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Motivation



Complex line and principal C×-bundles

Given a smooth manifold M the structures of complex line bundles over

M and principal C×-bundles over M are equivalent in the following sense:

Given a line bundle L→ M denote by L+ = L− Z (M) where Z : M → L

is the zero section. Then L+ → M defines a principal C×-bundle over M.

Conversely, given a principal C×-bundle P → M we denote by P ×C× C
the complex line bundle defined as follows: P ×C× C = P × C/C× where

the action is given by λ · (y ,w) = (λ−1 · y , λw).

The assignments L 7→ L+ and P 7→ P ×C× C give an equivalence of

categories between the category of complex line bundles over M and the

category of principal C×-bundles over M.
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Complex line and principal C×-bundles

The notion of the tensor product of complex line bundles L⊗ L′ defines

an abelian group structure on the set of isomorphism classes of line

bundles over M. This group is also called the Picard group and denoted

by Pic∞(M).

The equivalent notion for principal bundles is called the contracted

product and we also denote it by P ⊗ P ′. It is given by

P ⊗ P ′ = (P ×M P ′)/C× where λ · (y1, y2) = (λ−1 · y1, λ · y2).

If we denote the group of isomorphism classes of principal bundles by

PrinC×(M) then it is isomorphic to the Picard group via the equivalence

of categories.
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Classification of line bundles

Given a line bundle L→ M consider L+ and choose a trivializing covering

of M. Then we can find sections si ∈ Γ(Ui , L
+|Ui ). Hence on double

intersections Uij we define gij = si
sj

: Uij → C×. Then (gij) defines a

1-cocycle with coefficients in the sheaf C×M .

Theorem

There is an isomorphism of groups:

Pic∞(M)
∼−→ H1(M,C×M)

[L]→ [(gij)]

Then the exponential short exact sequence implies that

Pic∞(M) ∼= H2(M;Z)
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Bundle Gerbes



The Fundamental Complex

In the theory of bundles open coverings play an important role. We want

to find a nice language how to deal with open coverings and which allows

us to define structures on them.

Let M be a manifold and U = {Uα} an open covering of M. Then we

define

YU =
∐
α

Uα

This manifold comes equipped with a projection map π : YU → M which

is a surjective submersion.
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The Fundamental Complex

Notice that given any surjective submersion π : Y → M there is an open

covering U of M such that

YU Y

M

π

since π allows local sections.

Therefore we will use the language of surjective submersions π : Y → M.
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The Fundamental Complex

Given a surjective submersion π : Y → M consider the fiber product

Y [2] = Y ×M Y which comes equipped with a surjective submersion

Y [2] → M.

Y
[2]
U is given by the disjoint union of 2-fold intersections of the open

covering.

The p-fold fiber product Y [p] comes equipped with a family of projections

πi : Y [p] → Y [p−1]

(y1, ..., yp) 7→ (y1, ..., ŷi , ..., yp)
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7



The Fundamental Complex

Given a surjective submersion π : Y → M consider the fiber product

Y [2] = Y ×M Y which comes equipped with a surjective submersion

Y [2] → M.

Y
[2]
U is given by the disjoint union of 2-fold intersections of the open

covering.

The p-fold fiber product Y [p] comes equipped with a family of projections

πi : Y [p] → Y [p−1]

(y1, ..., yp) 7→ (y1, ..., ŷi , ..., yp)
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The Fundamental Complex

Definition/Proposition

Given a surjective submersion π : Y → M consider the space of q-forms

on Y [p−1] and define

δ : Ωq(Y [p−1])→ Ωq(Y [p])

given by

δ(α) =

p∑
i=1

(−1)i−1π∗i (α)

as the alternating sum of the pullback of forms via the projection maps.

The resulting complex

0→ Ωq(M)
π∗−→ Ωq(Y )

δ−→ Ωq(Y [2])→ · · ·

is called the fundamental complex and is exact for all q = 0, 1, 2, . . . .
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The Fundamental Complex

The differential δ acts on all the objects which have a notion of pullback

and form abelian groups under certain operations.

• Given a principal C×-bundle P → Y [p−1] we can act with δ in the

following way

δ(P) = π∗1 (P)⊗ π∗2 (P∗)⊗ π∗3 (P)⊗ · · ·

principal bundle on Y [p].

