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The flow of a vector field

Given a vector field b : [0,∞)× Rd → Rd , consider the flow X of b{
d
dtX(t, x) = bt(X(t, x)) ∀t ∈ [0,∞)
X(0, x) = x .

It can be seen
as a collection of trajectories X(·, x) labelled by x ∈ Rd ;
as a collection of diffeomorphisms X(t, ·) : Rd → Rd .
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Continuity/transport equation

Consider the related PDE, named continuity equation{
∂tµt + div (btµt) = 0 in (0,∞)× Rd

µ0 given.

When bt is sufficiently smooth and µt : Rd × [0,∞)→ R is a smooth
function, all derivatives can be computed.
Even if bt is only a bounded vector field and {µt}t∈[0,∞) is a
1-parameter family of finite measures, the PDE makes sense
distributionally.
When

divbt ≡ 0,

the continuity equation is equivalent to the transport equation

∂tµt + b · ∇µt = 0.
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Connection between continuity equation and flows

Solutions of the CE flow along characteristic curves of b
Given b, its flow X an initial distribution of mass µ0 ∈P

(
Rd), a

solution of the CE is
µt := X(t, ·)#µ0.

Recall that the measure X(t, ·)#µ0 is defined by∫
Rd
ϕ(x) d [X(t, ·)#µ0](x) =

∫
Rd
ϕ(X(t, x)) dµ0(x) ∀ϕ : Rd → R.

Indeed, for any test function ϕ ∈ C∞c (Rd ) we have

d
dt

∫
Rd
ϕ dµt = d

dt

∫
Rd
ϕ(X(t, x)) dµ0(x) =

∫
Rd
∇ϕ(X) · ∂tX dµ0

=
∫
Rd
∇ϕ(X) · bt(X) dµ0 =

∫
Rd
∇ϕ · bt dµt .

This is the distributional formulation of the continuity equation.
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Regularity of b matters

Is the solution of the continuity equation starting from µ0 unique?

YES if ∇b is bounded
Given a solution νt to CE, set ν̃t = X(t, ·)−1# νt . An analogous
computation shows that

d
dt

∫
Rd
ϕ d ν̃t = 0,

so
X(t, ·)−1# νt = ν̃t = ν0 = µ0 ⇒ νt := X(t, ·)#µ0.

NO if b is less regular
As soon as uniqueness for the ODE fails.
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Theory for smooth vector fields

Cauchy-Lipschitz Theorem
Let bt a vector field with ∇bt locally bounded. Then for every x ∈ Rd

there exists a unique maximal solution X(·, x) : [0,TX (x))→ Rd of
the ODE.

For every x ∈ Rd such that TX (x) <∞ the trajectory X(·, x) blows
up properly

lim
t→TX (x)

|X(t, x)| =∞.
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Nonsmooth theory: lack of uniqueness

One-dimensional autonomous vector field with lack of uniqueness

b(x) = 2
√
|x |, x ∈ R

Given x0 = −c2 < 0, the 1-parameter family of curves that stop at the
origin for an arbitrary time T ≥ 0, solve the ODE.

0

x

x0 = −c2

c

x

c + T

(t − c − T )2

−(t − c)2

t
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Nonsmooth theory: lack of uniqueness

x

t

x

t

Between all the possible integral curves, a “better selection” could be
made by the ones that do not stop in 0. In other words, we wish to
select a collection of integral curves that “do not concentrate”.
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Selection of a flow

Regular lagrangian flows
Given a vector field b : (0,T )× Rd → Rd , the map
X : [0,∞)× Rd → Rd is a regular Lagrangian flow of b if:
(i) for L d -a.e. x ∈ Rd , X(·, x) solves the ODE ẋ(t) = bt(x(t))

starting from x ;
(ii) X(t, ·)#L d ≤ CL d for every t ∈ [0,T ] and for some C > 0.

Theorem ([Di Perna-Lions ’89)

, [Ambrosio ’04]] Let us assume that |∇bt | ∈ L1loc(Rd ),
div bt ∈ L∞(Rd ) and

|bt(x)|
1 + |x | ∈ L1(Rd ) + L∞(Rd ).

Then there exists a unique regular Lagrangian flow X of b.
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Remarks on the DiPerna-Lions theorem

The regularity assumption |∇bt | ∈ L1loc(Rd ) can be replaced by

Assumption
For every compactly supported µ0 ∈ L∞(Rd ) there exists a unique
bounded, compactly supported solution of the CE starting from µ0.

