) = (∆ + k2)u(x) =

(
∂2

∂x21
+

∂2

∂x22
+ k2

)
u(x) = 0 in Q1

B1u(x) =

(
αu+ β

∂u

∂x2
+ γ

∂u

∂x1

)
(x) = g1(x) on Γ1

B2u(x) =

(
α′u+ β′ ∂u

∂x1
+ γ′

∂u

∂x2

)
(x) = g2(x) on Γ2 .

Sometimes it is useful to consider ”small regularity”: u ∈ H1+ε(Q1).
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BVPs for the HE in a quarter-plane ctd

Herein the following data are given: a complex wave number k with
ℑmk > 0, constant coefficients α, β, γ, α′, β′, γ′ as fixed parameters
and arbitrary gj ∈ H−1/2(Γj). Note that β and β′ are the coefficients
of the normal derivatives, whilst γ and γ′ are those of the tangential
derivatives. In case of a Dirichlet condition, i.e., β = γ = 0, we assume
g1 ∈ H1/2(Γ1).

The space of weak solutions of the HE is denoted by

H1(Q1) =
{
u ∈ H1(Q1) : (∆ + k2)u = 0

}
= kerA

in the previous notation and we shall consider the operator L0

associated to the semi-homogeneous problem.
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The impedance problem

The impedance problem shows the following boundary conditions:

ℑ1u(x) =
∂u(x)

∂x2
+ ip1u(x) = g1(x) on Γ1

ℑ2u(x) =
∂u(x)

∂x1
+ ip2u(x) = g2(x) on Γ2

where the imaginary part of pj turns out to be important:

1. ℑmpj > 0: physically most reasonable due to positive finite
conductance in electromagnetic theory for instance;

2. p1 = 0 or/and p2 = 0: Neumann condition(s) allow a much
simpler solution, MPST 93, CST 04;

3. if both ℑmpj are negative the potential approach has to be
modified in a cumbersome way (in contrast to the mixed case
which can be solved like (1));

4. if pj ∈ R \ {0} for j = 1, 2, the problem needs another kind of
normalization (LAP) that is not carried out here.
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Compatibility conditions

The Dirichlet problem (DD) is only solvable under certain compati-
bility conditions (see Hsiao-Wendland 2008) for the Dirichlet data

g1 − g2 ∈ H̃1/2+ε(R+),

i.e., this function is extendible by zero onto the full line R such that
the zero extension ℓ0(g1 − g2) belongs to H1/2+ε(R). The Neumann
problem (NN) needs a compatibility condition

g1 + g2 ∈ H̃−1/2+ε(R+),

if and only if ε = 0 . The mixed problems (DN) do not require any
additional condition.
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Solution of the DN problem and half-line potentials (HLPs)

The solution is amazingly simple in the DN case:

u(x1, x2) = F−1
ξ 7→x1

e−t(ξ)x2 ℓ̂eg1(ξ)−F−1
ξ 7→x2

e−t(ξ)x1t−1(ξ)ℓ̂og2(ξ)

where ℓe and ℓo denote even and odd extension.

Theorem MPST 93, CST 04
The following mapping

KDN,Q1 : X = H1/2(Γ1)×H−1/2(Γ2)→ H1(Q1)

u = KDN,Q1(f, g)
T
= KD,Q12ℓ

ef +KN,Q14ℓ
og

KD,Q12ℓ
ef(x) = F−1

ξ 7→x1
exp [−t(ξ)x2]ℓ̂ef(ξ) , x ∈ Q12

KN,Q14ℓ
og(x) = −F−1

ξ 7→x2
exp [−t(ξ)x1] t−1(ξ) ℓ̂og(ξ) , x ∈ Q14

is a toplinear isomorphism that satisfies

(T0,Γ1 , T1,Γ2)
TKDN,Q1 = IX

KDN,Q1(T0,Γ1 , T1,Γ2)
T
= IH1(Q1) .

Contents First Last J I Back Close Full Screen



53

Resolvent of the DN problem as potential operator

• Using this representation as a potential operator, it was possible
to solve explicitly a great number of BVPs, see CST 2004.

• The reason was that the corresponding boundary ΨDO a ma-
tricial 2 × 2 structured operator that has a triangular form
in many cases.

• It also gave the idea to introduce so-called half-line potentials
(HLPs):
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Half-line potentials (HLPs) CST 06

Let mj ∈ N0, ψj : R→ C be measurable functions such that ψj is mj-
regular, i.e., t−mjψj ∈ GL∞ and let ℓj : H

1/2−mj (R+)→ H1/2−mj (R)
be continuous extension operators for j = 1, 2. Then

u(x) = F−1
ξ 7→x1

{
exp[−t(ξ)x2]ψ−1

1 (ξ)ℓ̂1f1(ξ)
}

+F−1
ξ 7→x2

{
exp[−t(ξ)x1]ψ−1

2 (ξ)ℓ̂2f2(ξ)
}

with fj ∈ H1/2−mj (R+) and x = (x1, x2) ∈ Q1 is said to be a half-line
potential (HLP) in Q1 with density (f1, f2).

