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Some History...
Elementary Geometries

Metamathematical Results

Objective

In this presentation we will see some important metamathematical
results about some elementary axiom systems of plane geometry.

By �elementary � one means, in the words of Alfred Tarski:

�(...) that part of Euclidean geometry which can be formulated and

established without the help of any set-theoretical devices.� [4]
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Some History

Euclid's Elements was the �rst axiomatic presentation of
mathematics, based on his �ve postulates and �common notions�.
In 1899, David Hilbert presented a rigorous revision of Euclid's
axiomatics, �lling in the many gaps in his de�nitions and proofs.

Researchers who succeeded Hilbert accomplished the
disengagement of elementary geometry from the system of real
numbers:

�Elementary Euclidean geometry is a much more ancient and simple

subject than the axiomatic theory of real numbers (...)� [1]

As Robin Hartshorn [3] said, [without real numbers] �the true

essence of geometry can develop most naturally and economically.�
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Hilbert planes
Pythagorean planes
Euclidean planes
Tarski's elementary Geometry

Hilbert planes

In David Hilbert's Grundlagen der Geometrie (�Foundations of
Geometry�), published in 1899, Hilbert provided axioms reparing
the many gaps in Euclid's proofs.
Hilbert worked with a two-sorted �rst-order language (�rst-order
variables are used to denote �points� and �lines�), a relation of
betweenness, a relation of congruence and a relation of incidence
(to mean that a point x lies on a line `).
Five groups of axioms:

I Incidence

II Betweenness (or Order)

III Congruence

IV Parallelism axiom

V Continuity axiom
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Models of the axioms in I, II and III are called Hilbert planes.

The study of Hilbert planes allows for the study of straightedge and
compass constructions in plane geometry (Greenberg [1]).
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Pythagorean planes

The axioms for a Hilbert plane eliminate the possibility that there
are no parallels at all � given a line ` and a point P not on `, the
�standard construction� proves that exists a line m passing through
P parallel to `.
Now include a new axiom (by John Playfair):

HILBERT'S EUCLIDEAN AXIOM OF PARALLELS (IV)

For every line ` and every point P not on `, there does not exist
more than one line through P parallel to `.

For Hilbert planes, this axiom is equivalent to Euclid's �fth
postulate.
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Models of I, II, III and IV are called Pythagorean planes.

The Pythagorean Theorem holds for all right triangles in a
Pythagorean plane � because the theory of similar triangles holds.

If P is a Pythagorean plane then it's possible, by �xing a line ` and
a point �O� on that line, to de�ne an ordered �eld F .
That �eld will be called a Pythagorean �eld since for all a, b ∈ F√
a2 + b2 ∈ F .

If we now consider the Cartesian plane F 2, we will have F 2 ' P.

2015 Pedro Miguel Santos Pinto Elementary Geometry 8/ 22



Some History...
Elementary Geometries

Metamathematical Results

Hilbert planes
Pythagorean planes
Euclidean planes
Tarski's elementary Geometry

Models of I, II, III and IV are called Pythagorean planes.
The Pythagorean Theorem holds for all right triangles in a
Pythagorean plane � because the theory of similar triangles holds.

If P is a Pythagorean plane then it's possible, by �xing a line ` and
a point �O� on that line, to de�ne an ordered �eld F .
That �eld will be called a Pythagorean �eld since for all a, b ∈ F√
a2 + b2 ∈ F .

If we now consider the Cartesian plane F 2, we will have F 2 ' P.

2015 Pedro Miguel Santos Pinto Elementary Geometry 8/ 22



Some History...
Elementary Geometries

Metamathematical Results

Hilbert planes
Pythagorean planes
Euclidean planes
Tarski's elementary Geometry

Models of I, II, III and IV are called Pythagorean planes.
The Pythagorean Theorem holds for all right triangles in a
Pythagorean plane � because the theory of similar triangles holds.

If P is a Pythagorean plane then it's possible, by �xing a line ` and
a point �O� on that line, to de�ne an ordered �eld F .
That �eld will be called a Pythagorean �eld since for all a, b ∈ F√
a2 + b2 ∈ F .

If we now consider the Cartesian plane F 2, we will have F 2 ' P.