• Given a principal C×-bundle P → Y [p−1] and a section s ∈ Γ(P) we

have

δ(s) = π∗1 (s)⊗ π∗2 (s∗)⊗ π∗3 (s)⊗ · · · ∈ Γ(δ(P))

• δ(δ(P)) is canonically the trivial bundle on Y [p+1].
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Bundle Gerbes

Definition

A bundle gerbe on a manifold M is a triple (P,Y ,M) of manifolds,

where π : Y → M is a surjective submersion and P → Y [2] is a

principal C×-bundle which carries a product. That is, an isomorphism

of principal C×-bundles over Y [3]

m : π∗3P ⊗ π∗1P
∼−→ π∗2P

satisfying an associativity condition.

Remark

Given (y1, y2, y3) ∈ Y [3] the bundle gerbe multiplication gives an

isomorphism on the fibers

m(y1,y2,y3) : P(y1,y2) ⊗ P(y2,y3)
∼−→ P(y1,y3)
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Bundle Gerbes

Remark

Considering the isomorphisms of the fibers, the associativity condition

reads

P(y1,y2) ⊗ P(y2,y3) ⊗ P(y3,y4) P(y1,y3) ⊗ P(y3,y4)

P(y1,y2) ⊗ P(y2,y3) P(y1,y4)

id⊗m(y2,y3,y4)

m(y1,y2,y3)⊗id

m(y1,y3,y4)

m(y1,y2,y4)

for any (y1, y2, y3, y4) ∈ Y [4].
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Bundle Gerbes

Remark

Let π : Y → M be a surjective submersion.

• Given a principal C×-bundle Q on Y , the bundle δ(Q) on Y [2]

naturally carries a bundle gerbe product. Indeed, for

(y1, y2, y3) ∈ Y [3] consider the fiber

(π∗3δ(Q)⊗ π∗1δ(Q))(y1,y2,y3) = δ(Q)(y1,y2) ⊗ δ(Q)((y2,y3))

= Qy2 ⊗ Q∗y1
⊗ Qy3 ⊗ Q∗y2

∼= Qy3 ⊗ Q∗y1

= π∗2δ(Q)(y1,y2,y3)

• Given a bundle gerbe (P,Y ,M) the bundle gerbe product on P

forces the bundle δ(P) on Y [3] to be trivial. Hence equivalently, one

can define a bundle gerbe product as a global section

s ∈ Γ(Y [3], δ(P)) such that δ(s) = 1 is equal to the canonical

non-vanishing section of the trivial bundle δ(δ(P)).
12



Product of Bundle Gerbes

Definition

Let (P,Y ,M) and (P ′,Y ′,M) be two bundle gerbes over M. Then

consider the fiber product Y ×M Y ′ → M which is again a surjective

submersion. Let p1 : Y ×M Y ′ → Y and p2 : Y ×M Y ′ → Y ′

projections. Then p
[2]
1
∗P ⊗ p

[2]
2
∗P ′ defines a principal C×-bundle on

(Y ×M Y ′)[2]. Denote this bundle by P ⊗M P ′ and notice that given

((y1, y
′
1), (y2, y

′
2)) ∈ (Y ×M Y ′)[2] this bundle has fibers

(P ⊗M P ′)((y1,y ′1 ),(y2,y ′2 )) = P(y1,y2) ⊗ P ′(y ′1 ,y ′2 )

therefore this bundle carries an induced bundle gerbe product. This

defines (P ⊗M P ′,Y ×M Y ′,M) as the product bundle gerbe of

(P,Y ,M) and (P ′,Y ′,M).
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The trivial Bundle Gerbe

Definition

A bundle gerbe (P,Y ,M) is said to be trivial if there exists an

isomorphism of bundle gerbes

(φ, id, id) : (δ(Q),Y ,M)→ (P,Y ,M)

where Q is a principal C×-bundle over Y .
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Dixmier-Douady Class

Want to associate a cohomology class DD(P,Y ) ∈ H3(M;Z) to any

bundle gerbe (P,Y ,M).

• Choose U = {Uα} a good open covering of M such that we obtain

sections sα : Uα → Y . On 2-fold intersections we obtain sections

(sα, sβ) : Uαβ → Y [2].

• Denote by Pα,β = (sα, sβ)∗P the pullback principal bundle over Uαβ .

• Since U = {Uα} is a good open covering we have that Uαβ is

contractible and therefore there are sections σαβ : Uαβ → Pα,β .

