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This talk

« Will be mostly on Floquet-type systems, ie, periodically driven

« Describe the main problem with Floquet systems: Heating and the need to
prevent it

* Introduce and describe a closed/unitary prototypical disordered model
+ Breaking ergodicity via disorder: MBL
« Observe “time-crystalline” order

- Irtroducean-open{markevianimodel
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- A different direction:
« Breaking ergodicity via dynamical constraints



Thermodynamics and Thermalisation
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What is our overall goal?

Interesting phases of matter
far from equilibrium

(starting with time crystals)



Phases of matter in or out of equilibrium
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« Many-body system breaking spatial translational
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+ The analogous symmetry in time can be
continuous (static systems) or discrete
(periodically-driven, or Floquet, systems)

- If broken, the resulting phase might be called a time
crystal

- Breaks temporal translational invariance

« Name was used in 2012 for breaking a continuous
symmetry, which was promptly proven impossible
in 2013 and again in 2015

* For discrete symmetry, it is possible as shown in
2016 for Floquet systems

« Two main theoretical directions:
« Closed quantum systems
« Open systems (environment)

« Experiments



Thermodynamics and Thermalisation in Floquet systems

Thermalisation in periodically-driven quantum systems

* Hamiltonian varies periodically in time H(t) = H(t+ T)
Purely unitary time evolution, example Hamiltonian (hard-core bosons in 1d)

L—1 L—1
1
H(t) = = (J + 8 cos(wt)) D bl +V Y ninig
i=1 i=1
Heating up:
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Lazarides et al. (2014), D’Alessio et al. (2014), Ponte et al. (2015)



Closed Floquet “time crystals”: How and what

Key idea: Prevent heating by ergodicity breaking (due to localisation)

1 Does localisation prevent heating to infinite temperatures ?

2 Do any “interesting” phases, exclusive to Floquet systems appear?

ie, not mimicking some static model or system but “genuinely out of equilibrium’

3  What is the phenomenology and mechanism of emergence of these phases?



Does localisation prevent heating to infinite temperatures?

Ho =~ (J +38J(t ZbTb@H—I—S‘VYanT—I—ZUm

U, € [-W,W]; weak driving: 6J(¢t)/W < 1/80 10

SJ(t) = 0, mod (t,T) < T/2
| =4J, mod (t,T)>T/2

AL, A. Das, R. Moessner (2015)
P. Ponte, Z. Papic, F. Huveneers, A.
Abanin (2015)
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Experiment: Bordia, Luschen, Schneider, Knap, Bloch, Nat. Phys. 2017
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Interesting phases?




Interesting phases? Yes.

Minimal model: Driven disordered TFIM 2
Hy=-h) .o%, 0<t<T/2
) ={ T U o
Jp Ti2 0 T
Unitary time-evolution operator has Zs Ising symmetry
T trivial
Up =T exp —z'/ dtH (t)
0 0
= exp(—iH>T/2) exp(—iH,T/2) 0 2

h T/2

Region in parameter space (ie, a phase, labelled 1) with paired but not degenerate
eigenstates (cf static Ising model in FM phase), cartoon:

w,£) = (AT AN UL ) V2 B (w070 |, £) #0 i — ] = oo
with, instead of degeneracy (as in static TFIM), the following relation

Ur |w, +) = exp(—iwT) |w, +)

UF |w7 _> - = eXp<_iWT) ‘wv _>
Khemani, AL, Moessner, Sondhi PRL 2016
AL, Moessner, PRB 2017



Implications of eigenstate structure

Minimal model: Driven disordered TFIM in 1t phase.
Ur |w,+) = £ exp(—iwT) |w, =)
s
+1 = (— '—T)
exp ZT

w,£) = (I D) £ [ ) /V2

Pick locally correlated initial state:

[9) = (Jw, =) + lw, +)) /V2 = 14T .. )

Stroboscopic time evolution,

(Vn] O [Yn) = (Wat] 0 wat) + (Wa—] O |wa—)
+(-1)" ({wa—| O lwat) — {wat] O lwa—))

Therefore this class of initial states oscillates with
twice the period of the driving

W) TI2

NS

Vn) = Up [¥), pick some operator O:

0T

trivial

h T/2

Khemani, AL, Moessner, Sondhi PRL 2016

AL, Moessner, PRB 2017
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Eigenstate structure
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Start in locally correlated state,

display order in space, 8

oscillate in time for all time: a
purely dynamical phenomenon
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Summary

* Glassy order in all eigenstates (“infinite-temperature order”)

* Disorder plays two roles: 0123456 7
* prevents heating by breaking ergodicity 0
* allows for structure in eigenstates
* Initial state breaks symmetry spatially, temporal 2
symmetry also broken (“forever”) = 4
* \ery delicate effect: sensitive to exposure to external ]
environment (AL, Moessner, PRB 2017) g 6

* related experiments:
e Choi et al (Lukin group) and Zhang et al (trapped ions, 8
Monroe group), both Nature 2017
* Rovny et al (Barrett group) and Pal, Nishad, Mahesh,
Sreejith (NMR, both 2018)

space, |



Why is this not just a pendulum?