2015 Pedro Miguel Santos Pinto Elementary Geometry 8/ 22



Some History...
Elementary Geometries

Metamathematical Results

Hilbert planes
Pythagorean planes
Euclidean planes
Tarski's elementary Geometry

Models of I, II, III and IV are called Pythagorean planes.
The Pythagorean Theorem holds for all right triangles in a
Pythagorean plane � because the theory of similar triangles holds.

If P is a Pythagorean plane then it's possible, by �xing a line ` and
a point �O� on that line, to de�ne an ordered �eld F .
That �eld will be called a Pythagorean �eld since for all a, b ∈ F√
a2 + b2 ∈ F .

If we now consider the Cartesian plane F 2, we will have F 2 ' P.

2015 Pedro Miguel Santos Pinto Elementary Geometry 8/ 22



Some History...
Elementary Geometries

Metamathematical Results

Hilbert planes
Pythagorean planes
Euclidean planes
Tarski's elementary Geometry

Euclidean planes

Some results of the plane geometry in Euclid's Elements may still
fail in Pythagorean planes.
Consider the following statements:

TRIANGLE THEOREM (EUCLID I.22)

Given three segments such that the sum of any two is greater than
the third, a triangle can be constructed having its sides congruent
to those segments.

LINE-CIRCLE AXIOM

If a line passes through a point inside a circle, then it intersects the
circle in two distinct point.
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CIRCLE-CIRCLE AXIOM

If a circle passes through a point inside and a point outside another
circle, then the two circles intersect in two distinct points.

• The Line-Circle and the Circle-Circle axioms are examples of
elementary continuity axioms � elementary in the sense that they
only refer to lines and/or circles.

• In his very �rst proposition I.1 � the construction of an equilateral
triangle on any base �, Euclid makes use of the Circle-Circle
continuity:

Euclid I.1

Euclid I.1 does not holds in all Hilbert planes.
(It does, however, holds in all Pythagorean planes, by a di�erent
construction, using the fact that the Pythagorean �eld F 3

√
3.)
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In Hilbert planes, Circle-Circle, Line-Circle and the Triangle
Theorem are all equivalent.

Any model of I, II, III, IV and the Circle-Circle Axiom is called an
Euclidean plane.

Any Euclidean plane is isomorphic to a Cartesian plane F 2, where F

is some arbitrary Euclidean �eld � an ordered �eld in which every
positive element has a square root, i.e.,
∀a ∈ F (a > 0→ ∃b ∈ F b2 = a).
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To sum up...

I, II, III ⇒ Hilbert planes

+ IV ⇒ Pythagorean planes

+ Circle-Circle Axiom ⇒ Euclidean planes

and also...

Every plane geometric proposition in Euclid's Elements can be
proved from I, II, III, IV and the Circle-Circle Axiom.
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Tarski's elementary Geometry

Tarski's �rst order axiom system for Euclidean geometry has a
single primitive notion of �point� (is one-sorted) and two relations
among points:

Betweenness � β(x , y , z) (y is between x and z)

Equidistance � xy ≡ uv (≡ (x , y , u, v) , x is as distant from y

as u is from v)

He de�ned the relation of �collinearity� of three points in terms of
β, and so he did not need �line� as a primitive notion:

�x , y and z are collinear� ⇔ β(x , y , z) ∨ β(x , z , y) ∨ β(y , x , z)
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If we consider

DEDEKIND'S CUT AXIOM (V)

∀X ,Y
(
∃z∀x , y (x ∈ X ∧ y ∈ Y → β(z , x , y))

→ ∃u∀x , y (x ∈ X ∧ y ∈ Y → β(x , u, y))
)

Then, any model of I, II, III, IV and V is called a real Euclidean

plane, (R2).
Tarski gave an �elementary� version of this axiom:

ELEMENTARY AXIOM SCHEMA OF CONTINUITY ((V)
elem

)

∃z∀x , y (ϕ(x) ∧ ψ(y))→ β(z , x , y)
)

→ ∃u∀x , y (ϕ(x) ∧ ψ(y))→ β(x , u, y)
for every formulas ϕ and ψ
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We call the models of Tarski's elementary plane geometry
Tarski-elementary Euclidean planes.