• Define a map gαβγ : Uαβγ → C× by

m(σαβ(x)⊗ σβγ(x)) = gαβγ(x)σαγ(x)

(This is possible since the bundle gerbe product induces

isomorphisms on the fibers)
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Dixmier-Douady Class

• The associativity condition of the bundle gerbe product implies that

gαβγ satisfies the cocycle condition, i.e.

[gαβγ ] ∈ Ȟ2(U ;C×M)→ H2(M;C×M)

• The short exact sequence

0→ Z→ C exp(2πi−)−−−−−−→ C× → 1

induces a long exact sequence in sheaf cohomology. Then using that

the sheaf CM is soft (partition of unity) shows eventually that

H2(M;C×M)
∼−→ H3(M;ZM) = H3(M;Z)

[gαβγ ] 7→ DD(P,Y )
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Properties of the DD-Class

The Dixmier-Douady class satisfies analogue properties such as the first

Chern class of a complex line bundle. More precisely we have:

Proposition

Let (P,Y ,M) and (Q,X ,M) be bundle gerbes on M. Then

1. DD(P ⊗M Q,Y ×M X ) = DD(P,Y ) + DD(Q,X )

2. The dual bundle gerbe (P∗,Y ,M) satisfies

DD(P∗,Y ) = −DD(P,Y )

3. Given a smooth map f : N → M then the pullback gerbe

(f ∗P, f ∗Y ,N) satisfies

DD(f ∗P, f ∗Y ) = f ∗DD(P,Y )

4. DD(P;Y ) = 0 if and only if (P,Y ,M) is a trivial bundle gerbe.
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Stable isomorphism of Bundle Gerbes

The last property shows that isomorphisms of bundle gerbes are too

strong to behave well under taking Dixmier-Douady classes. Therefore we

introduce the appropriate notion of stable equivalence.

Definition

Two bundle gerbes (P,Y ,M) and (Q,X ,M) are said to be stably

isomorphic if there are principal C×-bundles T1,T2 over Y ×M X and

isomorphisms

p
[2]
1
∗P ⊗ δ(T1) ∼= δ(T2)⊗ p

[2]
2
∗Q

of principal bundles over (Y ×M X )[2] commuting with the bundle gerbe

product.
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Classification of Bundle Gerbes

Theorem

Two bundle gerbes (P,Y ,M) and (Q,X ,M) have the same

Dixmier-Douady class if and only if they are stably isomorphic. In

particular we have that the group of stable isomorphism classes of

bundle gerbes on M is isomorphic to H3(M;Z).
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The DD-class of a Bundle gerbe and the 3-curvature

Basically the construction of a DD-class has been a generalization of the

construction of a cocycle characterizing a complex line bundle. Endowing

complex line bundles with a connection, one can show that the

cohomology class of the 2-curvature is in relation with the class of the

characterizing cocycle. We want to introduce bundle gerbe connections

and give an analogue construction of a 3-curvature on bundle gerbes.

Definition

Let (P,Y ,M) be a bundle gerbe. Denote by L the associated complex

line bundle over Y [2]. Then notice that the bundle gerbe product on P

induces a product on L. A bundle gerbe connection is a connection ∇L

on L such that

π∗1∇L + π∗3∇L = m−1
L ◦ π

∗
2∇L ◦mL
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Bundle Gerbe connection

Remark

• Recall that a connection ∇L on L is an assignment

∇L : Γ(L)→ Ω1(Y [2])⊗ Γ(L)

Then given two line bundles L, L′ on Y [2] and two connections ∇L

and ∇L′ there is a connection on L⊗ L′ given by

(∇L +∇L′)(s ⊗ s ′) = s ⊗∇L′(s
′) +∇L(s)⊗ s ′

• the connection m−1
L ◦ π∗2∇L ◦mL is given by

Γ(π∗1L⊗ π∗3L) Ω1(Y [3])⊗ Γ(π∗1L⊗ π∗3L)

Γ(π∗2L) Ω1(Y [3])⊗ Γ(π∗2L)

mL

π∗2∇L

id⊗m−1
L
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Curving and 3-curvature of a Bundle Gerbe

It can be shown that any bundle gerbe (P,Y ,M) may be endowed with a

bundle gerbe connection.

Given ∇ a bundle gerbe connection on (P,Y ,M) let K = K∇ denote the

corresponding curvature 2-form on Y [2]. It can be shown that since ∇ is

a bundle gerbe connection we have that δ(K ) = 0. By exactness of the

fundamental complex we have

K = δ(f )

for some f ∈ Ω2(Y ).

