Vapnik-Chervonenkis Theory and the Independence Property in Model Theory

Sílvia Reis

LisMath Seminar

Lisbon, March 27th, 2015

1 VC-dimension: Combinatorics

2 VC-dimension: Model Theory

∃ ▶

Let X be a set, let \mathcal{F} be a family of subsets of X, and let $A \subseteq X$ be a set. Define

$$\mathcal{F} \cap A := \{F \cap A : F \in \mathcal{F}\} .$$

Definition

We say that a family \mathcal{F} shatters A if $\mathcal{F} \cap A = \mathcal{P}(A)$.

Remark: If $B \subseteq A$ and \mathcal{F} shatters A, then \mathcal{F} shatters B.

Definition (VC-dimension of a family of sets)

Let \mathcal{F} be a family of sets. The *VC-dimension of* \mathcal{F} , *VC*(\mathcal{F}), is defined as:

- The greatest *n* such that there is a set of cardinality *n* shattered by *F*, if such *n* exists;
- ∞ , otherwise.

Remark: If \mathcal{F} shatters a set of cardinality n and does not shatter any set of cardinality n + 1, then $VC(\mathcal{F}) = n$.

Definition (The shatter function)

Let X be a set, $\mathcal{F} \subseteq \mathcal{P}(X)$. We consider the function $\pi_{\mathcal{F}} : \mathbb{N} \to \mathbb{N}$, defined by:

$$\pi_{\mathcal{F}}(n) = \max_{\substack{A \subseteq X \\ |A| \leq n}} |\mathcal{F} \cap A| .$$

Remark: $VC(\mathcal{F}) < n$ if and only if $\pi_{\mathcal{F}}(n) < 2^n$.

Theorem (Sauer-Shelah Lemma)

Let \mathcal{F} be a family of sets with $VC(\mathcal{F}) \leq k$. Then, for $n \geq k$,

$$\pi_{\mathcal{F}}(n) \leq \sum_{i=0}^k \binom{n}{i}$$

In particular, $\pi_{\mathcal{F}}(n) = O(n^k)$.

1 VC-dimension: Combinatorics

Definition

Let $\phi(\bar{x}, \bar{y})$ be a formula. We say that a set A is *shattered* by ϕ if there is a family $(\bar{b}_I)_{I \in \mathcal{P}(A)}$ such that for every $\bar{a} \in A$,

$$\mathfrak{C} \vDash \phi(\bar{a}, \bar{b}_I) \Leftrightarrow \bar{a} \in I$$
.

_ **⊒** →

Definition

Let $\phi(\bar{x}, \bar{y})$ be a formula. We say that a set A is *shattered* by ϕ if there is a family $(\bar{b}_I)_{I \in \mathcal{P}(A)}$ such that for every $\bar{a} \in A$,

$$\mathfrak{C} \vDash \phi(\bar{a}, \bar{b}_I) \Leftrightarrow \bar{a} \in I$$
.

Definition (VC-dimension of a formula)

Let $\phi(\bar{x}, \bar{y})$ be a formula. The VC-dimension of ϕ is:

- The greatest natural number n such that there is a set of cardinality n shattered by φ, if such n exists;
- ∞ , otherwise.

Definition (Independence Property)

A formula $\phi(\bar{x}, \bar{y})$ is said to have the *Independence Property* if $VC(\phi)$ is infinite. A formula $\phi(\bar{x}, \bar{y})$ is said to be *NIP* (or *dependent*) if ϕ does not have the independence property.

Let $\phi(\bar{x}, \bar{y})$ be a formula. Given $\bar{b} \in \mathfrak{C}$, we define

$$\phi^{\mathfrak{C}}(\bar{x},\bar{b}) := \{\bar{a} \in \mathfrak{C} : \mathfrak{C} \vDash \phi(\bar{a},\bar{b})\} .$$

Remark

Let $\phi(\bar{x}, \bar{y})$ be a formula, and let $\mathcal{F} = \{\phi^{\mathfrak{C}}(\bar{x}, \bar{b}) : \bar{b} \in \mathfrak{C}\}$. Then

$$VC(\phi) = VC(\mathcal{F})$$
 .

VC-Dimension and the Independence Property

< ∃ →

Definition (NIP theory)

A theory T is said to be NIP if every formula of T is NIP.

VC-Dimension and the Independence Property

∃→ ∢∃→

Definition (NIP theory)

A theory T is said to be NIP if every formula of T is NIP.

Theorem (Shelah)

Let T be a theory, and assume every formula of T of the form $\phi(x, \bar{y})$ is NIP. Then T is NIP.

Definition (o-minimal theory)

A theory T is said to be *o*-minimal if:

- Models of *T* are linearly ordered;
- For every formula $\phi(x, \overline{b})$ and every $\overline{b} \in \mathfrak{C}$, the set $\phi^{\mathfrak{C}}(x, \overline{b})$ is a finite union of intervals.

Some examples of o-minimal theories:

- DLO;
- RCF;
- $Th(\mathbb{R}, +, -, \cdot, 0, 1, <, e^{x});$
- . . .

References

- H. Adler. Introduction to theories without the independence property. *Archive for Mathematical Logic*, to appear.
- N. Sauer. On the Density of Families of Sets. Journal of Combinatorical Theory, Series A 13: 145-147, 1972.
- S. Shelah. A Combinatorial Problem: Stability and Order for Models and Theories in Infinitary Languages. *Pacific Journal* of Mathematics 41: 247-261, 1972.
- P. Simon. A Guide to NIP Theories. Lecture Notes in Logic, ASL and Cambridge University, to appear.
- V. Vapnik and A. Chervonenkis. On the Uniform Convergence of the Frequencies of Occurence of Events to Their Probabilities. *Theory of Probability and its Applications*, 16(2): 264-280, 1971.