We call it strict for H1(Q1) if it defines a bijective mapping, writing

K = K1 +K2 = Kψ1,ψ2

: X = H1/2−m1(R+)×H1/2−m2(R+)→ H1(Q1)

specifying ℓj when necessary. Keeping in mind low regularity proper-
ties: Kε : Xε = H1/2−m1+ε(R+) ×H1/2−m2+ε(R+) → H1+ε(Q1), we
speak about a strict HLP for H1+ε(Q1) in the corresponding case.
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Half-line potentials (HLPs) CST 06

Proposition Let L = (B1, B2)
T

and K be given as before. Then
the composed operator T = LK has the form:

T =

(
r+Aϕ11ℓ1 C0Aϕ12ℓ2

C0Aϕ21ℓ1 r+Aϕ22ℓ2

)
: X → Y

where Y = H−1/2(R+)
2
identifying Γj with R+ and

ϕ11 = σ1ψ
−1
1 = (α− βt+ γϑ)ψ−1

1 , ϕ12 = σ1∗ψ
−1
2 = (α+ βϑ− γt)ψ−1

2

ϕ21 = σ2∗ψ
−1
1 = (α′ + β′ϑ− γ′t)ψ−1

1 , ϕ22 = σ2ψ
−1
2 = (α′ − β′t+ γ′ϑ)ψ−1

2

The main diagonal contains CTOS if ℓj = ℓe/o. The others are
Fourier integral operators (combined with extensions) defined for any
ϕ ∈ L∞ by

K(s) = C0Aϕℓ
o : Hs(R+)→ Hs(R+) , s ∈ ]− 3/2, 1/2[,

K(s)f(x1) = (2π)
−1
∫
R
exp[−t(ξ)x1]ϕ(ξ)ℓ̂of(ξ) dξ , x1 ∈ R+ .
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They are well-defined and bounded if s ∈ ] − 3/2, 1/2[. In this case,
K(s) = 0 if and only if ϕ is an even function. Replacing ℓo by ℓe, we
have boundedness of K(s) for s ∈ ] − 1/2, 3/2[ being zero if and only
if ϕ is odd.

L =

(
B1

B2

)
H1(Q1) −−−−→ Y

K = K1 +K2
↖ ↗

T =

(
T1 K1

K2 T2

)
X
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Problem solvable by the DN ansatz

Theorem CST 04 The following classes of interior wedge prob-
lems can be explicitly solved by generalized inversion of T provided
T is of normal type:

Γ1 \ Γ2 D N I T O G

D II O I II∗± III III
N O∗ II II∗ I∗ III∗ III∗

I I∗ II I∗±
T II± I I± IV IV IV
O III∗ III IV∗

G III∗ III IV∗
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Legend : (referring to CST 04)

bold – reference problems discussed in detail.
∗ – belongs to the corresponding class where the two

variables are exchanged, see (2.11).
O – invertible by representation formulas (2.11).
I – direct inversion by Theorem 3.2 (even pre-symbol),

Example 3.3.
I− – dito (minus type), Example 3.5.
I+ – right inversion via AFIS, see Proposition 5.3,

cf. Corollary 5.6.
II, II± – like I, I± after image normalization, Example 3.4.
III – Fredholm and one-sided invertible via AFIS,

eventually after normalization, see Theorem 5.4,
Theorem 5.5, only one scalar factorization needed.

IV – similar with two scalar operators, see Corollary 5.6
empty spaces – correspond with open problems, not decomposing

(triangular) in the preceding sense.
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The general problem (of normal type) CST 06

In case of the remainder BVPs in the above diagram, one needs a
different ansatz in order to end up with a triangular matrix operator.
Namely, given (as before)

Au(x) = (∆ + k2)u(x) =

(
∂2

∂x21
+

∂2

∂x22
+ k2

)
u(x) = 0 in Q1

B1u(x) =

(
αu+ β

∂u

∂x2
+ γ

∂u

∂x1

)
(x) = g1(x) on Γ1

B2u(x) =

(
α′u+ β′ ∂u

∂x1
+ γ′

∂u

∂x2

)
(x) = g2(x) on Γ2 .

with Fourier symbols

σ1 = α− βt+ γϑ , σ2 = α′ − β′t+ γ′ϑ

where t(ξ) = (ξ2 − k2)1/2 , ϑ(ξ) = −iξ. Both symbols are assumed to
be 1-regular, i.e., t−1σj ∈ GL∞.
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The companion operator trick CST 06

Now the trick consists in using a special ansatz (see page 52) where
either ψ1 = σ∗

2 or ψ2 = σ∗
1 . This guarantees that T is triangular!

In order to have a strict ansatz, we need that the corresponding BVP
with Fourier symbols ψ1, ψ2 is well-posed. Therefore we consider a
companion BVP with

B∗ =

(
B∗

2

B2

)
or B∗ =

(
B1

B∗
1

)
.

In case of the impedance problem it turns out that these prob-
lems are explicitly solvable by the DN ansatz, but the resulting po-
tential operator K (generalized inverse to B∗) is

• only right invertible with defect number β(K) = 1 , if both
ℑmpj are negative,

• is strict if at least one ℑmpj is positive (corresponding choice),

• needs normalization otherwise or different idea.
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Example of a ”bad factorization” CST 06

Thus we found an example (impedance problem with β(K) = 1) for

L =

(
B1

B2

)
H1(Q1) −−−−→ Y

K = K1 +K2
↖ ↗

T =

(
T1 K1

K2 T2

)
X

where both K, T are left invertible with defect number 1,

T = LK , L = TK− + LP1.

The first is not a full range factorization, but TK− is, and
LP1 has rank 1. So it could be proved that L is invertible and the
impedance problem also well-posed for these parameters.
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12. Conclusion

• Operator factorization and, moreover, operator matrix identities
are a very convenient vehicle for the description of equivalence
or reduction of problems.

• They are a powerful tool for the inversion of singular operators
related to canonical BVPs.

• They enable a precise description of properties of these opera-
tors, their normalization and asymptotics.

Many thanks for your attention !
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