Such a choice of f is unique up to pullback of 2-forms on M (See first

arrow in fundamental complex). A choice of f is called a curving of the

bundle gerbe connection.
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Curving and 3-curvature of a Bundle Gerbe

Let f be a curving of ∇ on (P,Y ,M), then since K is closed it follows

δ(df ) = dδ(f ) = 0

hence again by exactness of the fundamental complex there is a 3-form ω

on M such that δ(ω) = π∗ω = df .

The form ω is called the 3-curvature of the pair (∇, f ).
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Dixmier-Douady class and the 3-curvature

Proposition

Let (P,Y ,M) be a bundle gerbe endowed with a arbitrary bundle gerbe

connection ∇. Then the class [ ω2πi ] ∈ H3(M;R) is a real cohomology

class which is given by the image of DD(P,Y ) under the induced map

H3(M;Z)→ H3(M;R). In particular [ω] is independent of the choice

of connection and curving.
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Tautological Bundle Gerbe

Assume we are given a manifold M and a closed, complex-valued,

integral 3-form ω ∈ Ω3(M).

Recall ω is integral, if [ ω2πi ] ∈ H3(M;C) seen as a cohomology class with

complex coefficients via the De Rham isomorphism, lies in the image of

H3(M;Z)→ H3(M;C).

We want to construct a bundle gerbe (P,Y ,M) on M and endow it with

a bundle gerbe connection such that the 3-curvature equals ω. The

construction is split into two parts:
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Part 1: The tautological principal bundle

Consider M a 1-connected manifold and ω a closed, complex-valued,

integral 2-form on M. Choose a basepoint m0 ∈ M and denote by P0M

the Fréchet manifold of smooth paths γ : [0, 1]→ M starting at m0.

The map π : P0M → M given by γ 7→ γ(1) is a surjective submersion

and we identify P0M
[2] ∼= Ω0M (use reparametrization with sitting

instants at the endpoints).

Define g : Ω0M → C× as follows: Given (µ1, µ2) ∈ P0M
[2] we have by

the fact that M is 1-connected that there is a homotopy H : I 2 → M

with fixed endpoints between µ1 and µ2.

g(µ1, µ2) := exp

(∫
I 2

H∗ω

)
The fact that ω is integral shows that this map is well defined.
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Part 1: The tautological principal bundle

The map g satisfies a cocycle condition: For (µ1, µ2, µ3) ∈ P0M
[3] we

have

g(µ1, µ2)g(µ2, µ3) = g(µ1, µ3)

Therefore P = (P0M × C×) / ∼ defines a principal C×-bundle on M,

where (µ1, z1) ∼ (µ2, z2) if and only if µ1(1) = µ2(1) and

z2 = g(µ1, µ2) · z1.

Considering the evaluation map ev : P0M × I → M given by

(γ, t) 7→ γ(t) define A =
∫

[0,1]
ev∗ω 1-form on P0M. Then the 1-form

Â = A + z−1dz descends to the principal bundle P and defines a

connection 1-form.

Using the fact dA = π∗ω one can show that dÂ = pr∗ω where

pr : P → M, i.e. ω is the curvature of the connection on P.
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Part 2: The tautological bundle gerbe

Let M be 2-connected manifold and ω a closed, complex-valued, integral

3-form on M. Then P0M
[2] is 1-connected and we define a closed,

integral 2-form on P0M
[2] via the evaluation map ev : S1 × Ω0M → M,

i.e.

A =

∫
S1

ev∗ω

We have P0M
[2] 1-connected Fréchet manifold and A closed, integral

2-form, hence Part 1. implies that we can construct a tautological

principal C×-bundle P on P0M
[2] together with a connection 1-form Â on

P whose curvature is given by A.

Need to define a bundle gerbe product on P such that (P,P0M,M) will

be our tautological bundle gerbe.
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Part 2: The tautological bundle gerbe

Notice P = (P0(Ω0M)× C×)/ ∼ hence given (µ1, µ2, µ3) ∈ P0M
[3] we

define

m(µ1,µ2,µ3) : P(µ2,µ3) ⊗ P(µ1,µ2) → P(µ1,µ3)

[H, z ]⊗ [V ,w ] 7→ [H ◦ V , zw ]

where H homotopy with fixed endpoints between (µ2, µ3) and V

homotopy with fixed endpoints between (µ1, µ2).