This is satisfied by several classes of vector fields:
when locally ∇bt is a matrix-valued finite measure (namely, bt is
a function of bounded variation BVloc(Rd ;Rd ) function),
[Ambrosio 04];
by singular integrals of L1 functions, for instance convolutions of
the form h ∗ x

|x |d with h ∈ L1(Rd ), [Bouschut, Crippa 13] and of
measures, with some additional structure [Bohun, Bouschut,
Crippa 13].
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Remarks on the DiPerna-Lions theorem

a different approach to this result was proposed by [Crippa, De
Lellis, 08]. To show the uniqueness of the flow, they consider a
functional of the type

Φδ(t) :=
∫

log
(
1 + |X1(t, x)− X2(t, x)|

δ

)
dx t ∈ [0,T ];

the assumption div bt ∈ L∞(Rd ) can be weakened to

div bt ∈ BMO(Rd )

[Mucha, 2010], [C., Crippa, Spirito 2016].
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Idea of the proof - existence and uniqueness

The real difficulty is with uniqueness.
Well posedness of the CE ⇒ uniqueness of the flow. (in the
class of bounded, compactly supported solutions). Assume by
contradiction that there exists a set A ⊆ Rd such that two flows
X(·, x) and Y (·, x) start at every x ∈ A. Taking a subset, we can
assume that the two flows are disjoint at a later time t0.

X(·, x)

Y(·, x)

t0

Evolve L d |A with X and Y to violate the well posedness.
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Idea of the proof - well posedness

Proof of the well posedness of the CE.

Proposition ([DiPerna-Lions, ’89], [Ambrosio ’04])
for any divergence free b ∈ L1tW 1,1

x ,loc , u0 ∈ L∞c there exists a unique
solution u ∈ L∞t L∞x ,c to

∂tut + div (btut) = 0

The statement holds more in general when the integrability of ∇b is
coupled with the integrability of u (DiPerna-Lions range).
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Idea of the proof - well posedness

Proof of the well posedness of the CE.

Proposition ([DiPerna-Lions, ’89], [Ambrosio ’04])
Let r , p ∈ [1,∞] satisfy

1
p + 1

r ≤ 1.

Then, for any divergence free b ∈ L1tL1tW 1,r
x , u0 ∈ Lp

c there exists a
unique solution u ∈ L∞t Lp

x to

∂tut + div (btut) = 0

The statement holds more in general when the integrability of ∇b is
coupled with the integrability of u (DiPerna-Lions range).
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Idea of the proof - well posedness

By linearity, we show that any bounded, compactly supported solution
u(t, x) of the CE

∂tut + div (btut) = 0

u0(0, ·) = 0 =⇒ u(t, ·) ≡ 0 for any t > 0.

Formally, multiply the equation by u and integrate

d
dt

∫
Rd

u(t, x)2
2 dx =

∫
Rd

u∂tu dx = −
∫
Rd

u div (ub) dx

=
∫
Rd

u∇u · b dx =
∫
Rd

u2
2 div b dx

≤ C
∫
Rd

u2
2 dx

This computation doesn’t make sense because u is not regular.
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Idea of the proof - well posedness

We repeat the computation after convolving the equation with a
smooth kernel ρε. The function uε = u ∗ ρε solves

∂tuεt + div (btuεt ) = div (btuεt )− div (btut)ε = Cε(ut ,bt).

To handle the commutator, we employ the lemma

Lemma
If u ∈ L∞c (Rd ) and |∇b| ∈ L1loc(Rd ), then

lim
ε→0
Cε(u,b) = 0 in L1(Rd ).

Uniqueness ⇒ Existence. Consider a smooth approximation bε of
the vector field b by convolution and consider the approximating flows
Xε. They converge (in a suitable weak sense) to a limit collection of
curves, which is the limit flow by uniqueness.
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Two questions

Question: a.e. uniqueness of integral curves
Does any divergence free b ∈ L1tW 1,p

x admit a unique integral curve
(namely, γ ∈W 1,1(0,T ) solution of the ODE γ̇(t) = u(t, γ)) for a.e.
initial datum x ∈ Rd?

Open since the pioneering works of DiPerna-Lions and Ambrosio.

(Related) question: well posedness of the CE
Let b ∈ L1tW 1,p

x divergence free. Is the CE ∂tu + div (bu) = 0
well-posed in the class of positive solutions u ∈ L∞t Lr

x under the
minimal summability requirement 1

r + 1
p∗ < 1, namely 1

p + 1
r < 1 + 1

d ?