Any such model is isomorphic to a Cartesian plane F 2, where F is a
real-closed ordered �eld � an Euclidean �eld in which every
polynomial of odd degree has a root.

To sum up...

Hilbert planes ⊃ Pythagorean planes ⊃ Euclidean planes ⊃
⊃ Tarski-elementary Euclidean planes ⊃ the real Euclidean plane
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Arithmetic

Recall that the Second-Order Arithmetic theory (in the language
with 0, S , +, ·, =, < and ∈), contains as one of its axioms

INDUCTION AXIOM

∀X
(
0 ∈ X ∧ ∀x

(
x ∈ X → S(x) ∈ X

))
→ ∀x (x ∈ X )

and that if we replace it by its �elementary� axiom schema of
induction,

ELEMENTARY AXIOM SCHEMA OF INDUCTION[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(S(x))

)]
→ ∀x ϕ(x),

for every formula ϕ.

we end up with an axiom system for First-Order Peano Arithmetic.
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De�nition

A theory is decidable if there is an algorithm for determining
whether or not an arbitrary statement in the language of the theory
is provable.

It is well known that PA is incomplete � there exists a sentence ϕ
such that neither ϕ nor ¬ϕ is provable in PA � and essentially

undecidable � i.e., any consistent extension of PA is undecidable.
In particular, the set {ϕ | ϕ is true in N} is undecidable.

Also...
(K.Gödel) No �nitary proof of the consistency of PA is possible.
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Geometry

In comparison...

[Recall that every Tarski-elementary Euclidean plane is isomorphic
to F 2, where F is some real-closed ordered �eld.]

As Descartes showed, every geometric statement ϕ about the plane
F 2 translates into an algebraic statement ϕ∗ about F , and so:

TEG ` ϕ ↔ RCOF ` ϕ∗,

where TEG denotes the Tarski's Elementary Geometry theory and
RCOF the theory of real-closed ordered �elds.
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Theorem (Tarski)

RCOF is a complete theory.

Fact 1. RCOF is a decidable theory.

Fact 2. {ϕ ∈ LRCOF | R � ϕ} is decidable.

Also...
Contrary to arithmetic, it is possible to give a �nitary proof of
consistence for RCOF (e.g. Ferreira [6]).

The theory of the Tarski-elementary Euclidean planes is complete,
decidable and has a �nitary proof of consistence.
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Surprisingly...

Ziegler proved that any �nitely axiomatizable �rst-order theory of
�elds, having the real number �eld R as a model must be
undecidable.

This includes the theory of �elds, the theory of ordered �elds, the
theories of Pythagorean ordered �elds and of Euclidean �elds.

Theorem

The theory of Euclidean �elds is undecidable.

2015 Pedro Miguel Santos Pinto Elementary Geometry 20/ 22



Some History...
Elementary Geometries

Metamathematical Results

Arithmetic
Geometry
Final Remarks

Final Remarks

Surprisingly...
Ziegler proved that any �nitely axiomatizable �rst-order theory of
�elds, having the real number �eld R as a model must be
undecidable.

This includes the theory of �elds, the theory of ordered �elds, the
theories of Pythagorean ordered �elds and of Euclidean �elds.

Theorem

The theory of Euclidean �elds is undecidable.

2015 Pedro Miguel Santos Pinto Elementary Geometry 20/ 22



Some History...
Elementary Geometries

Metamathematical Results

Arithmetic
Geometry
Final Remarks

Final Remarks

Surprisingly...
Ziegler proved that any �nitely axiomatizable �rst-order theory of
�elds, having the real number �eld R as a model must be
undecidable.

This includes the theory of �elds, the theory of ordered �elds, the
theories of Pythagorean ordered �elds and of Euclidean �elds.

Theorem

The theory of Euclidean �elds is undecidable.

2015 Pedro Miguel Santos Pinto Elementary Geometry 20/ 22



Some History...
Elementary Geometries

Metamathematical Results

Arithmetic
Geometry
Final Remarks

As before, we have

EPG ` ϕ ↔ EF ` ϕ∗,

where EPG denotes the Euclidean plane Geometry theory and EF
the theory of Euclidean �elds.

It follows that the Euclidean plane Geometry is undecidable:

�Elementary Euclidean geometry is genuinely creative, not

mechanical� [1]
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