One can check that the connection 1-form Â is compatible with this

bundle gerbe product, i.e. defines a bundle gerbe connection.

Then the 2-form ν =
∫

[0,1]
ev∗ω on P0M is a curving for the connection

Â since we have δ(ν) = A. Then the 3-curvature of the pair (Â, ν) is ω

since dν = π∗ω.
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Gerbes via sheaves of groupoids



Sheaves redefined

Definition

Let X be a topological space, then a sheaf A on X is an assignment

which

• associates to every local homeomorphism f : Y → X a set

A(Y
f−→ X ) and to a diagram of local homeomorphisms

Z
g−→ Y

f−→ X a pullback map

g−1 : A(Y
f−→ X )→ A(Z

f ◦g−−→ X )

which is compatible with composition of diagrams

W
h−→ Z

g−→ Y
f−→ X , i.e. (g ◦ h)−1 = g−1 ◦ h−1.

• For every open set V ⊂ X and every surjective local

homeomorphism f : Y → V the sequence

A(V ↪→ X )
f−1

−−→ A(Y → X ) ⇒ A(Y ×M Y )

is an equalizer. 30



Motivation for descent

Let G be a Lie group and consider f : Y → X a surjective submersion.

Given a principal G -bundle P → X on X let Q = f ∗P be the pullback

bundle on Y .

Let π1, π2 denote the projections Y ×X Y → Y then we have a natural

isomorphism

φ : π∗1Q → π∗2Q

since f ◦ π1 = f ◦ π2. This isomorphism satisfies the following cocycle

condition

π∗1 (φ) ◦ π∗3 (φ) = π∗2 (φ)

where πi : Y [3] → Y [2] the projections omitting the i-th factor.
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Motivation for descent

Conversely, let p : Q → Y be a principal G -bundle on Y together with an

isomorphism φ : π∗1Q → π∗2Q over Y [2] which satisfies the cocycle

condition.

Now want to see if we can recover from this data a principal bundle

P → X such that Q ∼= f ∗P.

Indeed, we can define P = Q/ ∼ where the equivalence relation is

constructed using the isomorphism φ and uses the crucial fact that it

satisfies the cocycle condition.
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Motivation for descent

The aim of this discussion is to show that if we fix a surjective

submersion f : Y → X there is a one-to-one correspondence (up to

isomorphism) between

{Principal G -bundles on X} ↔

{
Principal G -bundles on Y

with descent datum w.r.t. f : Y → X

}

where descent datum for a principal bundle Q → Y is an isomorphism

φ : π∗1Q → π∗2Q satisfying the cocycle identity.
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Presheaf / Sheaf of categories

Definition

A presheaf of categories C over a topological space X consists of the

following data

1. for every local homeomorphism f : Y → X a category C(Y → X )

2. for every diagram Z
g−→ Y

f−→ X a functor

g−1 : C(Y → X )→ C(Z → X )

3. for every diagram W
h−→ Z

g−→ Y
f−→ X of local homeomorphisms an

invertible natural transformation

θg ,h : h−1 ◦ g−1 ∼−→ (g ◦ h)−1
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Presheaf / Sheaf of categories

Definition

A presheaf of categories C is said to be a sheaf of categories if the

following two descent properties are satisfied:

• (D1): For every two objects A,B ∈ C(Y
f−→ X ) the assignment

(Z
g−→ Y ) 7→ HomC(Z→X )(g

−1(A), g−1(B))

defines a sheaf on Y denoted by Hom(A,B).

• (D2): Given a local homeomorphism f : Y → X and a surjective

local homeomorphism g : Z → Y , the functor g−1 induces an

equivalence of categories

C(Y
f−→ X )→ Desc(C, g)

where Desc(C, g) is the category with objects given by pairs (A, φ)

where A ∈ C(Z → X ) and φ : π−1
1 (A)→ π−1

2 (A) an isomorphism in

C(Z ×Y Z → X ) satisfying the cocycle condition.
35



Example of a sheaf of groupoids

Let X be a manifold. Then to every submersion Y → X we assign the

category BundG (Y ) with objects given by principal G -bundles on Y and

morphisms given by isomorphisms of principal bundles (i.e. a groupoid).

Clearly (Y → X ) 7→ BundG (Y ) defines a presheaf of groupoids, since the

pullback functors satisfy all the necessary conditions.