* A pendulum only oscillates forever if it is a single degree of freedom-motion

lost to entropy otherwise: CoM motion degenerates into internal degrees
of freedom (heat)

* Here, as long as finite imbalance initially— perpetual oscillations



Why is this not just a pendulum?

* A pendulum only oscillates forever if it is a single degree of freedom-motion
lost to entropy otherwise

* Here, as long as finite imbalance initially— persistent oscillations
* More sophisticated viewpoint:

Usual spontaneous symmetry breaking (eg, TFIM):
(07) =0
lim <afaj> =C#0

|i—j|—o0

in eigenstates
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* A pendulum only oscillates forever if it is a single degree of freedom-motion
lost to entropy otherwise

* Here, as long as finite imbalance initially— persistent oscillations
* More sophisticated viewpoint:

Usual spontaneous symmetry breaking (eg, TFIM):
(07) =0
lim <Ofaj> =C#0

|i—j|—o0

in eigenstates

Discrete Time Crystal:

<O_,; (t)> —0 in floquet states

1

lim (o7 (0)oi (t)) = f(t) = f(t+T) #0
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Constrained Systems

Common thread in Floquet systems: preventing heating by ergodicity breaking

1 How else can we break ergodicity? Interesting problem in itself

2 Draw inspiration from classical glassy models

3 Focus on dynamically constrained models



Fock space

* Generic many-body spin Hamiltonian = tight binding Hamiltonian on the Fock space graph

H = Z & | IH]{I| + Z I x| [){K| |I) = Fock-basis state
I I#K

* For example, a disordered spin-1/2 chain
H= ) [, + ho' +To}]
i

|I) = o product state

e Or the Quantum Random Energy Model (QREM)

Horem = Z & N }{I| +F26ix
I i

1

Gaussian IRVs



Constrained dynamics

— switch off some links on the Fock space thereby creating bottlenecks

Example
— start with the QREM as our reference unconstrained model (always delocalised)
Baldwin+Pal+Laumann+Scardichhio
Horpm = Z I + FZ c; PRB (2016)
I i
é % AWA\

Gaussian IRVs spins free to flip )‘ ‘W‘:vl‘t‘"
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— There is no localised phase in the QREM: Eigenstates extended
(in Fock space)

Roy and AL, Phys Rev Research 2020



Constrained dynamics

— switch off some links on the Fock space thereby creating bottlenecks

Example
— start with the QREM as our reference unconstrained model (always delocalised)

Baldwin+Pal+Laumann+Scardichhio
Horew = ), &1 +T ) of PRB (2016)

— L NSNS
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— There is no localised phase in the QREM: Eigenstates extended

(in Fock space) VZ A
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— introduce East-glass type constraints (“EastREM”...)

Hgosrem = ), S DU + = Z X1+ 6%

it

Gaussian IRVs a spin can flip only if the
one to its right is up

Roy and AL, Phys Rev Research 2020



Constraints: What do they do in Fock space?

)
HpasrEM = Z &l 1)1| +EZ o;(1+07))
I i

[ e
HRLB Rt

T—» Frozen block of spins; can melt only from the right; arrested dynamics !!

On Fock space

e Constraints switch off some of the links

* Increase the typical distance between two
nodes

* Decrease the number of paths between two
nodes

Roy and AL, Phys Rev Research 2020



Constraints: can they stabilise a full MBL phase?

Constraints clearly disfavour delocalisation but can they stabilise localisation?
— spectral properties of the EastREM suggest an affirmative answer

— dynamical autocorrelations also do so I
H = E & | DH{| +— E o’(1 + %))
— analytical results agree with numerics FastREM 7 ! 2 l. ’ w+l
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Constraints: Is there a random matrix-like structure for this?

+ “Random Matrix Theory”: Minimally-structured matrix that behaves like a Hamiltonian
with the properties of interest (here, that shows EastREM phenomenology)
« What is the “structure” we wish to preserve here? Clustering:

PRI = S Doy

N/2 N/2 (a)
Cluster# O : \rl/\l/ ...... \ng O oo 0o o O /]\\’
N/i_l N/{Q GOE cluster 0 GOE cluster 1 GOE cluster 2 GOE cluster 3
Cluster# 1 : l\l/ ...... \E/]\ g QO oo 00 o O %’
) (b) EastREM (c) GOEastREM
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Overall conclusions

* Unitary system: relies on structure of eigenstates and eigenvalues of propagator
* Requires disorder
* “Fundamentally quantum” (relies on coherences)

* Constrained system: ergodicity breaking due to constraints
e Does it support interesting phases? Future work...
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