The answer to this second question is positive in the DiPerna-Lions’
range of exponents 1

r + 1
p ≤ 1.
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The case p > d : a.e. uniqueness

For any b ∈ Lip then

|b(x)− b(y)| ≤ C |x − y | ∀x , y ,

Let X(·, x) be the RLF, γx an integral curve from x ∈ Rd .

d
dt |X(t, x)− γx (t)| ≤ |b(X(t, x))− b(γx (t))|

≤ C |X(t, x)− γx (t)|

By Gronwall inequality, if b ∈ Lip we have everywhere uniqueness.
If b ∈W 1,p, p > d , we have a.e. uniqueness [Caravenna, Crippa -
Jabin].
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The case p > d : a.e. uniqueness

Lusin-Lipschitz inequality
For any b ∈W 1,p then there exists g ∈ Lp such that

|b(x)− b(y)| ≤ (g(x) + g(y))|x − y | ∀x , y p > 1,

Let X(·, x) be the RLF, γx an integral curve from x ∈ Rd .

d
dt |X(t, x)− γx (t)| ≤ |b(X(t, x))− b(γx (t))|

≤ C |X(t, x)− γx (t)|

By Gronwall inequality, if b ∈ Lip we have everywhere uniqueness.
If b ∈W 1,p, p > d , we have a.e. uniqueness [Caravenna, Crippa -
Jabin].
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|b(x)− b(y)| ≤ (g(x) + g(y))|x − y | ∀x , y p > 1,

|b(x)− b(y)| ≤ g(x)|x − y | ∀x p > d .

Let X(·, x) be the RLF, γx an integral curve from x ∈ Rd .

d
dt |X(t, x)− γx (t)| ≤ |b(X(t, x))− b(γx (t))|
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The case p > d : a.e. uniqueness

(Asymmetric) Lusin-Lipschitz inequality
For any b ∈W 1,p then there exists g ∈ Lp such that

|b(x)− b(y)| ≤ (g(x) + g(y))|x − y | ∀x , y p > 1,

|b(x)− b(y)| ≤ g(x)|x − y | ∀x p > d .

Let X(·, x) be the RLF, γx an integral curve from x ∈ Rd . We use
the asymmetric Lusin inequality

d
dt |X(t, x)− γx (t)| ≤ |b(X(t, x))− b(γx (t))|

≤ g(X(t, x))|X(t, x)− γx (t)|

By Gronwall inequality, if b ∈ Lip we have everywhere uniqueness.
If b ∈W 1,p, p > d , we have a.e. uniqueness [Caravenna, Crippa -
Jabin].
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The case p < d : uniqueness of RLF

Key observation: for a.e. x it holds∫ T

0
g(X(t, x)) dt <∞.

Indeed, integrating in x and by incompressibility∫ T

0
‖g(X(t, ·))‖Lp dt ≤ C

∫ T

0
‖g‖Lp dt ≤ CT‖∇b(t, ·)‖Lp <∞.

Does the Lusin-Lipschitz inequality imply uniqueness for p < d?
[Crippa, De Lellis] used it to infer uniqueness of the RLF.

d
dt |X(t, x)− γx (t)| ≤ |u(X(t, x))− u(γx (t))|

≤
(
g(X(t, x)) + g(γx (t))

)
|X(t, x)− γx (t)|

For a.e. x it holds
∫ T
0 g(X(t, x)) + g(Y (t, x)) dt <∞.
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Main result

If p < d then the a.e. uniqueness for trajectories does not hold.

Theorem ([B.-Colombo-DeLellis, ’20])
For every d ≥ 2, p < d and s <∞ there exist a divergence free
velocity field b ∈ Ct(W 1,p

x ∩ Ls
x ) and a set A ⊂ Td such that

L d (A) > 0;
for any x ∈ A there are at least two integral curves of u starting
at x.
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The case p = d

Ingredients of proof:
Ambrosio’s superposition principle to connect the a.e. uniqueness
of trajectories to uniqueness results for positive solutions to (CE).

Non-uniqueness theorem for positive solutions to (CE) based on
convex integration type techniques borrowed from
[Modena-Székelyhidi ’18].

What about the critical case p = d?
If ∇b ∈ L1tLd,1

x , the a.e. uniqueness for integral curves holds.
Recall that

‖f ‖Lr,q :=
(∫ ∞

0

(
λL d ({|f | ≥ λ})1/r

)q dxλ
λ

)1/q

and Lq ⊂ Ld,1 ⊂ Ld for any q > d .
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Lagrangian uniqueness vs Eulerian uniqueness

A measure valued solution µ ∈ L∞t (M+) to (CE) with velocity b is a
superposition solution if for µ0-a.e. x ∈ Td there exists
ηx ∈P(C([0,T ],Td )) such that

ηx is concentrated on integral curves of b starting at x ;
we have the representation formula µ = (et)#(µ0 ⊗ ηx ),∫

φ dµt =
∫ (∫

φ(γ(t)) dηx (γ)
)

dµ0(x).