The descent condition (D2) is satisfied as we have seen in the motivating

example.
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Example of a sheaf of groupoids

To show descent condition (D1) let P,Q be principal bundles over Y for

some submersion Y
f−→ X . Then consider the assignment:

V ⊂ Y 7→ HomBundG (V )(P|V ,Q|V )

This clearly defines a presheaf on Y . Hence what we need to check is

that given any open covering {Uα} of V and a family of isomorphisms

φα : P|Uα → Q|Uα with the property that

φα|Uαβ = φβ |Uαβ

then there is an isomorphism φ : P|V → Q|V that restricts to φα.

This is true for general principal bundles over V , hence (D1) is satisfied.
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Gerbe as sheaf of groupoids

Definition

Let M be a manifold and A a Lie group. A gerbe with band AM over M

is a sheaf of groupoids C on M satisfying the following properties:

• (G1): Given any object Q ∈ C(Y
f−→ M) the automorphism sheaf on

Y denoted by Aut(Q) is locally isomorphic to AY to the sheaf of

A-valued functions on Y .

• (G2): Given objects Q1,Q2 ∈ C(Y
f−→ M) there is a surjective

submersion g : Z → Y such that g−1(Q1) ∼= g−1(Q2) isomorphic.

• (G3): There is a surjective submersion f : Y → M such that the

category C(Y → M) is non-empty.
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Example of a Gerbe

Let M be a manifold and A an abelian Lie group.

Definition

An AM -torsor over M is a sheaf T together with a morphism of sheaves

AM × T → T inducing actions for every open subset U ⊂ M

AM(U)× T (U)→ T (U)

which are simply transitive and such that there is an open covering

{Uα} such that T (Uα) are non-empty.

Remark

Notice that torsos are just a sheaf theoretic version of a principal

A-bundle. Indeed, there is an equivalence of categories

BundA(M) −→ TorsAM
(M)

P 7−→ U 7→ Γ(U,P)
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Example of a Gerbe

Consider the following assignment:

Y
f−→ M 7→ TorsAY

(Y )

Then this defines a presheaf of groupoids. In fact the descent conditions

(D1) and (D2) are both satisfied, i.e. this defines a sheaf of groupoids.

Given a torsor T ∈ TorsAY
(Y ) we have that

Aut(T )
∼−→ AY

since as a torsor the action of AY is simply transitive. This motivates

property (G1).

Given T1, T2 ∈ TorsAY
(Y ) we use the fact that any torsor is locally

isomorphic to the trivial torsor (like principal bundles are locally trivial).

Hence we can find an open covering {Uα} of Y trivializing both T1 and

T2, i.e. g−1T1
∼= g−1T2 where g :

∐
Uα → Y . This motivates property

(G2).
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Example of a Gerbe

The property (G3) is also satisfied, since obviously TorsAM
(M)

non-empty. Hence TorsAM
(−) is a gerbe of band AM also called the

trivial gerbe.
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Classification of gerbes

Similarly as for bundle gerbes there exist notions of product gerbes and

equivalences of gerbes.

Theorem

(i) Let M be a manifold and A an abelian Lie group. Then there is a

group isomorphism between the group of gerbes with band AM up to

equivalence and the group H2(M;AM).

(ii) In the case A = C× a gerbe with band C×M is called a

Dixmier-Douady gerbe and there is a group isomorphism between

the group of DD-gerbes up to equivalence and the group H3(M;Z).
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The DD-gerbe associated to a bundle gerbe

Let M be a manifold and (P,Y ,M) a bundle gerbe. We want to

associate to (P,Y ,M) a sheaf of groupoids G which is a DD-gerbe with

DD(P,Y ) = DD(G) ∈ H3(M;Z).

Let U ⊂ M be an open subset, then we define G(U) to be the groupoid

with objects given by pairs (Q, η) where Q → YU are principal

C×-bundles over YU and η an isomorphism of principal bundles

δ(Q) P|
Y

[2]
U

Y
[2]
U

η

i.e. (Q, η) are local trivializations of P. Morphisms in G(U) are then

isomorphisms of principal bundles which commute with the isomorphisms

η.
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The DD-gerbe associated to a bundle gerbe

One can check that G satisfies the descent properties (D1) and (D2) and

that conditions (G1),(G2) and (G3) are satisfied, i.e. G defines a

DD-gerbe. Moreover one has that

DD(P,Y ) = DD(G)
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