Superposition solutions are averages of integral curves of u.

Theorem ( [Ambrosio ’04] )

Let b : [0,T ]× Td → Rd , µ ∈ L∞t (M+) solution of CE with∫ T

0

∫
|b(t, x)| dxµt(x) dxt <∞.

Then it is a superposition solution.
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Lagrangian uniqueness vs Eulerian uniqueness

A.e. uniqueness of integral curves implies uniqueness of positive
solutions to (CE).

Proposition
Let b ∈ L1tW 1,1

x divergence free whose integral curves are unique a.e.
and X its RLF.
Then positive solutions µ ∈ L∞t L1x to (CE) are unique and have the
representation

µt = (Xt)#µ0 for any t ∈ [0,T ].

Indeed, by the superposition principle and a.e. uniqueness of integral
curves, ηx ∈P(C([0,T ],Td )) must satisfy ηx := δX(·,t). Hence∫

φ dxµt =
∫ ∫

φ(γ(t)) d(γ) dµ0(x) =
∫
φ(X (t, x)) dµ0(x).
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Sharp summability, p > n

(Related) question: well posedness of the CE
Let u ∈ L1tW 1,r

x divergence free. Is the CE well-posed in the class of
positive solutions u ∈ L∞t Lp

x under the minimal summability
requirement 1

r + 1
p∗ < 1, namely 1

p + 1
r < 1 + 1

d ?

From Ambrosio’s superposition principle and the a.e. uniqueness of
integral curves for p > d we infer that

Corollary (Caravenna-Crippa 2018)
Let u ∈W 1,p, p > n. Positive solutions of CE are well-posed under
the minimal summability requirement u ∈ L∞L1.
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Interpolating I

Is there a (p-dependent) family of inequalities which interpolates
between

|b(x)− b(y)| ≤ (g(x) + g(y))|x − y | p < n

|b(x)− b(y)| ≤ g(x)|x − y | p > n

?

Theorem (Brué-Colombo-De Lellis (2020))
Let b ∈W 1,p, 1 < p < d, α ∈ [0, p

d ). Then there exists g ∈ Lp such
that

|u(x)− u(y)| ≤ (g(x) + g(x)αg(y)1−α)|x − y | ∀x , y .

Remark
The range of α is optimal.
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Interpolating II

Corollary
Let u ∈W 1,p, p < d. Positive solutions u ∈ L∞t Lr

x of the CE are well
posed in the range of exponent

1
r + 1

p < 1 + 1
d − 1

p − 1
p

This range but it is strictly contained in the range for which the
equations make sense 1

p + 1
r < 1 + 1

d . What happens in between?

Partial result by [Cheskidov, Luo ’20].
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Nonuniqueness by convex integration

If we produce an example of nonuniqueness of positive solutions of
the continuity equations in some range of exponents we have disproved
the a.e. uniqueness of integral curves.

Theorem ([B.-Colombo-DeLellis, ’20] )

Let d ≥ 2, p ∈ (1,∞), 1
p + 1

p′ = 1, r ∈ [1,∞] be such that

1
p + 1

r > 1 + 1
d .

Then there exist
a divergence-free vector field b ∈ Ct(W 1,r

x ∩ Lp′
x ),

a positive, nonconstant u ∈ CtLp
x with u(0, ·) = 1,

which solve CE.
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Remarks

The main theorem follows: any velocity field obtained in the
previous theorem does not have the a.e. uniqueness for integral
curves. Indeed

Since div b = 0, the function ū ≡ 1 solves CE.
The u constructed in this theorem is a second distinct solution!
As seen before, a.e. uniqueness of integral curves implies
uniqueness of positive solutions to (CE).

The construction is based on convex integration scheme, as in the
groundbreaking works [DeLellis-Székelyhidi, ’09-’13], [Isett ’16] for
the Euler equation and [Buckmaster-Vicol ’17] for Navier-Stokes.
The first ill-posedness result for (CE) with Sobolev velocity field
has been proven in [Modena-Székelyhidi, ’18], [Modena-Sattig,
’19].
Main novelties: positive solutions, a simpler convex integration
scheme in any dimension.
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The end

Thank you for your attention!
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